699
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Understanding the Growth of Interfacial Reaction Product Layers between Dissimilar Materials

&

REFERENCES

  • J. K. Kivilahti, The chemical modeling of electronic materials and interconnections, J. Met. 54(12), 52 (2002).
  • T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Impurity and alloying effects on interfacial reaction layers in lead-free soldering, Mater. Sci. Eng. R R68, 1–38 (2010).
  • T. Laurila, V. Vuorinen, and J. K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Mater. Sci. Eng. R R49(1–2), 1–60 (2005).
  • K. Rönkä, F. van Loo, and J. Kivilahti, The local nominal composition - useful concept for microjoining and interconnection applications, Scripta Mater. 37(10), 1575 (1997).
  • D. Hong, V. Vuorinen, X.M. Tao, T. Laurila, and M. Paulasto-Kröckel, Thermodynamic reassessment of Au-Cu-Sn ternary system, J. Alloys Comp. 588, 449–460 (2014).
  • H. Dong, T. Xiaoma, T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, Thermodynamic modeling of Au-Ce-Sn ternary system, Calphad 42, 38–50 (2013).
  • H. Dong, V. Vuorinen, T. Laurila, and M. Paulasto-Kröckel, Thermodynamic reassessment of Au-Ni-Sn ternary system, Calphad 43, 61–70 (2013).
  • P. Turchi, L. Kaufman, and Z-K. Lui, Modeling of Ni-Cr-Mo based alloys: Part I – phase stability, Calphad 30, 70 (2006).
  • P. Turchi, A. Gonis, V. Drchal, and J. Kudrnovsky, Thermodynamic properties and phase diagram by the statistical moment and cluster variation methods: Application to pure metals and Ta-W alloys, Phys. Rev. B 64, 085112 (2001).
  • L. Kaufman, P. Turchi, W. Huang, and Z-K. Liu, Thermodynamics of the Cr-Ta-W system by combining the “Ab Initio” and CALPHAD methods, Calphad 25(3), 419 (2001).
  • S-K Lin, C-K. Yeh, W. Xie, Y-C. Liu, and M. Yoshimura, Scientific Reports 3, 2731–2734 (2013).
  • G. Ghosh and M. Asta, Phase stability, phase transformations, and elastic properties of Cu6Sn5: Ab initio calculations and experimental results, J. Mater. Res. 20, 3102–3117 (2005).
  • G. Ghosh, S. Delsante, G. Borzone, M. Asta, and R. Feroo, Phase stability and cohesive properties of Ti–Zn intermetallics: First-principles calculations and experimental results, Acta Mater. 54, 4977–4997 (2006).
  • A. Paul and T. Laurila, Comments on “Effects of current density on the formation and microstructure of Sn–9Zn, Sn–8Zn–3Bi and Sn–3Ag–0.5 Cu solder joints,” Intermetallics 28, 164–165 (2012).
  • M. Tang, L. Colombo, J. Zhu, and T. Diaz de la Rubia, Intrinsic point defects in crystalline silicon: Tight-binding molecular dynamics studiesof self-diffusion, interstitial-vacancy recombination, and formation volumes, Phys. Rev. B. 55, 14279 (1997).
  • T. Laurila, J. Karppinen, V. Vuorinen, A. Paul, and M. Paulasto-Kröckel, Effect of isothermal aging and electromigration on the microstructural evolution of solder interconnections during thermomechanical loading, J. Electron. Mater. 40(7), 1517–1526 (2011).
  • R. T. DeHoff and N. Kulkarni, The trouble with diffusion, Mater. Res. 5, 209–229 (2002).
  • R. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge (2008).
  • P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136, 864 (1964).
  • W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. B 140, A1113 (1965).
  • M. A. Caro, S. Schulz, and E. P. O'Reilly, Comparison of stress and total energy methods for calculation of elastic properties of semiconductors, J. Phys. Condens. Matt. 25, 025803 (2013).
  • A. Gulans, M. J. Puska, and R. M. Nieminen, Linear-scaling self-consistent implementation of the van der Waals density functional, Phys. Rev. B 79, 201105 (2009).
  • M. Walter, J. Akola, O. Lopez-Acevedo, P. Jadzinsky, G. Calero, C. Ackerson, R. Whetten, H. Grönbeck, and H. Häkkinen, A unified view of ligand-protected gold clusters as superatom complexes, Proc. Nat. Acad. Sci. 105(27), 9157–9162 (2008).
  • J. Enkovaara, C. Rostgaard, J. Mortensen, J. Chen, M. Dułak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H. A. Hansen, H. Kristoffersen, M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P. Moses, J. Ojanen, T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G. Madsen, R. M. Nieminen, J. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz, K. Thygesen, and K. Jacobsen, Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method, J. Phys. Conden. Matt. 22(25), 253202 (2010).
  • K. Kang, Y. Meng, J. Breger, C. Grey, and G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science 311(5763), 977–980 (2006).
  • P. Turchi, I. Abrikosov, B. Burton, S. Fries, G. Grimvall, L. Kaufmann, P. Korzhavyi, V. R. Manga, M. Ohno, A. Pisch, A. Scott, and W. Zhang, Interface between quantum-mechanical-based approaches, experiments, and CALPHAD methodology, Calphad 31, 4–27 (2007).
  • A. van de Walle, M. Asta, and G. Ceder, The alloy theoretic automated toolkit: A user guide, Calphad 26, 539–553 (2002).
  • http://www.brown.edu/Departments/Engineering/Labs/avdw/atat/
  • H. Lukas, S. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method, Cambridge University Press, Cambridge (2007).
  • M. Hillert, Phase Equilibria, Phase Diagrams and Phase Transformations, Cambridge Press, Cambridge (1998).
  • N. A. Gokcen, Thermodynamics, Techscience Incorporated, University of Michigan (1975).
  • J. Philibert, Atom Movements: Diffusion and Mass Transport in Solids, Les Editions de Physique, Paris (1991).
  • T. Laurila and J. Molarius, Reactive phase formation in thin film metal/metal and metal/silicon diffusion couples, Crit. Rev. Solid State Mater. Sci. 28, 185 (2003).
  • F. J. J. van Loo, Multiphase diffusion in binary and ternary solid-state systems, Prog. Solid St. Chem. 20, 47 (1990).
  • F. N. Rhines, Phase Diagrams in Metallurgy- Their Development and Applications, McGraw-Hill, New York (1956).
  • H. Yu, V. Vuorinen, and J. K. Kivilahti, Solder/substrate interfacial reactions in the Sn-Cu-Ni interconnection system, J. Electr. Mater. 36(2), 136 (2007).
  • A. Paul, The Kirkendall effect in solid state diffusion, Doctoral Dissertation, Technical University of Eindhoven (2004).
  • A. Paul, C. Ghosh, and W. J. Boettinger, Diffusion parameters and growth mechanism of phases in the Cu-Sn system, Metallurg. Mater. Trans. A 42A, 952–963 (2011).
  • V. Vuorinen, T. Laurila, T. Mattila, E. Heikinheimo, and J. K. Kivilahti, Solid-state reactions between Cu (Ni) alloys and Sn, J. Electron. Mater. 36(10), 1355 (2007).
  • K. Nogita and T. Nishimura, Nickel-stabilized hexagonal (Cu,Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys, Scr. Mater. 59, 191 (2008).
  • A. Paul, T. Laurila, V. Vuorinen, and S. Divinsky, Thermodynamics, Diffusion And The Kirkendall Effect In Solids, Springer, New York (2014).
  • P. Shewmon, Diffusion in Solids, 2nd ed., TMS, Warrendale (1989).
  • J. S. Kirkaldy and D. J. Young, Diffusion in the Condensed State, The Institute of Metals, UK (1987).
  • J. S. Kirkaldy, Diffusion in multicomponent metallic systems, Can. J. Phys. 36, 899 (1958).
  • J. S. Kirkaldy and L. C. Brown, Diffusion behaviour in ternary, multiphase systems, Can. Met. Q. 2, 89 (1963).
  • D. Coates and J. S. Kirkaldy, Phase interface stability in isothermal ternary systems, Proc. Second Internat. Conf. on Crystal Growth, North-Holland Publishing, Amsterdam pp. 549–554 (1968).
  • K. Bhanumurthy and R. Schmid-Fetzer, Solid-state reaction bonding of silicon carbide (HIPSiC) below 1000° C, Z. Metallkd. 87, 61 (1996).
  • C. Wagner, The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems, Acta Metall. 17, 99 (1969).
  • L. E. Trimble, D. Finn, and A. Cosgarea, Jr., A mathematical analysis of diffusion coefficients in binary systems, Acta Met. 13, 501 (1965).
  • P. L. Gruzin, Self-diffusion in gamma iron, Dokl. Akad. Nauk S.S.S.R. 86, 289 (1952).
  • A. Paul, A. A. Kodentsov, and F. J. J. van Loo, On diffusion in the β-NiAl phase, J. Alloys Comp. 403, 147 (2005).
  • T. Massalski, Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio (1996).
  • M. Hillert, Applications of Gibbs Energy-Composition Diagrams, in Lectures on the Theory of Phase Transformations, ed. H. Aaronson, AIME, (1975).
  • M. J. H. van Dal, A. M. Gusak, C. Cserhati, A. A. Kodentsov, and F. J. J. van Loo, Spatio-temporal instabilities of the Kirkendall marker planes during interdiffusion in β'-AuZn, Phil. Mag. A 82, 943 (2002).
  • T. Laurila, J. Hurtig, V. Vuorinen, and J. K. Kivilahti, Effect of Ag, Fe, Au and Ni on the growth kinetics of Sn-Cu intermetallic compound layers, Microelectr. Reliab. 49(3), 242–247 (2009).
  • J. Torres, Advanced copper interconnections for silicon CMOS technologies, Appl. Surf. Sci. 91, 112 (1995).
  • S. P. Murarka, “Advanced materials for future interconnections of the future need and strategy, Microelectron. Eng. 37/38, 29 (1997).
  • A. A. Istratov and E. R. Weber, Electrical properties and recombination activity of copper, nickel and cobalt in silicon, Appl. Phys. A 66, 123 (1998).
  • C-A. Chang, Formation of copper silicides from Cu (100)/Si (100) and Cu (111)/Si (111) structures, J. Appl. Phys. 67, 566 (1990).
  • J. Li and J. W. Mayer, Refractory metal nitride encapsulation for copper wiring, MRS Bull. 18, 52 (1993).
  • F. Faupel, Diffusion in non-crystalline metallic and organic media, Phys. Stat. Sol. A 134, 9 (1992).
  • S. Lakshminarayanan, J. Steigerwald, D. T. Price, M. Bourgwois, T. P. Chow, R. J. Gutman, and S. P. Murarka, Contact and via structures with copper interconnects fabricated using dual Damascene technology, IEEE Electr. Dev. Lett. 15, 307 (1994).
  • T. Laurila, K. Zeng, J. Molarius, I. Suni, and J. K. Kivilahti, TaC as a diffusion barrier between Si and Cu, J. Appl. Phys. 91, 5391 (2002b).
  • T. Laurila, K. Zeng, J. Molarius, I. Suni, and J. K. Kivilahti, Amorphous layer formation at the TaC/Cu interface in the Si/TaC/Cu metallization system, Appl. Phys. Lett. 80, 938 (2002a).
  • T. Laurila, K. Zeng, J. Molarius, I. Suni, and J. K. Kivilahti, Effect of oxygen on the reactions in the Si/Ta/Cu metallization system, J. Mater. Res. 16, 2939–2946 (2001).
  • E. Hondros and M. Seah, Segregation to interfaces, Int. Met. Rev. 22, 262 (1977).
  • E. Hondros and M. Seah, The theory of grain boundary segregation in terms of surface adsorption analogues, Metall. Trans. A 8A, (1977).
  • J. Lacaze and B. Sundman, An assessment of the Fe-C-Si system, Metall. Trans. A 22, 2211 (1991).
  • K. Frisk and A. F. Guillermet, Gibbs energy coupling of the phase diagram and thermochemistry in the Tantalum–Carbon system, J. Alloys Compd. 238, 167 (1996).
  • L. Chandra Sekaran, Scientific Group Thermodata Europe databank, (1987).
  • W. Wakelkamp, Diffusion and phase relations in the systems Ti-Si-C and Ti-Si- N, Doctoral thesis, Tech. University of Eindhoven, Netherlands (1991).
  • A. Christou and H. M. Day, Silicide formation and interdiffusion effects in Si-Ta, SiO2-Ta AND Si-PtSi-Ta thin film structures, J. Electron. Mat. 5, 1 (1976).
  • C. R. Kao, J. Woodford, and Y. A. Chang, A mechanism for reactive diffusion between Si single crystal and NbC powder compact, J. Mater. Res. 11, 850 (1996).
  • R. G. Sharma, Review on the fabrication techniques of A-15 superconductors, Cryogenics 27, 361–377 (1987).
  • M. Suenaga, Metallurgy of Continuous Filamentary A15 Superconductors, in Superconductor Materials Science: Metallurgy Fabrication and Applications, S. Foner and B. B. Schwartz, eds., Plenum, New York pp. 201 (1981).
  • P. J. Lee and D. C. Larbalestier, Compositional and microstructural profiles across Nb3Sn filaments produced by different fabrication methods, IEEE Trans. Appl. Superconduct. 11, 3671–3674 (2001).
  • P. J. Lee and D. C. Larbalestier, Microstructure, microchemistry and the development of very high Nb3Sn layer critical current density, IEEE Trans. Appl. Superconduct. 15, 3474–3477 (2005).
  • P. J. Lee and D. C. Larbalestier, Microstructural factors important for the development of high critical current density Nb3Sn strand, Cryogenics 48, 283–292 (2008).
  • M. Suenaga and W. Jansen, Chemical compositions at and near the grain boundariesin bronze processed superconducting Nb3Sn, Appl. Phys. Lett. 43, 791–793 (1983).
  • M. Hamalainen, K. Jaaskelainen, and R. Luoma, A thermodynamic analysis of the binary alloy systems Cu-Cr, Cu-Nb and Cu-V, Calphad 14(2), 125–137 (1990).
  • C. Toffolon, C. Servant, J. C. Gachon, and B. Sundman, Reassessment of the Nb-Sn system, J. Phase Equilibria 23(2), 134–139 (2002).
  • J. H. Shim, C. S. Oh, B. J. Lee, and D. N. Lee, Thermodynamic assessment of the Cu-Sn system, Z Metallkd. 87(3), 205–212 (1996).
  • M. Li, Z. Du, G. Guo, and C. Li, Thermodynamic optimization of the Cu–Sn and Cu–Nb–Sn systems, Alloys Comp. 477, 104 (2009).
  • R. Besson, S. Guyot, and A. Legris, Atomic-scale study of diffusion in A15 Nb3Sn, Phys. Rev. B 75, 054105-1-7 (2007).
  • C. Cserhati, U. Ugaste, M. van Dal, N. Lousberg, A. Kodentsov, and F. J. J. van Loo, On the relation between interdiffusion and tracer diffusion coefficients in ternary solid solutions, Defect Diffus. Forum 194–199, 189–194 (2001).
  • L. S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. Aime 175(184), 41 (1948).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.