1,989
Views
78
CrossRef citations to date
0
Altmetric
Reviews

Metal Matrix Composites for Thermal Management: A Review

, &

REFERENCES

  • G. A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids 34, 321–335 (1973).
  • H. S. Lee, K. Y. Jeon, H. Y. Kim, and S. H. Hong, Fabrication process and the thermal properties of SiCAl metal matrix composites for electronic packaging applications, J. Mater. Sci. 35, 6231–6236 (2000).
  • M. A. Occhionero, R. A. Hay, R. W. Adams, and K. P. Fennessy, Cost-effective manufacturing of aluminum silicon carbide (AlSiC) electronic packages, IMAPS Advanced Packaging Materials Symposium, March 14–17, 1999.
  • D. C. Packard, Kevlar epoxy substrate for interconnecting leadless chip carrier, Sampe J. 20, 6–14 (1984).
  • S. R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites-a review, Int. Mater. Rev. 55, 41–64 (2010).
  • R. E. Hummel, Electronic Properties of Materials, Springer Science & Business Media, New York, USA (2011).
  • C. Tatar and N. Ozdemir, Investigation of thermal conductivity and microstructure of the α- Al2O3 particulate reinforced aluminum composites (Al/Al2O3-MMC) by powder metallurgy method, Physica B 405, 896–899 (2010).
  • S. Yu, P. Hing, and X. Hu, Thermal conductivity of polystyrene- aluminum nitride composite, Compos. Part A Appl. Sci. Manufact. 33, 289–292 (2002).
  • B. Karthikeyan, S. Ramanathan, and V. Ramakrishnan, Thermo physical property measurement of metal matrix composites, Materials and design 31, (2010) 582–586.
  • V. Ramakrishnan, A. Ramasamy, P. P. Gupta, H. Narayananmurthy, S. Hegde, and M. K. Surappa, Thermal characterization of aluminum and magnesium MMCs by TMA, In Indian Society for Advancement of Material and Process Engineering National Conference, Thiruvananthapuram, India, May 2002, 320–325.
  • T. Huber, H. P. Degischer, G. Lefranc, and T. Schmitt, Thermal expansion studies of alumnium-matrix composites with different reinforced architecture of SiC particles, Compos. Sci. Technol. 66, 2206–2217 (2006).
  • T. H. Nam, G. Requena, and P. Degischer, Thermal expansion behaviour of aluminum matrix composites with densely packed SiC particles, Compos. Part A 39, 856–865 (2008).
  • J. M. Molina, R. A. Saravanan, R. Arpon, C. Garcıa-Cordovilla, E. Louis, and J. Narciso, Pressure infiltration of liquid aluminium into packed SiC particulate with a bimodal size distribution, Acta Mater. 50, 247–257 (2002).
  • J. M. Molina, J. Narciso, L. Weber, A. Mortensen, and E. Louis, Thermal conductivity of Al–SiC composites with monomodal and bimodal particle size distribution, Mater. Sci. Eng. A 480, 483–488 (2008).
  • R. Arpon, J. M. Molina, R. A. Saravanan, C. Garcıa-Cordovilla, E. Louis, and J. Narciso, Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions, Acta Materialia 51, 3145–3156 (2003).
  • Y. Xu, Y. Tanaka, M. Murata, K. Kamihira, Y. Isoda, and K. Yagi, Thermal conductivity of unidirectionally aligned SiC whisker reinforced Al alloy matrix composite with interfacial thermal resistance, Mater. Trans. 46, 148–151 (2005).
  • I. Mizoguchi, S. Yamaguchi, S. Yachi, and M. Yoshida, Influence of high temperature holding on tensile strength of pitch-based carbon fiber reinforced Al–Mg alloy composites fabricated by ultrasonic infiltration method, J. Japan Instit. Light Met. 60, 396–402 (2010).
  • H. S. Lee, K.Y. Jeon, H.Y. Kim, and S. H. Hong, Fabrication process and the thermal properties of SiCAl metal matrix composites for electronic packaging applications, J. Mater. Sci. 35, 6231–6236 (2000).
  • S. Cem Okumus, S. Aslan, R. Karslioglu, D. Gultekin, and H. Akbulut, Thermal expansion and thermal conductivity behaviors of Al-Si/SiC/graphite hybrid metal matrix composites (MMCs), Material Sci. (Medziagotyra) 18, 341–346 (2012).
  • W. Yang, L. Zhou, K. P. J. Zhu, and L. Wan, Effect of tungsten addition on thermal conductivity of graphitecopper composites, Compos. Part B 55, 1–4 (2013).
  • R. Prieto, J. M. Molina, J. Narciso, and E. Louis, Fabrication and properties of graphite flakesmetal composites for thermal management application, Scripta Materialia 59, 11–14 (2008).
  • T. Schubert, B. Trindde, T. Weissgarber, and B. Kieback, Interfacial design of Cu- based composites prepared by powder metallurgy for heat sink applications, Mater. Sci. Eng. A 475, 39–44 (2008).
  • T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J. F. Loffler, and P. Uggowitzer Aluminum carbide formation in interpenetrating graphite/aluminum composites, Mater. Sci. Eng. A 448, 1–6 (2007).
  • J. K. Chen and I. S. Huang, Thermal properties of aluminum-graphite composites by powder metallurgy, Compos. Part B 44, 698–703 (2013).
  • J. Maire and J. Mering, Graphitization of soft carbon, In Chemistry and Physics of Carbon, PL Walker Jr, Ed., Marcel Dekker, New York 6 (1970), pp. 125–190.
  • H. Zhang, M. Chao, H. Zhang, A. Tang, B. Ren, and X. He, Microstructure and thermal properties of copper matrix composites reinforced by chromium-coated discontinuous fibers, Appl. Therm. Eng. 73, 737–742 (2014).
  • E. A. Burgemeister, Thermal resistance at metaldiamond interfaces in relation to the mounting of microwave diodes, J. Appl. Phys. D Appl. Phys. 10, 1923–1930 (1977).
  • T. Schubert, L. Ciupinski, W. Zielinski, A. Michalski, T. Weibgarber, and B. Kieback, Interfacial characterization of Cudiamond composites prepared by powder metallurgy fot heat sink applications, Scripta Materialia 58, 263–266 (2008).
  • P. W. Ruch, O. Beffort, S. Kleiner, L. Weber, and P. J. Uggowitzer, Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity, Compos. Sci. Technol. 66, 2677–2685 (2006).
  • C. Xue, J. K. Yu, and X. M. Zhu, Thermal properties of diamond/SiC/Al composites with high volume fractions, Mater. Des. 32, 4225–4229 (2011).
  • Q. L. Che, X. K. Chen, Y. Q. Ji, Y. W. Li, L. X. Wang, S. Z. Cao, Y. G. Jiang, and Z. Wang, The influence of minor titanium addition on thermal properties of diamondcopper composites via in-situ reactive sintering, Mater. Sci. Semiconduct. Process. 30, 104–111 (2015).
  • Z. Yang, X. He, L. Wang, R. Liu, H. Hu, L. Wang, and X. Qu, Microstructure and thermal expansion behavior of diamond/SiC/(Si) composites fabricated by reactive vapor infiltration, J. Eur. Ceram. Soc. 34, 1139–1147 (2014).
  • Z. Tan, Z. Li, G. Fan, X. Kai, G. Ji, L. Zhang, and D. Zhang, Fabrication of diamond/aluminum composites by vacuum hot pressing: processoptimization and thermal properties, Compos. Part B 41, 173–180 (2013).
  • S. Kleiner, F. A. Khalid, P. W. Ruch, S. Meier, and O. Beffort, Effect of diamond crystallographic orientation on dissolution and carbide formation in contact with liquid aluminum, Scripta Materialia 55, 291–294 (2006).
  • J. Flaquer, A. Rios, A. Martin-Meizoso, S. Nogales, and H. Bohm, Effect of diamond shapes and associated thermal boundary resistance on thermal conductivity of diamond-based composites, Computat. Mater. Sci. 41, 156–163 (2007).
  • R. G. Coltters, Thermodynamics of binary metallic carbides—a review, Mater. Sci. Eng. 76, 1–50 (1985).
  • X. Liang, C. Jia, K. Chu, H. Chen, J. Nie, and W. Gao, Thermal conductivity and microstruture of Aldiamond composites with Ti-coated diamond particles consolidated by spark plasma sintering, J. Compos. Mater. 46, 1127–1136 (2011).
  • K. Chu, C. Jia, H. Guo, and W. Li, On the thermal conductivity of Cu-Zr/diamond composites, Mater. Des. 45, 36–42 (2013).
  • Y. Zhang, H. L. Zhang, J. H. Wu, and X. T. Wang, Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles, Scripta Materialia 65, 1097–1100 (2011).
  • K. Yoshida and H. Morigami, Thermal properties of diamond/copper composite material, Mictoelectron. Reliab. 44, 303–308 (2004).
  • J. He, X. Wang, Y. Zhang, Y. Zhao, and H. Zhang, Thermal conductivity of Cu–Zrdiamond composites produced by high temperature–high pressure method, Compos. Part B 68, 22–26 (2015).
  • J. Yin, D. Yao, Y. Xia, K. Zuo, and Y. Zeng, The effect of modified interfaces on the mechanical property of β-silicon nitride whiskers reinforced Cu matrix composites, J. Alloys Compnd. 615, 983–988 (2014).
  • K. Chu, C. Jia, H. Guo, and W. Li, Microstructure and thermal conductivity of Cu-Bdiamond composites, J. Compos. Mater. 47, 2945–2953 (2013).
  • M. Kida, L. Weber, C. Monachon, and A. Mortensen, Thermal conductivity and interfacial conductance of AlN particle reinforced metal matrix composites, J. Appl. Phys. 109, 064907 (2011).
  • D. P. H. Hasselman, Effect of thermal conductivity mismatch on the thermal stresses in a dispersed phase-continuous matrix composite material undergoing steady-state heat flow, J. Compos. Mater. 36, 1604–1613 (2002).
  • S. Timoshenko and J. N. Goodier, Theory of Elasticity, 2nd ed., McGraw-Hill, New York, USA (1951).
  • C. Wang, G. Min, and S-b Kang, Thermal conducting property of SiC-reinforced copper matrix composites by hot pressing, J. Compos. Mater. 45, 1849–1852 (2011).
  • T. Takei, H. Hatta, and M. Taya, Thermal expansion behavior of particulate-filled composites II: multi-reinforcing phases (hybrid composites), Mater. Sci. Eng. A 131, 145–152 (1991).
  • H. Hatta, T. Takei, and M. Taya, Effects of dispersed mirovoids on the thermal expansion behavior of composite materials, Mater. Sci. Eng. 285, 99–110 (2000).
  • J. N. Grima, V. Zammit, and R. Gatt, Negative thermal expansion, Xjenza 11, 17–29 (2006).
  • K. Takenaka, Negative thermal expansion materials: technological key for control of thermal expansion, Sci. Tehnol. Adv. Mater. 13, 013001 (2012).
  • S. Das, S. Das, and K. Das, Synthesis and thermal behavior of Cu/Y2W3O12 composite, Ceram. Int. 40, 6465–6472 (2014).
  • A. Matsumoto, K. Kobayashi, T. Nishio, and K. Ozaki, Fabrication and thermal expansion of Al-ZrW2O8 composites by pulse current sintering process, Mater. Sci. Forum 426, 2279–2284 (2003).
  • H. Holzer and D. Dunand, Processing, structure and thermal expansion of metal matrix composites containing zirconium tungstate, 4th International Conference on Composite Engineering, Hawaii (1997).
  • C. Verdon and D. C. Dunand, High temperature reactivity ZrW2O8 -Cu system, Scripta Materialia 36, 075–1080 (1997).
  • D. K. Balch and D. C. Dunand, Copper-zirconium tungstate composites exhibiting low and negative thermal expansion influenced by reinforcement phase transformations, Metallurg. Mater. Trans. A 35, 1159–1165 (2004).
  • L. Ding, C. Wang, Y. Na, L. Chu, and J. Yan, Preparation and near zero thermal expansion property of Mn3Cu0.5A0.5 N (A = Ni, Sn)/Cu composites, Scripta Materialia 6(2014)5, 687–690 (2011).
  • M. Azuma, W-t Chen, H. Seki, M. Czapski, K. Oka, M. Mizumaki, T. Watanuki, N. Ishimatsu, N. Kawamura, S. Ishiwata, M.G. Tucker, Y. Shimakawa and J.P. Attfield, Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer, Nat. Commun. 2, 347 (2011).
  • M. Ma, Z. Liu, Y. Li, Y. Zeng, and D. Yao, Thermal conductivity of low-temperature sintered calcium aluminosilicate glass-silicon nitride whisker composites, Ceram. Int. 39, 4683–4687 (2013).
  • R. Bacon, Growth, structure, and properties of graphite whiskers, J. Appl. Phys. 31, 283–290 (1960).
  • S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56–58 (1991).
  • H-W Liang, Q-F Guan, L-T S. Zhu-Zhu, H-B Yao, X. Lei, and S-H Yu, Highly conductive and stretchable conductors fabricated from bacterial cellulose, NPG Asia Mater. 4(6), e19 (2012).
  • S. I. Cha, K. T. Kim, S. N. Arshad, C. B. Mo, and S. H. Homg, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Adv. Mater. 17, 1377–1381 (2005).
  • T. Laha, A. Agarwal, T. McKechnie, and S. Seal, Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite, Mater. Sci. Eng. A 381, 249–258 (2004).
  • T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, and M. Seki, Carbon nanotubealuminium composites with uniform dispersion, Mater. Trans. 45, 602–604 (2004).
  • H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon 47, 570–577 (2009).
  • D. K. Lim, T. Shibayanagi, and A. P. Gerlich, Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing, Mater. Sci. Eng. A 507, 194–199 (2009).
  • Shi-Ying Liu, Fei-Peng Gao, Qiong-Yuan Zhang, Xue Zhu, and Wen-Zhen Li, Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing, Trans. Nonferrous Met. Soc. China 20, 1222–1227 (2010).
  • K. Chu, H. Guo, C. Jia, F. Yin, X. Zhang, X. Liang, and H. Chen, Thermal properties of carbon nanotube-copper composites for thermal management applications, Nanoscale Res. Lett. 5, 868–874 (2010).
  • Y. Wu, G-Y Kim, and A. M. Russell, Effect of mechanical alloying on an Al6061-CNT composite fabricated by semi-solid powder processing, Mater. Sci. Eng. A 538, 164–172 (2012).
  • K. Morsi, and A. Esawi, Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders, J. Mater. Sci. 42, 4954–4959 (2007).
  • L. Wang, H. Choi, J-M Myoung, and W. Lee, Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbonmetal composites, Carbon 47, 3427–3433 (2009).
  • S. E. Salibekov, A. A. Zabolotskiy, V. A. Turchenkov, B. F. Trefilov, and N. P. Ignatov, Influence of nickel coating fibers, structure and properties of composite material (aluminum-carbon fiber), In Fibrous and Dispersively Reinforced Composite Materials, I.N. Fridlyander and V.I. Kostikov, Eds., Nauka Publishers, Moscow 33–7 (1976).
  • Y. V. Naydich and G. A. Kolesnichenko, Interaction of Metal Melts with Diamond and Graphite Surfaces, Naukova Dumka, Kiev (1967).
  • Z. Tao, Q. Guo, X. Gao, and L. Liu, Graphite fibercopper composites with near-zero thermal expansion, Mater. Des. 33, 372–375 (2012).
  • J. P. Fan, D. M. Zhuang, D. Q. Zhao, G. Zhang, M. S. Wu, F. Wei and Z. J. Fan, Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes, Appl. Phys. Lett. 89, 121910 (2006).
  • G. Yamamoto, J. W. Suk, J. An, R. D. Piner, T. Hashida, Kagi Ta, and R. S. Ruoff, The influence of nanoscale defects on the fracture of multi-walled carbon nanotubes under tensile loading, Diamond Rel. Mater. 19, 748–751 (2010).
  • J. F. Silvain, C. Vincent, J. M. Heintz, and N. Chandra, Novel processing and characterization of CuCNF nanocomposite for high thermal conductivity applications, Composites science and Technol. 69, 2474–2484 (2009).
  • J. F Silvain and O. Fouassier, XPS investigation of Sn, Sn-d and Sn-dCu clusters produced by electroless deposition onto NiTi micronic particles formed by atomization, Surf. Interface Anal. 6, 769–772 (2004).
  • K. T. Kim, J. Eckert, G. Liu, J. Man Park, B. K. Lim, and S. H. Hong, Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing, Scripta Materialia 64, 181–184 (2011).
  • L. Duan, W. Lin, J. Wang, and G. Yang, Thermal properties of W-Cu composites manufactures by copper infiltration into tungsten fiber matrix, Int. J. Refract. Met. Hard Mater. 46, 96–100 (2014).
  • R. J. McGlen, R. Jachuck, and S. Lin, Integrated thermal management techniques for high power electronic devices, Appl. Therm. Eng. 24, 1143–1156 (2004).
  • G. Chai, Y. Sun, J. Sun, and Q. Chen, Mechanical properties of carbon nanotube-copper nanocomposites, J. Micromechan. Micro Eng. 18, 035013 (2008).
  • G. Chai and Q. Chen, Characterization study of the thermal conductivity of carbon nanotube copper nano-composites, J. Compos. Mater. 44, 2863–2873 (2010).
  • S. R. Bakshi, R. R. Patel, and A. Agarwal, Thermal conductivity of carbon nanotube reinforced aluminum composites: a multi-scale study using object oriented finite element method, Computat. Mater. Sci. 50, 419–428 (2010).
  • S-m Zhou, X-b Zhang, Z-p Ding, C-y Min, G-l Xu, and W-m Zhu, Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique, Compos. Part A Appl. Sci. Manufact. 38, 301–306 (2007).
  • S. R. Bakshi, V. Singh, S. Seal, and A. Agarwal, Alumnium composite reinforced with multi-walled carbon nanotubes from plasma spraying of spray dried powders, Surf. Coat. Technol. 203, 1544–1554 (2009).
  • Y. Tang, H. Cong, R. Zhong, and H-M Cheng, Thermal expansion of a composite of single-walled carbon nanotubes and nanocrystalline aluminum, Carbon, 42, 3260–3262 (2004).
  • C. F. Deng, Y. X. Ma, P. Zhang, X. X. Zhang, and D. Z. Wang, Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes, Mater. Lett. 62, 2301–2303 (2008).
  • A. A. Zabolotsky, Aluminum-carbon system composites, In Metal Matrix Composites (Vol. 3), J. N. Fridlyander and I. H. Marshall, Eds., Springer, London, UK (1995), pp. 347–348.
  • P. G. Partridge, G. Lu, P. May, and J. W. Steeds, Potential high-strength high conductivity metal-matrix composites based on diamond fibers, Diamond Relat. Mater. 4, 848–851 (1995).
  • T. Liu, X. He, L. Zhang, Q. Liu, and X. Qu, Fabrication and thermal conductivity of short fiberAl composites by vacuum pressure in filtration, J. Compos. Mater. 48, 2207–2214 (2013).
  • C. Edtmaier, T. Steck, R. C. Hula, L. Pambaguian, and F. Hepp, Thermo-physical properties and TEM analysis of silver based MMCs utilizing metalizes multiwall-carbon nanotubes, Compos. Sci. Technol. 70, 783–788 (2010).
  • C. S. Goh, J. Wei, L. C. Lee, and M. Gupta, Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, Nanotechnology 17, 7–12 (2006).
  • X. Yuan and S. Huang, Microstructural characterization of MWCNTs/magnesium alloy composites fabricated by powder compact laser sintering, J. Alloys Compnd. 620, 80–86 (2015).
  • S. K. Thakur, T. Kwee, and M. Gupta, Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements, J. Mater. Sci. 42, 10040–10046 (2007).
  • Y. L. Shen, A. Needleman, and S. Suresh, Coefficients of thermal expansion of metal-matrix composites for electronic packaging, Metallurg. Mater. Trans. 25, 839–850 (1994).
  • Y. S. Lee, M. N. Gungor, T. J. Batt, and P. K. Liaw, Semi-empirical investigation of thermal expansion behavior of components in a two-phase particle-reinforced metal matrix composite, Mater. Sci. Eng. A 145, 37–46 (1991).
  • K. B. Lee and H. Kwon, Strength of Al-Zn-Mg-Cu matrix composite reinforced with SiC particles, Metallurg. Mater. Trans. A 33, 455–465 (2002).
  • P. S. Turner, Thermal-expansion stresses in reinforced plastics, J. Res. Nat. Bur. Stand. 37, 239–250 (1946).
  • E. H. Kerner, The elastic and thermo-elastic properties of composite media, Proc. Phys. Soc. London 69, 808–813 (1956).
  • R. A Schapery, Thermal expansion coefficients of composite materials based on energy principles, J. Compos. Mater. 2, 380–404 (1968).
  • Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behavior of multiphase materials, J. Mechan. Phys. Solids 11, 127–140 (1963).
  • J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. A 241, 376–396 (1957).
  • J. D. Eshelby, The elastic field outside an ellipsoidal inclusion, Proc. Roy. Soc. A 252, 561–569 (1959).
  • K. Wakashima, M. Otsuka, and S. Umekawa, Thermal expansions of heterogeneous solids containing aligned ellipsoidal inclusions, J. Compos. Mater. 8 (1974) 391–404 (1974).
  • J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., Oxford University Press, London, UK (1904).
  • S. C. Cheng and R. I. Vachon, The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures, Int. J. Heat Mass Transf. 12, 249–264 (1969).
  • Y. Agari and T. Uno, Estimation on thermal conductivities of filled polymers, J. Appl. Polymer Sci. 32, 5705–5712 (1986).
  • T. Lewis and L. Nielsen, Dynamics mechanical properties of particulate-filled composites, J. Appl. Polymer Sci. 14, 1449–1471 (1970).
  • D. A. G. Bruggeman, The prediction of the thermal conductivity of heterogeneous mixtures, Ann. Phys. 416, 665–679 (1935).
  • R. Tavangar, J. M. Molina, and L. Weber, assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast, Scripta Materialia 56, 357–360 (2007).
  • R. L. Hamilton and O. K. Crosser, Thermal conductivity of heterogeneous two-component system, Industr. Eng. Chem. Fund. 1, 187–191 (1962).
  • R. L. Kapitza, The study of heat transfer in helium II, J. Phys. USSR, 4, 177–181 (1941).
  • D. P. H. Hasselman and L. F. Johnson, Effective thermal conductivity of composites with interfacial thermal barrier resistance, J. Compos. Mater. 21, 508–515 (1987).
  • J. R. Thomas and D. P. H. Hasselman, Effective thermal conductivity of continuous matrix–spherical dispersed phase composite with single-point interfacial thermal contact: Continuum regime gas conduction in the gap, J. Compos. Mater. 40, 1023–1034 (2006).
  • A. G. Every, The effect of particle size on the thermal conductivity of ZnS/diamond composites, Acta Metallurgica et Materialia 40, 123–129 (1992).
  • E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61, 605–668 (1989).
  • K. Chu, C. Jia, X. Liang, H. Chen, and H. Guo, The thermal conductivity of pressure infiltrated SiC/Al composites with various size distributions: Experimental study and modeling, Mater. Des. 30, 3497–3503 (2009).
  • H. Hatta, M. Taya, F. A. Kulacki, and J. F. Harder, Thermal diffusivities of composites with various types of filler, J. Compos. Mater. 26, 612–625 (1992).
  • C. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys. 81, 6692–6699 (1997).
  • X. D. Liu, J. S. Zhang, X. M. Cao, and H. Zhang, Finite element simulation of the thermal properties of particulate and continuous network-reinforced metal-matrix composite, Proc. of the Institution of Mechanical Engineers, Part B J. Eng. Manuf. 219, 111–121 (2005).
  • Y. Hua and L. Gu, Prediction of the thermo-mechanical behavior of particle-reinforced metal matrix composites, Compos. Part B 45, 1464–1470 (2013).
  • M. Aadmi, M. Karki, L. Ibos, and M. E Hammouti, Effective thermal conductivity of random two-phase composites, J. Reinfor. Plastic Compos. 33, 69–80 (2014).
  • H. Zhang, Y. Zeng, H. Zhang, and F. Guo, Computational investigation of the effective thermal conductivity of interpenetrating network composites, J. Compos. Mater. 44, 1247–1260 (2010).
  • M. Wang, J. He, J. Yu, and N. Pan, Lattice Boltzmann modeling of the effective thermal conductivity for fibrous materials, Int. J. Therm. Sci. 46, 848–855 (2007).
  • M. Wang, Q. Kang, and N. Pan, Thermal conductivity enhancement of carbon fiber composites, Appl. Therm. Eng. 29, 418–421 (2009).
  • S. Ghosh, Z. Nowak, and K. Lee, Tessellation-based computational methods for the characterization and analysis of heterogeneous microstructure, Compos. Sci. Technol. 57, 1187–1210 (1997).
  • R. Pyrz, Quantitative description of the microstructure of composites: Morphology of unidirectional composite systems, Compos. Sci. Technol. 50, 197–208 (1994).
  • J. Turias, J. M. Gutierrez, and P. L. Galindo, Modelling the effective thermal conductivity of an unidirectional composite by the use of artificial neural networks, Compos. Sci. Technol. 65, 609–619 (2005).
  • D. Marcos-Gomez, J. Ching-Llyod, M. R. Elizalde, W. J. Clegg, and J. M. Molina-Aldareguia, Predicting the thermal conductivity of composite materials with imperfect interfaces, Compos. Sci. Technol. 70, 2276–2283 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.