3,502
Views
146
CrossRef citations to date
0
Altmetric
Reviews

Magical Allotropes of Carbon: Prospects and Applications

, , , , &

References

  • R. E. Smalley, Discovering the fullerenes, Rev. Mod. Phys. 69, 723 (1997).
  • B. S. Kademani, V. L. Kalyane, and V. Kumar, Scientometric portrait of Nobel laureate Harold W. Kroto, SRELS J. Info. Mana. 39 (2002).
  • A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6, 183 (2007).
  • S. Ahmad, Carbon nanostructures fullerenes and carbon nanotubes, Iete Techn. Rev. 16, 297 (1999).
  • M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Nanotechnology in Carbon Materials, Springer, New York (1999).
  • I. M. Afanasov, V. A. Morozov, S. G. Ionov, A. N. Selez nev, and G. V. Tendeloo, Preparation, electrical and thermal properties of new exfoliated graphite-based composites, Carbon 4, 263 (2009).
  • L. C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, and S. Iijima, Materials science: The smallest carbon nanotube, Nature 408, 50 (2000).
  • S. Berber, Y. K. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. 3010 Lett. 84, 4613 (2000).
  • M. S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications, Academic Press, New York (1996).
  • L. Chen, Y. Hernandez, X. Feng, and K. Mullen, From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis, Angew. Chem. Int. Ed. 51, 7640 (2012).
  • V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: past, present and future, Prog. Mater. Sci. 56, 1178 (2011).
  • S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, and R. S. Ruoff, Graphene based composite materials, Nature 442, 7100 (2008).
  • A. Tiwari, Fascinating world of immerging graphene technologies, Adv. Mat. Lett. 3, 173 (2012).
  • B. N. Patil, S. A. Acharya, Preparation of ZnS-graphene nanocomposite and its photocatalytic behavior for dye degradation, Adv. Mat. Lett. 5,116 (2014).
  • C.He, N. Zhao, C. Shi, E. Liu, J. Li, Fabrication of nanocarbon composites using in situ chemical vapor deposition and their applications, Adv. Mater. 27, 5431 (2015).
  • T. K. Das and Smita Prusty, Graphene-based polymer composites and their applications, Polym. Plast. Technol. Eng. 52, 331 (2013).
  • P. S. Shivakumar Gouda, Raghavendra Kulkarni, S. N. Kurbet, and Dayananda Jawali, Effects of multi walled carbon nanotubes and graphene on the mechanical properties of hybrid polymer composites, Adv. Mat. Lett. 4, 270 (2013).
  • C. Schonenberger and L. Forro, Multiwall carbon nano tubes, Phys. World 13, 37 (2000).
  • R. Singhal, D. C. Agarwal, S. Mohapatra, Y. K. Mishra, D. Kabiraj, F. Singh, D. K. Avasthi, A. K. Chawla, R. Chandra, G. Mattei, and J. C. Pivin, Synthesis and characterizations of silver-fullerene C70 nanocomposite, Appl. Phys. Lett. 93, 103114 (2008).
  • V. Georgakilas, J. A. Perman, J. Tucek, and R. Zboril. Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures, Chem. Rev. 115, 4822 (2015).
  • Y.A. Chen, A. Star, and S. Vidal. Sweet carbon nanostructures: carbohydrate conjugates with carbon nanotubes and graphene and their applications, Chem. Soc. Rev. 42, 4542 (2013).
  • M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soci. Japan 65, 1923 (1996).
  • G. V. Dubacheva, C. K. Liang, and D. M. Bassani, Functional monolayers from carbon nanostructures–fullerenes, carbon nanotubes, and graphene–as novel materials for solar energy conversion, Coordin. Chem. Rev. 256, 2639 (2012).
  • K. Nakada, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54, 17954 (1996).
  • P. R. Buseck, S. J Tsipursky, and R. Hettich, Fullerenes from the geological environment, Science 257, 215 (1992).
  • K. A. Tohji, L. Paul, R. Moro, D. Malhotra, C. Lorents, and R. S. Ruoff, Selective and high-yield synthesis of higher fullerenes, J. Phys. Chem. 99, 17788. (1995).
  • N. G. Bochkarev, Molecules and their migration in the universe, Paleontol. J. 44, 791 (2010).
  • H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. L. Worth Scott, T. M. Gelmont, D. Olevano, and B. V. Issendorff, Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20, Nature 407, 60 (2000).
  • A. Goel, J. B. Howard, and J. B. Vander Sande, Size analysis of single fullerene molecules by electron microscopy, Carbon 42 1915 (2004).
  • A. K. Choudhary, Fullerene chemistry an overview, Ind. J. Res. 6, 72 (2012).
  • D. L. D. Caspar, Deltahedral views of fullerene polymorphism, Science 343, 133 (1993).
  • Y. Z. Tan, S. Y. Xie, R. B. Huang, and L. S. Zheng, The stabilization of fused-pentagon fullerene molecules, Nat. Chem. 1, 450, (2009).
  • K. Choho, W. Langenaeker, G. Van de Woude, and P. Geerlings, Reactivity of fullerenes. Quantum-chemical descriptors versus curvature, J. Mol. Struc. 8, 293 (1995).
  • M. Sola, J. Mestres, and M. Duran, Molecular size and pyramidalization: two keys for understanding the reactivity of fullerenes, J. Phys. Chem. 99, 10752 (1995).
  • F. Wudl, Fullerene materials, J. Mater. Chem. 12, 1959 (2002).
  • S. Muhammad, H. L. R.L. Xu, Zhong, Z. M. Su, A. G. Al-Sehemi, and A. Irfan, Quantum chemical design of nonlinear optical materials by sp 2-hybridized carbon nanomaterials: issues and opportunities, J. Mater. Chem. C 1, 5449 (2013)
  • L. Chiang, Y. Ravi, B. Upasani, and J. W. Swirczewski, Versatile nitronium chemistry for C60 fullerene functionalization, JACS, 114, 10157(1992)
  • R. C. Haddon, Chemistry of the fullerenes: The manifestation of strain in a class of continuous aromatic molecules, Science 261, 1545 (1993).
  • Z. Chen and R. Bruce King, Spherical aromaticity: recent work on fullerenes, polyhedral boranes, and related structures, Chem. Rev. 105, 3613 (2005).
  • N. C. Miller, E. Cho, R. Gysel, C. Risko, V. Coropceanu, and C. E. Miller, Factors governing intercalation of fullerenes and other small molecules between the side chains of semiconducting polymers used in solar cells, Adv. Eng. Mater. 2, 1208 (2012).
  • F. Diederich and R. L. Whetten, Beyond C60: The higher fullerenes, Acc. Chem. Res. 25, 119 (1992).
  • F. Diederich, R. Ettl, Y. Rubin, R. L. Whetten, R. Beck, M. Alvarez, and A. Koch, The higher fullerenes: isolation and characterization of C76, C84, C90, C94, and C700, an oxide of D5h-C70, Science 252, 548 (1991).
  • K. V. Reddy, Symmetry and Spectroscopy of Molecules, New Age International, New Delhi, India (1998).
  • J. Osterodt, A. Zett, and F. Vogtle, Fullerenes by pyrolysis of hydrocarbons and synthesis of isomeric methanofullerenes, Tetrahedron 52, 4949 (1996).
  • K. Kikuchi, N. Nakahara, T. Wakabayashi, S. Suzuki, H. Shiromaru, Y. Miyake, and Y, Achiba, NMR characterization of isomers of C78, C82 and C84 fullerenes, Nature 45, 142 (1992).
  • D. Bakowies, M. Buehl, and W. Thiel, Can large fullerenes be spherical?, J. Amer. Chem. Soc. 117, 10113 (1995).
  • http://homepage.hispeed.ch/bakowies/
  • M. Endo, M. S. Strano, and P. M. Ajayan, Potential applications of carbon nanotubes, In Carbon Nanotubes (pp. 13–62). Springer, Berlin Heidelberg (2007).
  • M. Monthioux and V. L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes, Carbon 44, 1621 (2006).
  • G. Nicole, Carbon nanotubes-becoming clean, Mater. Today 10, 28 (2007).
  • A. Oberlin, M. Endo, and T. Koyama, Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth 32, 335 (1976).
  • S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 58 (1991).
  • T. Kuila, S. Bose, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci. 57, 1061 (2012).
  • J. L. Delgado, M. Á. Herranz, and N. Martin, The nano-forms of carbon, J. Mater. Chem. 18, 1426 (2008).
  • J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. N. Stockli, A. Burnham, and L. Forro, Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett. 82, 944 (1999).
  • J. Hu, T. W. Odom, and C. M. Lieber, Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes, Acc. Chem. Res. 32, 435 (1999).
  • M. Damnjanović, I. Milošević T. Vuković, and R.Sredanović, Full symmetry, optical activity, and potentials of single-wall and multiwall nanotubes, Phys. Rev. B 60, 2728 (1999).
  • M. Terrones, N. Grobert, J. Olivares, J. P Zhang, H. Terrones, K. Kordatos, W. K. Hsu, J. P. Hare, P. D. Townsend, K. Prassides, and A. K. Cheetham, Controlled production of aligned-nanotube bundles, Nature 388 6637 (1997).
  • D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribons, Nature 458, 872 (2009).
  • M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Eds.), Carbon nanotubes, Topics Appl. Phys. 80, Springer-Verlag, Berlin Heidelberg 173–211 (2001).
  • H. Omachi, T. Nakayama, E. Takahashi, Y. Segawa, and K. Itami, Initiation of carbon nanotube growth by well-defined carbon nanorings. Nature chemistry 5, 572 (2013)
  • T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Atomic structure and electronic properties of singlewalled carbon nanotubes, Nature 391, 62 (1998).
  • Y. Matsuo, K. Tahara, and E. Nakamura, Theoretical studies on structures and aromaticity of finite-length armchair carbon nanotubes, Organ. Lett. 5, 3181 (2003).
  • M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon fibers based on C60 and their symmetry, Phys. Rev. 45, 6234 (1992).
  • E. B. Barros, A. Jorio, G. G. Samsonidze, R. B. Capaz, A. G. S. Filho, J. M. Filho, G. Dresselhaus, and M. S. Dresselhaus, Review on the symmetry-related properties of carbon nanotubes, Phys. Rep. 431, 261 (2006).
  • M. Zheng and E. D. Semke, Enrichment of single chirality carbon nanotubes, J. Am. Ceram. Soc. 129, 6085 (2007).
  • Q. Zhao, M. B. Nardelli, and J. Bernholc, Ultimate strength of carbon nanotubes: a theoretical study, Phys. Rev. 65, 144105 (2002).
  • R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Carbon nanotubes–the route toward applications, Science 297, 787 (2002).
  • P. Eklund, P. Ajayan, and R. Blackmon, International Assessment of Research and Development on Carbon Nanotubes: Manufacturing and Applications, World Technology Evaluation Center, Inc., Baltimore, Maryland (2007).
  • M. R. Loos, L. A. F. Coelho, S. H. Pezzin, and S. C. Amico, Effect of carbon nanotubes addition on the mechanical and thermal properties of epoxy matrices, Mater. Res. 11, 347 (2008).
  • M. Su, B. Zheng, and J. Liu, A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity, Chem. Rev. Lett. 322, 321 (2000).
  • M. Terrones, Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes, Ann. Rev. Mater. Res. 33, 419 (2003).
  • G. D. Nessim, Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition, Nanoscale 2, 1306 (2010).
  • C. E. Baddour, and C. Briens, Carbon nanotube synthesis: a review, Int. J. Chem. React. Eng. 3, 1 (2005).
  • M. Ahlskog, E. Seynaeve, R. J. M. Vullers, and C. Van Haesendonck, A microdeposition technique for carbon nanotubes based on electron beam lithography, J. Appl. Phys. 85, 8432 (1999).
  • R. L. Vander Wal, G. M. Berger, and T. M. Ticich, Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation, Appl. Phys. A 77, 889 (2003).
  • L. Ding, A. Tselev, J. Wang, D. Yuan, H. Chu, T. P. McNicholas, J. Liu, Selective growth of well-aligned semiconducting single-walled carbon nanotubes, Nano Lett. 9, 805 (2009).
  • Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, and H. Dai, Electric-field-directed growth of aligned single-walled carbon nanotubes, App. Phys. Lett. 79, 3155–3157 (2001).
  • N. J. Sano, T. Nakano, and A. Kanki, Synthesis of single walled carbon nanotubes with nanohorns by arc in liquid nitrogen, Carbon 42, 688 (2004).
  • Z. Shi, Y. Lian, F. H. Liao, X. Z. Zhou, Y. Gu, S. Zhang, H. Iijima, K. Li, and S. L. Zhang, Large scale synthesis of single wall carbon nanotubes by arc-discharge method, J. Phys. Chem. Solids 61, 1031 (2000).
  • D. H. Parker, P. Wurz, K. Chatterjee, K. R. Lykke, J. E. Hunt, M. J. Pellin, J. C. Hemminger, D. M. Gruen, and L. M. Stock, High-yield synthesis, separation, and mass spectrometric characterization of fullerenes C60 to C266, JACS 113, 7499 (1991).
  • D. S. Bethune, C. H. Kiang, M. S. de Vries, G. R. Gorman, J. Vazquez, and R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605 (1993).
  • A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. D. Rinzler, T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R.E. Smalley, Crystalline ropes of metallic carbon nanotubes, Science 273, 483 (1996).
  • M. Yudasaka, R. Yamada, N. Sensui, T. Wilkins, T. Ichihashi, and S. Iijima, Mechanism of the effect of NiCo, Ni and Co catalysts on the yield of single-wall carbon nanotubes formed by pulsed Nd:YAG laser ablation, J. Phys. Chem. B 103, 6224 (1999).
  • T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Catalytic growth of single-walled nanotubes by laser vaporization, Chem. Phys. Lett. 243, 49 (1995).
  • W. K. Maser, E. Munoz, A. M. Benito, M. T. Martinez, G. F. de la Fuente, Y. Maniette, E. Anglaret, and J. L. Sauvajol, Production of high-density single-walled nanotube material by a simple laser-ablation method, Chem. Phys. Lett. 292, 587 (1998).
  • C. D. Scott, S. Arepalli, P. Nikolaev, and R. E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process, Appl. Phys. A Mater. Sci. Process 72, 573 (2001).
  • C. D. Scott, S. Arepalli, P. Nikolaev, and R. E. Smalley, Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process, Appl. Phys. A 72, 573 (2001).
  • P. C. Eklund, B. K. Pradhan, U. J. Kim, Q. Xiong, J. E. Fischer, A. D. Friedman, B. C. Holloway, K. Jordan, and M. W. Smith, Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser, Nano Lett. 2, 561 (2002).
  • Y. Homma, Y. Kobayashi, T. Ogino, D. Takagi, R. Ito, Y. J. Jung, and P. M. Ajayan, Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition, J. Phys. Chem. B 107, 12161 (2003).
  • W. J. Daughton and F. L. Givens, An investigation of the thickness variation of spun-on thin films commonly associated with the semiconductor industry, J. Electrochem. Soc. 129, 173 (1982).
  • M. Kumar, and Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotech. 10, 3739 (2010).
  • M. Jos_e-Yacam_an, M. Miki-Yoshida, L. Rend_on, and J. G. Santiesteban, Catalytic growth of carbon microtu- 3250 bules with fullerene structure, Appl. Phys. Lett. 62, 657 (1993).
  • S. P. Umotoy, S. H. Chiao, A. N. Nguyen, V. Vo, J. Huston, J. J. Chen, and C. L. Lei, High temperature chemical vapor deposition chamber, U.S. Patent US6364954 B2 (2002).
  • H. Yu, Q. Zhang, Q. Zhang, Q. Wang, G. Ning, G. Luo, and F. Wei, Effect of the reaction atmosphere on the diameter of single-walled carbon nanotubes produced by chemical vapor deposition, Carbon 44, 1706 (2006).
  • L. Qingwen, Y. Hao, C. Yan, Z. Jin, and L. Zhongfan, A scalable CVD synthesis of high-purity single-walled carbon nanotubes with porous MgO as support material, J. Mater. Chem. 12, 1179 (2002).
  • H. Ago, S. Imamura, T. Okazaki, T. Saito, M. Yumura, and M. Tsuji, CVD growth of single-walled carbon nano tubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy, J. Phys. Chem. B 109, 10035 (2005).
  • A. Eftekhari, P, Jafarkhani, and F. Moztarzadeh, High yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition, Carbon 44, 1343 (2006).
  • Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282, 1105 (1998).
  • S. Neupane, M. Lastres, M. Chiarella, W. Z. Li, Q. Su, and G. H. Du, Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper, Carbon, 50, 2641 (2012).
  • A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes, and M. L. Simpson, Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly, J. Appl. Phys. 97, 041301 (2005).
  • R. E. Smalley, Y. Li, V. C. Moore, B. K. Price, R. Colorado,H. K. Schmidt, R. H. Hauge, and A. R. Barron, 2006 single wall carbon nanotube amplification: en route to a type-specific growth mechanism, JACS 128, 15824 (2006).
  • P. M. Ajayan, O. Z. Zhou, Carbon nanotubes, Nature 80, 391 (2001).
  • S. Neupane, M. Lastres, M. Chiarella, W. Z. Li, Q. Su, G. and H. Du, Synthesis and field emission properties of vertically aligned carbon nanotube arrays on copper, Carbon 50, 2641 (2012).
  • S. Banerjee, N. Sayangdev, and I. K. Puri, Molecular simulation of the carbon nanotube growth mode during catalytic synthesis, Appl. Phys. Lett. 92, 233121(2008).
  • S. Naha and I. K. Puri, A model for catalytic growth of carbon nanotubes, J. Phys. 41, 065304 (2008).
  • N. M. Inami, A. Mohamed, E. Shikoh, and A. Fujiwara, Synthesis-condition dependence of carbon nanotube growth by alcohol catalytic chemical vapor deposition method, Sci. Technol. Adv. Mater. 32, 3456 (2007).
  • D. Yuan, L. Ding, H.Chu, Y. Feng, T. P. McNicholas, and J. Liu, Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts, Nano Lett. 8, 2579 (2008).
  • N. Ishigami, H. Ago, K. Imamoto, M. Tsuji, K. Iakoubovskii, and N. Minami, Crystal plane dependent growth of aligned single-walled carbon nanotubes on sapphire, JACS 32, 3409 (2008).
  • J. Tersoff and R. S. Ruoff, Structural properties of a carbon nanotube crystal, Phys. Rev. Lett. 73, 676. (1994).
  • L. V. Radushkevich, The structure of carbon formed by the thermal decomposition of carbon monoxide on the iron touch, J. Phys. Chem. 26, 88 (1952).
  • Y. Xu, Z. Li, E. Dervishi, V. Saini, J. Cui, A. R. Biris, and A. S. Biris, Surface area and thermal stability effect of the MgO supported catalysts for the synthesis of carbon nanotubes, J. Mater. Chem. 18, 5738 (2008).
  • S. Maghsoodi, A. Khodadadi, and Y. Mortazavi, A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor, Appl. Surf. Sci. 25, 2769 (2010).
  • M. Ritschel, A. Leonhardt, D. Elefant, S. Oswald, and B. Buchner, Rhenium-catalyzed growth carbon nanotubes, J. Mater. Chem. C 111, 8414 (2007).
  • M. Kumar and A. Yoshinori, Carbon nanotubes from 3345 camphor: an environment-friendly nanotechnology, J. Phys. 61, 643 (2007).
  • J. W. Norman, R. Kenneth, L. Kormanyos, A. Nicholas, and P. H. Reiter. Atmospheric pressure chemical vapor deposition, U.S. Patent No. 7, 674, 713(2010).
  • N. Franklin and H. Dai, An enhanced CVD approach to extensive nanotube networks with directionality, Adv. Mater. 12, 890 (2000).
  • X. Wang, Q. X. J. Li, Z. Jin, J. Wang, Y. Li, K. Jiang, and S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates, Nano Lett. 9, 3137 (2009).
  • B. I. Yakobson and R. E. Smalley, Fullerene nanotubes: C1,000,000 and beyond: Some unusual new molecules-long, hollow fibers with tantalizing electronic and mechanical properties-have joined diamonds and graphite in the carbon family, Amer. Scientist 67, 324 (1997).
  • J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, and R. Kizek, Methods for carbon nanotubes synthesis, review, J. Mater. Chem. 21, 15872 (2011).
  • M. Lin, J. P. Ying Tan, C. Boothroyd, K. P. Loh, E. S. Tok, and Y. L. Foo, Direct observation of single-walled carbon nanotube growth at the atomistic scale, Nano Lett. 6, 449 3355 (2006).
  • J. P. Tessonnier, D. Rosenthal, T. W. Hansen, C. Hess, M. E. Schuster, R. Blume, and R. Schlogl, Analysis of the structure and chemical properties of some commercial carbon nanostructures, Carbon 47, 1779 (2009).
  • L. C. Palmer and S. I. Stupp, Molecular self-assembly into one-dimensional nanostructures, Acc. Chem. Res. 41, 1674 (2008).
  • H. J. Dai, C. Kong, N. Zhou, T. Franklin, A. Tombler, S. Cassell, and M. Chapline, Controlled chemical routes to nanotube architectures, physics, and devices, J. Phys. Chem B 103,11246 (1999).
  • Y. Aviga and R. Kalish, Growth of aligned carbon nanotubes by biasing during growth, Appl. Phys. Lett. 78, 2291 (2001).
  • P. M. Ajayan and T. W Ebbesen, Nanometre-size tubes of carbon, Rep. Prog. Phys. 60, 1025 (1997).
  • M. Endo, H. Muramatsu, T. Hayashi, Y. Kim, M. Terrones, and M. S. Dresselhaus, Nanotechnology: Buckypaper’ from coaxial nanotubes, Nature 433, 476 (2005).
  • M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, and H. W. Kroto, The production and structure of pyrolytic carbon nanotubes (PCNTs), J. Phys. Chem. Solids 54, 184 (1993).
  • V. N. Popov, Carbon nanotubes: properties and application, Mater. Sci. Eng. R 43, 61 (2004).
  • J. J. Gooding, Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing, Electrochim. Acta 50, 3049 (2005).
  • M. F. L. De, S. H. Volder, R. H. Tawfick, A. Baughman, and J. Hart, CNTs: Present and future commercial applications, Science 339, 535 (2013).
  • P. H. Avouris, R. Martel, T. Hertel, and R. Sandstrom, 3395 AFM-tip-induced and current-induced local oxidation of silicon and metals, Appl. Phys. A Mater. Sci. Process 66, 659 (1998).
  • P. M. Ajayan and O. Z. Zhou, Applications of carbon nanotubes. In Carbon Nanotubes, Springer Berlin Heidelberg, pp. 391–425 (2001).
  • I. Thomas, and C. Masamichi, Yoshimura, Fabrication of carbon nanotubes for high-performance scanning probe microscopy, In Electronic Properties of Carbon Nanotubes, Jose Mauricio Marulanda, ed., INTECH Open Access Publisher, Rijeka, Croatia (2011).
  • A. Merko¸ci, M. Pumera, X. Llopis, B. P_erez, M. del Valle, and S. Alegret, New materials for electrochemical sensing VI: carbon nanotubes, TrAC, Trends Anal. Chem. 24, 826 (2005).
  • M. E. Roberts, M. C. Le Mieux, and Z. Bao, Sorted and aligned single-walled carbon nanotube networks for transistor-based aqueous chemical sensors, Acs Nano 3, 3287 (2009).
  • P. Avouris, Molecular electronics with carbon nanotubes, Acc. Chem. Res. 35, 1026 (2002).
  • F. Kreupl, Electronics: carbon nanotubes finally deliver, Nature 484, 321 (2012).
  • J. Deng, and H. S. Wong. A compact SPICE model for carbon-nanotube field-effect transistors including no idealities and its application—Part II: Full device model and circuit performance benchmarking, Electron Dev. IEEE Trans. 54, 3195 (2007).
  • R. A. Martel, T. Schmidt, H. R. Shea, T. Herte, and P. Avouris, Single-and multi-wall carbon nanotube field effect transistors, Appl. Phys. Lett. 73, 2447 (1998).
  • J. E. Fischer, H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L. Dehaas, and R. E. Smalley, Metallic resistivity in crystalline ropes of single-wall carbon nanotubes, Phys. Rev. B 55, R 4921 (1997).
  • S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 514 (1999).
  • G. Pirio, P. Legagneux, D. Pribat, B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne. Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode, Nanotechnology 13, 1 (2002).
  • M. H. Yang, B. K. Teo, W. I. Milne, and D. G. Hasko. Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts, Appl. Phys. Lett. 87, 253116 (2005).
  • M. H. Yang, B. K. Teo, W. I. Milne, and D. G. Hasko, Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts, Appl. Phys. 87, 253116 (2005).
  • C. T. White, and W. M. John, Fundamental properties of single-wall carbon nanotubes, J. Phys. Chem. B 109, 65 (2005).
  • B. Thanveer. Carbon nanotubes as electron sources in display devices. https://electronicsmail.wordpress.com/
  • Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113, 13103 (2009).
  • M. Winter, and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev. 104, 4245 (2004).
  • P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu, F. Li, J. H. Byun, W. Lu, Q. Li, and T. W. Chou, Carbon nanotube fiber based stretchable wireshaped supercapacitors, Adv. Ergy. Mater. 3, 4 (2014).
  • P. Simon, and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7, 854 (2008).
  • M. Notarianni, J. Liu, F. Mirri, M. Pasquali, and N. Motta, Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector, Nanotechnology, 25, 405 (2014).
  • T. Kar, J. Pattanayak, and S. Scheiner, Insertion of lithium ions into carbon nanotubes: an ability study, J. Phys. Chem. A 105, 10397 (2001).
  • D. Fauteux, and R. Koksbang, Rechargeable lithium battery anodes: alternatives to metallic lithium, J. Appl. Electrochem. 23, 1 (1993).
  • J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414, 359 (2001).
  • X. Wang, H. Liu, Y. Jin, and C. Chen, Polymer-functionalized multiwalled carbon nanotubes as lithium intercalation hosts, J. Phys. Chem. B 110, 10236 (2006).
  • A. G. Cano-Márquez, F. J. Rodríguez-Macías, J. Campos-Delgado, C. G. Espinosa-González, F. Tristán-López, D. Ramírez-González, D. A. Cullen, D. J. Smith, M. Terrones, and Y. I. Vega-Cantú. Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes, Nano Lett. 9, 1533 (2009).
  • C. de las Casas and W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. 3480 Power Sour. 208, 74 (2012).
  • A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett. 9, 1002 (2009).
  • C. Liu, Y. Y. Fan, M, Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, Hydrogen storage in single-walled carbon nanotubes at room temperature, Science 286, 1127 (1999).
  • L. Schlapbach and A. Zuttel, Hydrogen-storage materials for mobile applications, Nature 414, 353 (2001).
  • A. D. K. Jones and T. A. Bekkedahl, Storage of hydrogen in single-walled carbon nanotubes, Nature 386, 377 (1997).
  • W. X. Chen, J. P. Tu, L. Y. Wang, H. Y. Gan, Z. D. Xu, and X. B. Zhang, Tribological application of carbon nanotubes in a metal-based composite coating and composites, Carbon 41, 215 (2003).
  • H. M. Cheng, Q. H. Yang, and C. Liu, Hydrogen storage in carbon nanotubes, Carbon 39, 1447 (2001).
  • C. Tang, C. Man, Y. Chen, F. Yang, L. Luo, Z. F. Liu, and K. W. Wong, Realizing the storage of pressurized hydrogen in carbon nanotubes sealed with aqueous valves, Energy Technol. 1, 309 (2013).
  • Z. Cao and B. B. Wei, A perspective: carbon nanotube macro-films for energy storage, Ener. Environ. Sci. 6, 3183 (2013).
  • Hanaei, Hengameh, M. Khalaji Assadi, and R. Saidur, “Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review, Renew. Sustain. Engy. Rev. 59.620 (2016).
  • Y. P. Sun, K. Fu, Y. Lin, and W. Huang, Functionalized carbon nanotubes: properties and applications, Acc. Chem. Res. 35, 1096 (2002).
  • A. M. Kolpak and J. C. Grossman, Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels, Nano Lett. 11, 3162 (2011).
  • N. G. Sahoo, S. Rana, J. W. Cho, L. Li, and S. H. Chan, Polymer nanocomposites based on functionalized carbon nanotubes, Prog. Polym. Sci. 35, 837 (2010).
  • J. N. Coleman, U. Y. Khan, and K. Gun'ko, Mechanical reinforcement of polymers using carbon nanotubes, Adv. Mater. 18, 689 (2006).
  • S. Kazaoui, B. Minami, Y. Nalini, N. Kim, T. Takada, and K. Hara, Near-infrared electroluminescent devices using single-wall carbon nanotubes thin films, Appl. Phys. Lett. 87, 211914 (2005).
  • A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, and R. H. Baughman, Super-tough carbon-nanotube fibres, Nature 423, 703 (2003).
  • N. M. Pugno, Mimicking nacre with super-nanotubes for producing optimized super-composites, Nanotechnology 17, 5480 (2006).
  • J. H. Du, J. Bai, and H. M. Cheng, The present status and key problems of carbon nanotube based polymer composites, Express Polym. Lett. 1, 253 (2007).
  • D. Rosa, I. Maria, F. Sarasini, M. Sabrina Sarto, and A. Tamburrano, EMC impact of advanced carbon fiber/carbon nanotube reinforced composites for next-generation aerospace applications, Electromagn. Compatibil. IEEE Trans. 50, 3, 556 (2008).
  • D. Bello, B. L. Wardle, N. Yamamoto, R. E. J. Guzman deVilloriaGarcia, A. J. Hart, K. Ahn, M. J. Ellenbecker, and M. Hallock, Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes, J. Nanopart. Reser. 11, 249 (2009).
  • H. Qian, E. S. Greenhalgh, M. S. Shaffer, and A. Bismarck, Carbon nanotube-based hierarchical composites: a review, J. Mater. Chem. 20, 4751 (2010).
  • L. K. Jain and Y. W. Mai, On the effect of stitching on mode I delamination toughness of laminated composites, Composit. Sci. Technol. 51, 331 (1994).
  • V. K. Thakur, M. K. Thakur, and R. K. Gupta, Review: raw natural fiber–based polymer composites, Int. J. Polym. Anal. Characteriz. 19, 271 (2014).
  • A. Y. Sham and S. M. Notley, A review of fundamental properties and applications of polymer–graphene hybrid materials. Soft Matter 9, 6653. (2013).
  • Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7, 699 (2012).
  • D. Li, and R. B. Kaner. Graphene-based materials, Nat. Nanotechnol. 3, 101 (2008).
  • R. R Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, and A.K. Geim, Fine structure constant defines visual transparency of graphene, Science 320,1308 (2008).
  • R. Oraon, A. De Adhikari, S. K. Tiwari, and G. C. Nayak. Nanoclay based graphene polyaniline hybrid nanocomposites: promising electrode materials for supercapacitors, RSC Adv. 5, 68344 (2015).
  • P. Mukhopadhyay and R. K. Gupta, Graphite, Graphene, and Their Polymer Nanocomposites, CRC Press, London, pp. 2–55 (2012).
  • G. P. Kar, S. Biswas, and S. Bose, Tailoring the interface of an immiscible polymer blend by a mutually miscible homopolymer grafted onto graphene oxide: outstanding mechanical properties, Phys. Chem. Chem. Phys. 17, 1821 (2015).
  • A. De Adhikari, R. Oraon, S. K. Tiwari, J. H. Lee, and G. C. Nayak, Effect of waste cellulose fibres on the charge storage capacity of polypyrrole and graphene/polypyrrole electrodes for supercapacitor application, RSC Adv. 5, 27355 (2015).
  • M. Huang, H. Yan, C. Chen, D. Song, T. F. Heinz, and J. Hone, Phonon softening and crystallographic orientation of strained graphene studied by Raman spectroscopy, Proc. National Academy of Sciences, 106, 18, 7308 (2009).
  • S. J. Kim, K. Choi, B. Lee, Y. Kim, and B. H. Hong, Materials for flexible, stretchable electronics: Graphene and 2D materials, Ann. Rev. Mater. Res. 45, 84. (2015).
  • M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8, 3498 (2008).
  • X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324, 1312 (2009).
  • D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39, 240. (2010).
  • P. Mukhopadhyay and R. K. Gupta, Eds., Graphite, Graphene, and Their Polymer Nanocomposites, CRC Press, London (2012).
  • C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95, 268012005.
  • http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/geim-photo.html
  • V. M. Pereira, A. C. H. Neto, and N. M. R. Peres, Tight binding approach to uniaxial strain in graphene, Phys. Rev. B 80, 045401 (2009).
  • S. Konschuh, M. Gmitra, and J. Fabian, Tight-binding theory of the spin-orbit coupling in graphene, Phys. Rev. B 82, 245412 (2010).
  • Y. J. Dappe, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, and F. Flores, Local-orbital occupancy formulation of density functional theory: Application to Si, C, and graphene, Phys. Rev. B. 73, 235124, (2006).
  • H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, Intrinsic and Rashba spin-orbit interactions in graphene sheets, Phy. Rev. B. 74, 165310. (2006).
  • G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly, and J. Brink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Phys. Rev B 76, 073103 (2007).
  • M. F. Craciun, S. Russo, M. Yamamoto, J. B. Oostinga, A. F. Morpurgo, and S. Tarucha, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nat. Nanotechnol. 4, 383 (2009).
  • K. K. Gomes, W. W. Mar, F. Guinea, and H. C. Manoharan, Designer Dirac fermions and topological phases in molecular graphene, Nature 483, 306 (2012).
  • A. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, The electronic properties of graphene, Rev. Moder. Phys. 81, 109 (2009).
  • M. Klintenberg, S. Lebegue, M. I. Katsnelson, and O. Eriksson, Theoretical analysis of the chemical bonding and electronic structure of graphene interacting with Group IA and Group VIIA elements, Phys. Rev. B 81, 085433 (2010).
  • J. Jung and A. H. MacDonald, Theory of the magnetic-field-induced insulator in neutral graphene sheets, Phy. Rev. B. 80, 235417 (2009).
  • A. F. Morpurg and F. Guinea, Intervalley scattering, long-range disorder, and effective time-reversal symmetry breaking in graphene, Phys. Rev. Lett. 97,196804, (2006).
  • E. Andrei, G. Li, and X. Du, Electronic properties of graphene: a perspective from scanning tunneling microscopy and magneto-transport, Rep. Progr. Phys. 75, 4532 (2012).
  • S. Sahoo, Quantum Hall effect in graphene: Status and prospects, Ind. J. Pure Appl. Phys. 49, 367 (2011).
  • J. R. Williams, L. DiCarlo, and C. M. Marcus, Quantum Hall effect in a gate-controlled p-n junction of graphene, Science 317, 638 (2007).
  • A. Wschalom, and D. D. Flatte, Challenges for semiconductor spintronics, Nat. Phys. 3, 153 (2007).
  • M. T. Koshino and T. Ando, Orbital diamagnetism in multilayer graphenes: Systematic study with the effective mass approximation, Phys. Rev. B 76, 085425 (2007).
  • Y. Z. Li, P. Zhou, and Z. Chen, Spin gapless semiconductor metal-half-metal properties in nitrogen-doped zigzag graphene nanoribons, ACS Nano. 3, 1952 (2009).
  • Z. Jiang, Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Quantum Hall effect in graphene, Sol. Stat. Commun. 143, 14 (2007).
  • V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, AC conductivity of graphene: from tight-binding model to 2+ 1-dimensional quantum electrodynamics, Inter. J. Mod. Phys. B 21, 4611 (2007).
  • R. S. Deacon, K. C. Chuang, R. J. Nicholas, K. S. Novoselov, and A. K. Geim, Cyclotron resonance study of the electron and hole velocity in graphene monolayers, Phys. Rev. B. 76, 081406. (2007).
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. M. Jiang, I. Katsnelson, I. V. Grigorieva, S.V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438, 197 (2005).
  • E. H. Hwang, S. Adam, S. Das, and D. Sarma, Carrier transport in two-dimensional graphene layers, Phys. Rev. Lett. 98, 186806 (2007).
  • M. I. Katsnelson, K. S. Novoselo, and A. K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2, 620 (2006).
  • M. F. Craciun, S. Russo, M. J. Yamamoto, B. A. Oostinga, F. Morpurgo, and S. Tarucha, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nat. Nanotechnol. 4, 383 (2009).
  • F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nat. Phys. 6, 33 (2009).
  • K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and P. Kim, Observation of the fractional quantum Hall effect in graphene, Nature 462, 199 (2009).
  • V. P. Gusynin and S. G. Sharapov, Unconventional integer quantum Hall effect in graphene, Phys. Rev. Lett. 95, 146801 (2005).
  • K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, Unconventional quantum Hall effect and Berry's phase of 2p in bilayer graphene, Nat. Phys. 2, 180 (2006).
  • Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and P. Kim, Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Lett. 96, 136806 (2006).
  • K. Nomura and A. H. MacDonal, Quantum Hall ferromagnetism in graphene, Phys. Rev. Lett. 96, 256602 (2006).
  • K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Room-temperature quantum Hall effect in graphene, Science 315, 1379 (2007).
  • X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene, Nature 462, 195 (2009).
  • V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Sum rules for the optical and Hall conductivity in graphene, Phys. Rev. B 75, 165407 (2007).
  • J. H. Ho, Y. H. Lai, Y. H. Chiu, and M. Lin, Landau levels in graphene, Physica E Low-dimen. Syst. Nanostruct. 40, 1725 (2008).
  • C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, and D. Mayou, Electronic confinement and coherence in patterned epitaxial graphene, Science 312, 1196 (2006).
  • N. M. R. Peres, A. H. Castro Neto, and F Guinea, Conductance quantization in mesoscopic graphene, Phys. Rev. B 73, 195411 (2006).
  • M. Ezawa, Supersymmetric structure of quantum Hall effects in graphene, Phys. Lett. A 72, 929 (2008).
  • J. Moser, A Barreiro, and A. Bachtold, Current-induced cleaning of graphene, Appl. Phys. Lett. 91, 163513 (2007).
  • M. Polini, R. Asgari, Y. Barlas, T. Pereg-Barnea, and A. H. MacDonald, A pseudochiral Fermi liquid, Solid State Commun. Graphene 143, 62 (2007).
  • J. Liu, B. W. Li, Y. Z. Tan, A. Giannakopoulos, C. Sanchez-Sanchez, D. Beljonne, P. Ruffieux, R. Fasel, X. Feng, and K. Müllen, Toward cove-edged low band gap graphene nanoribbons, JACS 137, 6103 (2015).
  • R. R. Cloke, T. Marangoni, G. D. Nguyen, T. Joshi, D. J. Rizzo, C. Bronner, T. Cao, S. G. Louie, M. F. Crommie, and F. R. Fischer, Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons, JACS 137 8875 (2015).
  • A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A. K. Sood, and A. C. Ferrari, Phonon renormalization in doped bilayer graphene, Phys. Rev. B 79, 155417 (2009).
  • H.U. Özdemir, A. Altıntaş, and A. D. Güçlü, Magnetic phases of graphene nanoribbons under potential fluctuations. Phys. Rev. B, 93 014415 (2016).
  • C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, Raman spectroscopy of graphene edges, Nano Lett. 9, 1441 (2009).
  • H. Hsu and L. E. Reichl, Selection rule for the optical absorption of graphene nanoribbons, Phys. Rev. B 76, 045418. (2007).
  • K. A. Ritter and J. W. Lyding, The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons, Nat. Mater. 8, 242 (2009).
  • X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier, and M. S. Dresselhaus. Graphene edges: a review of their fabrication and characterization, Nanoscale 3, 86–95 (2011).
  • N. Mohanty, D. Moore, Z. Xu, T. S. Sreeprasad, A. Nagaraja, A. A. Rodriguez, and V. Berry, Nanotomy based production of transferable and dispersible graphene nanostructures of controlled shape and size, Nat. Commun. 3, 844 (2012).
  • L. Tapaszto, G. Dobrik, P. Lambin, and L. P. Biro, Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography, Nat. Nanotechnol. 3, 401 (2008).
  • P. Gallagher, K. Todd, and D. G. Gordon, Disorder induced gap behavior in graphene nanoribbons, Phys. Rev. B 81, 115409 (2010).
  • A. Geim, P. Kim, K. Novoselov, Z. Jiang, H. Stormer, Y. Zhang, S. Morozov, and U. Zeitler, Room temperature Quantum Hall effect in graphene, APS Meeting Abstracts (2007).
  • E. McCann, Asymmetry gap in the electronic band structure of bilayer graphene, Phys. Rev. B 74, 161403 (2006).
  • S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, and Y. J. Kim, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotech. 5, 578 (2010).
  • I. W. Frank, D. M. Tanenbaum, A. M. Van der Zande, and P. L. McEuen, Mechanical properties of suspended graphene sheets, J. Vac. Sci. Technol. 25, 2561 (2007).
  • C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 388 (2008).
  • M. Mecklenburg, A. Schuchardt, Y. K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle, and K. Schulte, Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance, Adv. Mater. 24, 3490 (2012).
  • L. A. Falkovsky, Optical properties of graphene, J. Phys. 129, 1, 012004 (2008).
  • Z. Z. Zhang, K. Chang, and F. M. Peeters, Tuning of energy levels and optical properties of graphene quantum dots, Phys. Rev. B 77, 235411 (2008).
  • T. G. Pedersen, C. Flindt, J. Pedersen, A. P. Jauho, N. A. Mortensen, and K. Pedersen, Optical properties of graphene antidot lattices, Phys. Rev. B 77, 245431(2008).
  • L. A. Falkovsky, Optical properties of graphene and IV–VI semiconductors, Physics-Uspekhi 51, 887 (2008).
  • A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10, 581(2011).
  • A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8, 907 (2008).
  • S. Ghosh, D. L. Nika, E. P. Pokatilov, and A. A. Balandin, Heat conduction in graphene: experimental study and theoretical interpretation, N. J. Phys. 11, 095012 (2009).
  • D. L. Nika, E. P. Katilov, S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering, Phys. Rev. 79, 155413 (2009).
  • I. J. Parrish and J. M. Stone, Nonlinear evolution of the magneto thermal instability in two dimensions, Astrophys. J. 633, 334 (2005).
  • E. Pop, V. Varshney, and A. K. Roy, Thermal properties of graphene: Fundamentals and applications, MRS Bull. 37, 1281 (2012).
  • L. Jiao, X. Wang, G. Diankov, H. Wang, and H Dai, Facile synthesis of high-quality graphene nanoribbons, Nat. Nanotechnol. 5, 325 (2010).
  • S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, A chemical route to graphene for device applications, Nano Lett. 7, 3398 (2007).
  • G. Wang, J. J. Yang, X. Park, B. Gou, B. Wang, H. Liu, and J. Yao, Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C 112, 8195 (2008).
  • A. Reina, X. Jia, J. Ho, D. Nezich, M. S. Dresselhaus, and J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9, 35 (2008).
  • J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte, J. Amer. Chem. Soc. 133, 8891 (2011).
  • X. Cui, C. Zhang, R. Hao, and Y. Hou, Liquid-phase exfoliation, functionalization and applications of graphene, Nanoscale 3, 2126 (2011).
  • D. A. Dikin, S Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. S. B. Evmenenko, T. Nguyen, and R. S. Ruoff. Preparation and characterization of graphene oxide paper, Nature, 448, 460 (2007).
  • J. Wang, K. K. Manga, Q. Bao, and K. P. Loh, High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte, JACS, 133, 8891 (2011).
  • X. Cui, C. Zhang, R. Hao, and Y. Hou, Liquid-phase exfoliation, functionalization and applications of graphene, Nanoscale 3, 2118 (2011).
  • D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B Dommett, G. S. B. Evmenenko, T. Nguyen, and R S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448, 457 (2007).
  • W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, Synthesis of graphene and its applications: a review, Crit. Rev. Solid State Mater. Sci. 52, 35 (2010).
  • M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: a review of graphene, Chem. Rev. 132, 110 (2009).
  • S. K. Tiwari, A. Huczko, R. Oraon, A. De Adhikari, and G. C. Nayak, Facile electrochemical synthesis of few layered graphene from discharged battery electrode and its application for energy storage, Arabian J. Chem. DOI: 10.1016/j.arabjc.2015.08.016 (2015).
  • J. Liu, Z. Liu, C. J. Barrow, and W. Yang, Molecularly engineered graphene surfaces for sensing applications: A review, Anal. Chim. Acta 859, 19 (2015).
  • A. Dato, Z. Lee, T. J. Richardson, K. J. Jeon, and M. Frenklach. Clean and highly ordered graphene synthesized in the gas phase, Chem. Commun. 40, 6095–6097 (2009).
  • E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface, Proc. Natl. Acad. Sci. USA 104(22), 9209–9212, (2007).
  • Z. Y. Li, M. S. Akhtar, J. H. Kuk, B. S. Kong, and O. B. Yang, Graphene application as a counter electrode material for dye-sensitized solar cell, Mater. Lett. 96, 86 (2012).
  • M. Liang, B. Luo, and L. Zhi, Application of graphene and graphene based materials in clean energy-related devices, Int. J. Ener. Resr. 33, 1161, (2009).
  • Y. Shao, F. Maher, E. K. Lisa, J. Wang, Q. Zhang, Y. Li, H. Wang, M. F. Mousavi, and B. R. Kaner, Graphene-based materials for flexible supercapacitors, Chem. Soc. Rev. 44, 3639 (2015).
  • Perreault, François, A. F. de Faria, and E. Menachem, Environmental applications of graphene-based nanomaterials, Chem. Soc. Rev. 44, 5861 (2015).
  • M. S. Nevius, M. Conrad, F. Wang, A. Celis, M. N. Nair, A. Taleb-Ibrahimi, A. Tejeda, and E. H. Conrad, Semiconducting graphene from highly ordered substrate interactions, Phys. Rev. Lett. 115, 136802 (2015).
  • G. Jo, M. Choe, S. Lee, W. Park, Y. H. Kahng, and T. Lee, The application of graphene as electrodes in electrical and optical devices, Nanotechnology 23, 112001 3850 (2012).
  • D. Sarkar, C. Xu, H. Li, and K. Banerjee, High-frequency behavior of graphene-based interconnects-Part I: Impedance modeling, Electron Dev. IEEE Trans. 58, 852 (2011).
  • F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nat. Phys. 6, 30 (2009).
  • C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, and D. Mayou, Electronic confinement and coherence in patterned epitaxial graphene, Science 312, 1191 (2006).
  • J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano 4(1), 43–48 (2010).
  • A. Kumar, and C. Zhou, The race to replace tin-doped indium oxide: which material will win? AiCS Nano 4, 11 (2010).
  • Y. Cao, G. M. Treacy, P. Smith, and A. J. Heeger, Solution cast films of polyaniline: optical quality transparent electrodes, Appl. Phys. Lett. 60, 2711 (1992).
  • J. Palmer, Graphene transistors in high performance demonstrations, Sci. Technol. Report. BBC News (2012).
  • R. R. Nair, Fine structure constant defines transparency of graphene, Science 320, 1308 (2008).
  • Z. Sun, Graphene mode-locked ultrafast laser, ACS Nano 4, 803 (2010).
  • J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano 4, 43 (2009).
  • M. Castillejo, P. M. Ossi, L. Zhigilei, Lasers in Materials Science, Springer Series in Materials Science, Springer Science and Business Media, Switzerland, 191 (2014).
  • X. Wang, L. Zhi, and K. Mullen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8, 323 (2008).
  • T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Stretchable active-matrix organic light-emitting diode display using printable elastic conductors, Nat. Mater. 8, 494 (2009).
  • P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, and K. S. Novoselov, Graphene-based liquid crystal device, Nano Lett. 8, 1704 (2008).
  • http://www.adsforwebsite.org
  • http://www.3ders.org/
  • http://www.amitorn.com/
  • T. Sun, Z. L. Wang, Z. J. Shi, G. Z. Ran, W. J. Xu, Z. Y. Wang, and G. G. Qin, Multilayered graphene used as anode of organic light emitting devices, Appl. Phys. Lett. 96, 133301 (2010).
  • F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photon. 4, 611 (2010).
  • T. Mueller, F. Xia, and P. Avouris, Graphene photodetectors for high-speed optical communications, Nat. Photon. 4, 297 (2010).
  • M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, and X. Zhang, A graphene-based broadband optical modulator, Nature 474, 64 (2011).
  • T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, Extremely efficient flexible organic light-emitting diodes with modified graphene anode, Nat. Photon. 6, 110. (2012).
  • N. Mohanty, D. Moore, Z. Xu, T. S. Sreeprasad, A. Nagaraja, A. A. Rodriguez, and V. Berry, Nanotomy based production of transferrable and dispersible graphene-nanostructures of controlled shape and size, Nat. Commun. 3, 844 (2012).
  • W. Kwon, Y. H. Kim, C. L. Lee, M. Lee, H. C. Choi, T. W. Lee, and S. W. Rhee, Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite, Nano Lett. 14, 1311 (2014).
  • F. E. Kruis, H. Fissan, and A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - a review, J. Aerosol Sci. 29, 511 (1998).
  • D. R. Paul and L. M. Robeson, Polymer nanotechnology: nanocomposites, Polymers 49, 3204 (2008).
  • M. Kl€uppel and G. Heinrich, Fractal structures in carbon black reinforced rubbers, Rubb. Chem. Technol. 68, 623 (1995).
  • O. Becker, G. P. Simon, and K. Dusek, Epoxy layered silicate nanocomposites, Inorg. Polym. Nanocomp. Membr. 2, 29 (2005).
  • E. Reynaud, T. Jouen, C. Gauthier, G. Vigier, and J. Varlet, Nanofillers in polymeric matrix: a study on silica reinforced PA6, Polymers 42, 8759 (2001).
  • J. F. Feller, S. Bruzaud, and Y. Grohens, Influence of clay nanofiller on electrical and rheological properties of conductive polymer composite, Mater. Lett. 58, 739 (2004).
  • A. J. Crosby and J. Y. Lee, Polymer nanocomposites: the “nano” effect on mechanical properties, Polym. Rev. 47, 217 (2007).
  • Y. Yan, J. Cui, P. Potschke, and B. Voit, Dispersion of pristine single-walled carbon nanotubes using pyrenecapped polystyrene and its application for preparation of polystyrene matrix composites, Carbon 48, 2603 (2010).
  • P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite science and technology, Polym. Rev. 47, 217 (2007).
  • http://www.bccresearch.com/market-research/nanotechnology/nanocomposites-global-markets-nan021e.html
  • T. R. Bohme and J. J. de Pablo, Evidence for size-dependent mechanical properties from simulations of nanoscopic polymeric structures, J. Chem. Phys. 116, 9939 (2002).
  • F. Meng, W. Lu, Q. Li, J. H. Byun, Y. Oh, and T. W. Chou, Graphene-based fibers: a review, Adv. Mater. 27, 5113, (2015).
  • D. R. Paul, Polymer Blends, Academic Press New York, 1, 8 (2012).
  • F. Ide and A. Hasegawa, Studies on polymer blend of nylon 6 and polypropylene or nylon 6 and polystyrene using the reaction of polymer, J. Appl. Spectrosc. 18, 963 (1974).
  • R. Dell'Erba, G. Groeninckx, G. Maglio, M. Malinconico, and A. Migliozzi, Immiscible polymer blends of semicrystalline biocompatible components: thermal properties and phase morphology analysis of PLLA/PCL blends, Polymers 42, 7831 (2001).
  • M. Pramanik, S. K. Srivastava, B. K. Samantaray, and A. K. Bhowmick, Rubber–clay nanocomposite by solution blending, J. Appl. Polym. Sci. 87, 2216 (2003).
  • X. Zeng, J. Yang, and W. Yuan, Preparation of a poly (methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method, Eur. Polym. J. 48, 1674 (2012).
  • I. W. Donald and P. W. McMillan, Ceramic-matrix composites. J. Mater. Sci. 11, 972 (1976).
  • A. Peigney, C. Laurent, E. Flahaut, and A. Rousset, Carbon nanotubes in novel ceramic matrix nanocomposites. Ceram. Int., 26, 683. (2000).
  • S. Rul, F. Lefevre-Schlick, E. Capria, C. Laurent, and A. Peigney, Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites, Acta Materialia 52, 1067 (2004)
  • A. Yu, P. Ramesh, M. E. Itkis, B. Elena, and R. C. Haddon, Graphite nanoplatelet-epoxy composite thermal interface materials, J. Phys. Chem. C 111, 7565 (2007).
  • T. K. Das and S. Prusty, Graphene-based polymer composites and their applications, Polym. Plast. Technol. Eng. 52, 319 (2013).
  • J. Liu, H. Yan, M. J. Reece, and K. Jiang, Toughening of zirconia/alumina composites by the addition of graphene platelets, J. Eur. Ceram. Soc. 32, 4185 (2012).
  • K. I. Kim and T. W. Hong, Hydrogen permeation of TiN–graphene membrane by hot press sintering (HPS) process, Solid State Ion 215, 699 (2012).
  • S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and D. Dean, Thermalexpansion of graphene composites, Macromolecules 42, 5251 (2009).
  • J. Yu, K. Lu, E. Sourty, N. Grossiord, C. E. Koning, and J. Loos, Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology, Carbon 45, 2897 (2007).
  • J. Li, L. Vaisman, G. Marom, and J. K. Kim, Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites, Carbon 45, 744 (2007).
  • D. Wang, W. F. Li, J. Zhao, W. Ren, Z. G. Chen, J. Tan, and H. M. Cheng, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-per- formance flexible electrode, ACS Nano. 3, 1745, (2009).
  • L. Madaleno, J. Schjødt-Thomsen, and J. C. Pinto, Morphology, thermal and mechanical properties of PVC/MMT nanocomposites prepared by solution blending and solution blending + melt compounding, Compos. Sci. Technol. 70, 804 (2010).
  • K. Kalaitzidou, H. Fukushima, and L. T. Drzal, A new compounding method for exfoliated graphite– polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold, Compos. Sci. Technol. 67, 2045 (2007).
  • W. D. Zhang, L. Shen, I. Y. Phang, and T. Liu, Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding, Macromolecules 37, 256 (2004).
  • J. W. Cho and D. R. Paul, Nylon 6 nanocomposites by melt compounding, Polymers 42, 1083 (2001).
  • Y. Xu, Y. Wang, L. Jiajie, Y. Huang, Y. Ma, and X. Wan, A hybrid material of graphene and poly (3,4ethyldioxythiophene) with high conductivity, flexibility, and transparency, Nano Res. 2, 343 (2009).
  • http://www.acsmaterial.com/product.asp?cid=97&id=119.
  • T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. H. Alonso, and R. D. Piner, Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol. 3, 327 (2008).
  • J. D. Qiu, L. Shi, R. P. Liang, G. C. Wang, and X. H. Xia, Controllable deposition of a platinum nanoparticle ensemble on a polyaniline/graphene hybrid as a novel electrode material for electrochemical sensing, Chem. Eur. J. 18, 7950 (2012).
  • H. I. Lee and H. M. Jeong, Functionalized graphene sheet/polyurethane nano-composites. Physics and Applications of Graphene: Experiments, Sergey Mikhailov, ed., INTECH Open Access Publisher, Rijeka, Croatia, 193, 208 (2009).
  • D. W. Wang, F. Li, J. Zhao, W. Ren, Z. G. Chen, and J. Tan, Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high performance flexible electrode, ACS Nano. 7, 1745 (2009).
  • Y. G. Wang, H. Q. Li, and Y. Y. Xia, Ordered whisker like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance, Adv. Mater. 18, 2619 (2006).
  • H. Kim, Y. Miura, and C. W. Macosko, Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity, Chem. Mater. 22, 3441 (2010).
  • T. R. Lee, A. V. Raghu, H. M. Jeong, and B. K. Kim, Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method, Macromol. Chem. Phys. 210, 1247 (2009).
  • J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, and X. Shen, Preparation of graphene nanosheets/carbon nanotube/polyaniline composite as electrode material for supercapacitors, J. Power Sour. 195, 3041 (2010).
  • L. Zhao, Y. Xu, T. Qiu, L. Zhi, and G. Shi, Polyaniline electrochromic devices with transparent graphene electrodes, Electrochim. Acta 55, 491 (2009).
  • J. G. Aldo, Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization, Chem. Commun. 47, 2592 (2011).
  • C. H. Chang, T. C. Huang, C. W. Peng, T. C. Yeh, H. I. Lu, W. I. Hung, C. J. Weng, T. I. Yang, and J. M. Yeh, Novel anticorrosion coatings prepared from polyaniline/graphene composites, Carbon 50, 5044 (2012).
  • D. Zha, S. Mei, Z. Wang, H. Li, Z. Shi, and Z. Jin, Superhydrophobic polyvinylidene fluoride/graphene porous materials, Carbon 49, 5166 (2011).
  • X. Zhao, Q. Zhang, and D. Chen, Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites, Macromolecules 43, 2357, (2010).
  • H. Kim, and C. W. Macosko, Processing-property relationships of polycarbonate/graphene composites, Polymer 50, 3797 (2009).
  • J. Liang, Y. Xu, Y. Huang, L. Zhang, Y. Wang, and Y. Ma, Infrared triggered actuators from graphene-based nanocomposites, J. Phys. Chem. 113, 9921 (2009).
  • O. C. Compton, and S. B. T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon based materials, Small 6,711, (2010).
  • M. Mecklenburg, A. Schuchardt, Y. K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle, and K. Schulte, Aerographite: Ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance, Adv. Mater. 24, 3437 (2012).
  • J. L. Vickery, A. J. Patil, and S. Mann, Fabrication of graphene-polymer nanocomposites with higher-order three dimensional architectures, Adv. Mater. 21, 2180 (2009).
  • H. J. Salavagione, Covalent graphene‐polymer nanocomposites, Graph. Mater. Fundam. Emerg. Appl. 45, 149 (2015).
  • C. Rauwendaal, Polymer Extrusion, Carl Hanser Publishers, Munich (2014).
  • T. Nie, O. Zhang, L. Lu, J. Xu, Y. Wen and X. Qiu, Facile synthesis of poly (3, 4-ethylenedioxythiophene)/graphene nanocomposite and its application for determination of nitrite, Int. J. Electrochem. Sci. 8, 8708 (2013).
  • T. M. Wu and E. C. Chen, Preparation and characterization of conductive carbon nanotube–polystyrene nanocomposites using latex technology, Compos. Sci. Technol. 68 2259 (2008).
  • H. Quan, B. Zhang, Q. Zhao, R. K. K. Yuen, and R. K. Y. Li and Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites, Compos. Pt. A 40,1513 (2009).
  • G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites, Compos. Sci. Technol. 67, 1709–1718 (2007).
  • X. Zhao, Q. Zhang, and D. Chen, Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites, Macromolecules 43, 2363 (2010).
  • A. Schuchardt, T. Braniste, Y. K. Mishra, M. Deng, M. Mecklenburg, M. A. Stevens-Kalceff, S. Raevschi, K. Schulte, L. Kienle, R. Adelung, and I. Tiginyanu, Threedimensional aerographite-GaN hybrid networks: Single step fabrication of porous and mechanically flexible materials for multifunctional applications, Sci. Rep. 5, 8839 (2015).
  • H. Kim, and C. W. Macosko, Processing–property relationships of polycarbonate/graphene nanocomposites, Polymer 50, 3809 (2009).
  • S. Zhou, Y. Chen, H. Zou, and M, Liang, Thermally conductive composites obtained by flake graphite filling immiscible Polyamide 6/Polycarbonate blends, Thermochimica Acta 566, 91 (2013).
  • L. Peponi, A. Tercjak, R. Verdejo, M. A. Lopez-Manchado, I. Mondragon, and J. M. Kenny, Confinement of functionalized graphene sheets by triblock copolymers, J. Phys. Chem. 113,17978. (2009).
  • W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, and C. S. Ozkan, Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors, Sci. Rep. 4, (2014).
  • J. Shen, C. Yang, X. Li, and G. Wang, High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes, ACS Appl. Mater. Interf. 5, 8467 (2013).
  • J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, Preparation of graphene nanosheets/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J. Power Sour. 195, 3041 (2010).
  • Y. R. Lee, A. V. Raghu, H. M. Jeong, and B. K. Kim, Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method, Macromol. Chem. Phys. 210, 1254 (2009).
  • H. F. Liang, M. H. Hong, R. M. Ho, C. K. Chung, Y. H. Lin, C. H. Chen, and H. W. Sung, Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel, Biomacromolecules 5, 1925 (2004).
  • X. Li and G. B. McKenna, Considering viscoelastic micromechanics for the reinforcement of graphene polymer nanocomposites, ACS Macro Lett. 1, 391 (2012).
  • S. Ansari and E. P. Giannelis, Functionalized graphene sheet poly (vinylidene fluoride) conductive nanocomposites, J. Polym. Sci. Pt B Polym. Phys. 47, 897 (2009).
  • H. Li, J. Chen, S. Han, W. Niu, X. Liu, and G. Xu, Electrochemiluminescence from tris(2,2-bipyridyl)ruthenium(II)-graphene-nafion modified electrode, Talanta 79, 170 (2009).
  • C. Zhang and T. Liu, A Review on hybridization modification of graphene and its polymer nanocomposites, Chin. Sci. Bull. 3021, 57, (2012).
  • S. S. J. Aravind, V. Eswaraiah, and S. Ramaprabhu, Facile synthesis of one dimensional graphene wrapped carbon nanotube composites by chemical vapour deposition, J. Mater. Chem. 21, 15179 (2011).
  • J. Liang, L. Huang, N. Li, Y. Huang, Y. Wu, S. Fang, and Y. Chen, Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene, ACS Nano. 6, 4508 (2012).
  • Y. Zhan, Cross-linkable nitrile functionalized graphene oxide/poly (arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability, J. Mater. Chem. 22, 5602 (2012).
  • A. S. Wajid, H. S. Ahmed, S. Das, F. Irin, A. F. Jankowski, and J. G. Micah, High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties, Macromolec. Mater. Eng. 67, 5421 (2012).
  • X. Jiang and L. T. Drzal, Multifunctional high-density polyethylene nanocomposites produced by incorporation of exfoliated graphene, Nanoplat. Carbon 33, 636 (2012).
  • G. Gedler, M. Antunes, V. Realinho, and J. I. Velasco, Thermal stability of polycarbonate-graphene nano-composite foams, Polym. Degrad. Stab. 97, 1297 (2012).
  • A. S. Patole, A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization, J. Colloid Interf. Sci. 350, 530 (2010).
  • R. K. Layek and A. K. Nandi, A review on synthesis and properties of polymer functionalized graphene, Polymer 54, 5103 (2013).
  • M. M. Gudarzi and F. Sharif, Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide, Exp. Poly. Lett. 6, 335 (2012).
  • J. H. Du, J. Bai, and H. M. Cheng, The present status and key problems of carbon nanotube based polymer composites, Exp. Poly. Lett. 1,273 (2007).
  • A. M. Pinto, J. Martins, J. A. Moreira, A. M. Mendes, and F. D. Magalhães, Dispersion of graphene nanoplatelets in poly (vinyl acetate) latex and effect on adhesive bond strength, Poly. Intern. 62, 935 (2013).
  • S. C. Tjong, Graphene and its derivatives: Novel materials for forming functional polymer nanocomposites, Exp. Poly. Lett. 6, 437 (2012).
  • D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechn. 3, 105 (2008).
  • S. Pan, I. and A. Aksay, Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano 5, 4073–4083 (2011).
  • N. W. Pu, C. A. Wang, Y. M. Liu, Y. Sung, D. S. Wang, and M. D. Ger, Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating, J. Tiwa. Inst. Chem. Eng. 43, 146 (2012).
  • M. M. Gudarzi and F. Sharif, Molecular level dispersion of graphene in polymer matrices using colloidal polymer and graphene, J. Colloid Interface Sci. 366, 44–50 (2012).
  • N. Yousefi, M. M. Gudarzi, Q. Zheng, S. H. Aboutalebi, F. Sharif, and J-K. Kim, Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites, J. Mater. Chem. 22, 12709–12717 (2012).
  • M. Fang, Z. Zhang, J. Li, H. Zhang, H. Lu, and Y. Yang, Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces. J. Mater. Chem. 20, 9643 (2010).
  • O. Parlak, A. Tiwari, A. P. F. Turner, and A. Tiwari, Template-directed hierarchical self-assembly of graphene based hybrid structure for electrochemical biosensing, Biosens. Bioelectron. 49, 62 (2013).
  • A. Tiwari and S. K. Shukla, Advanced Carbon Materials and Technology, Wiley-Scrivener, New York (2014).
  • S. Sayyar, E. Murray, B. C. Thompson, S. Gambhir, D. L. Officer, and G. G. Wallac, Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering, Carbon 52, 296 (2013).
  • B. W. Chieng, N. A. Ibrahim, W. M. Z. Wan Yunus, M. Z. Hussein, and V. S. Silverajah, Graphene nanoplatelets as novel reinforcement filler in poly (lactic acid)/epoxidized palm oil green nanocomposites: Mechanical properties, Int J. Mol. Sci. 13, 10920 (2012).
  • V. Dhand, K. Y. Rhee, H. J. Kim, and D. H. Jung, A comprehensive review of graphene nanocomposites: research status and trends, J. Nanomat. 43, 158, (2013).
  • T. Zhang, Q. Xue, S. Zhang, and M. Dong, Theoretical approaches to graphene and graphene-based materials, Nano Today 7, 180 (2012).
  • R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, The mechanics of graphene nanocomposites: a review, Compos. Sci. Technol. 72, 1459 (2012).
  • Y. Chen, Y. Qi, Z. Tai, X. Yan, F. Zhu, and Q. Xue, Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites, Eur. Polym. J. 48, 1026 (2012).
  • A. M. Pinto, S. Moreira, I. C. Gonçalves, F. M. Gama, A. M. Mendes, and F. D. Magalhães, Biocompatibility of poly (lactic acid) with incorporated graphene-based materials, Colloids Surf. B Biointerf. 104, 229 (2013).
  • J. Gu, C. Xie, H. Li, J. Dang, W. Geng, and Q. Zhang, Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites, Polym. Compos. 35,1092 (2014).
  • W. Tang, X. Hu, J. Tang, and R. Jin, Toughening and compatibilization of polyphenylene sulfide/nylon 66 blends with SEBS and maleic anhydride grafted SEBS triblock copolymers, J. Appl. Polym. Sci. 106, 2655 (2007).
  • H. Pang, Y. Bao, J. Lei, J. H. Tang, X. Ji, W. Q. Zhang, and C. Chen, Segregated conductive ultrahigh-molecular-weight polyethylene composites containing high-density polyethylene as carrier polymer of graphene nanosheets, Polym. Plast. Technol. Eng. 51,1486 (2012).
  • A. C. Balazs, T. Emrick, and T. P. Russell, Nanoparticle polymer composites: where two small worlds meet, Science 314, 1107 (2006).
  • X. Y. Qi, D. Yan, Z. Jiang, Y. K. Cao, Z. Z. Yu, F. Yavari, and N. Koratkar, Enhanced electrical conductivity in polystyrene nanocomposites at ultra-low graphene content, ACS Appl. Mater. Interf. 3, 3130 (2011).
  • J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44, 1624 (2006).
  • B. W. Chieng, N. A. Ibrahim, W. M. Z. Wan Yunus, M. Z. Hussein, and V. S. Silverajah, Graphene nanoplatelets as novel reinforcement filler in poly (lactic acid)/epoxidized palm oil green nanocomposites: Mechanical properties, Int J. Mol. Sci. 13, 10920 (2012).
  • V. Dhand, K. Y. Rhee, H. J. Kim, and D. H. Jung, A comprehensive review of graphene nanocomposites: research status and trends, J. Nanomat. 43, 158, (2013).
  • R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, The mechanics of graphene nanocomposites: a review, Compos. Sci. Technol. 72, 1459 (2012).
  • T. Zhang, Q. Xue, S. Zhang, and M. Dong, Theoretical approaches to graphene and graphene-based materials, Nano Today 7, 180 (2012).
  • A. M. Pinto, S. Moreira, I. C. Gon¸calves, F. M. Gama, A. M. Mendes, and F. D. Magalh∼aes, Biocompatibility of poly (lactic acid) with incorporated graphene-based materials, Colloids Surf. B Biointerf. 104, 229 (2013).
  • S. Sayyar, E. Murray, B. C. Thompson, S. Gambhir, D. L. Officer, and G. G. Wallac, Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering, Carbon 52, 296 (2013).
  • Y. Chen, Y. Qi, Z. Tai, X. Yan, F. Zhu, and Q. Xue, Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites, Eur. Polym. J. 48, 1026 (2012).
  • X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X. Wang, H. Sohn, and Y. Lu, High-performance flexible lithium-ion electrodes based on robust network architecture, Eng. Environ. Sci. 5, 6845 (2012).
  • A. Pan, H. B. Wu, L. Yu, T. Zhu, and X. W. Lou, Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries, ACS Appl. Mater. Interf. 4, 3874 (2012).
  • Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, Lightweight and flexible graphene foam composites for high‐performance electromagnetic interference shielding, Adv. Mater. 25,1300 (2013)
  • P. Hvizdo, J. Dusza, and C. Bal_azsi, Tribological properties of Si3N4-graphene nanocomposites, J. Eur. Ceram. Soc. 33, 2359 (2013).
  • R. Ahmad Dar, N. G. Khare, D. P. Cole, S. P. Karna, and A. K. Srivastava, Green synthesis of a silver nanoparticle–graphene oxide composite and its application for As(III) detection, RSC Adv. 4, 14440 (2014).
  • R. Orru and G. Cao, Comparison of reactive and nonreactive spark plasma sintering routes for the fabrication of monolithic and composite ultra-high temperature ceramics materials, Materials 6, 1566 (2013).
  • Y. Zhang, T. R. Nayak, H. Hong, and W. Cai, Graphene: a versatile nanoplatform for biomedical applications, Nanoscale 4, 3833 (2012).
  • H. Shen, L. Zhang, M. Liu, and Z. Zhang, Biomedical applications of graphene, Theranostics 2, 283 (2012).
  • W. Hu, C. Peng, and W. Luo, Graphene-based antibacterial paper, ACS Nano. 4, 4317 (2010).
  • K. Liao, Y. Lin, C. W. MacOsko, and C. L. Haynes, Cytotoxicityof graphene oxide and graphene in human erythrocytes and skin fibroblasts, ACS Appl. Mater. Interf. 3, 4210 2607 (2011).
  • S. Liu, T. H. Zeng, and M. Hofmann, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano. 5, 6971 (2011).
  • M. I. E. Carpio, C. M. Santos, X. Wei, and D. F. Rodrigues, Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells, Nanoscale 4, 4746 (2012).
  • E. Peng, E. S. G. Choo, and P. Chandrasekharan, Synthesis of manganese ferrite/Graphene oxide nanocomposites for biomedical applications, Small 8, 3620 (2012).
  • A. Porteous, Why energy from waste incineration is an essential component of environmentally responsible waste management, Waste Manage. 25, 451 (2005).
  • A. Bjorklund and G. Finnveden, Recycling revisited-life cycle comparisons of global warming impact and total energy use of waste management strategies, Resour. Consern. Recycl. 44, 309 (2005).
  • J. Liu, H. Yan, M. J. Reece, and K. Jiang, Toughening of zirconia/alumina composites by the addition of graphene platelets, J. Eur. Ceram. Soc. 32, 4185 (2012).
  • 362. H. Liem and H. S. Choy, Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers, Solid State Commun. 163, 41 (2013).
  • K. I. Kim and T. W. Hong, Hydrogen permeation of TiN–graphene membrane by hot press sintering (HPS) process, Solid State Ionics 215, 699 (2012).
  • 364. R. Orrù and G. Cao, Comparison of reactive and non-reactive spark plasma sintering routes for the fabrication of monolithic and composite ultra high temperature ceramics materials, Materials 6, 1566 (2013).
  • T. H. Oh and S. C. Chua, Energy efficiency, and carbon trading potential in Malaysia, Renew. Sustain. Engy. Rev. 14, 2095 (2010).
  • R. Singhal, D. C. Agarwal, Y. K. Mishra, D. Kabiraj, G. Mattei, J. C. Pivin, R. Chandra, and D. K. Avasthi, Synthesis, characterizations, and thermal induced structural transformation of silver-fullerene C60 nanocomposite thin films for applications in optical devices, J. Appl. Phys. 107, 103504 (2010).
  • W. E. Rees, Globalization and sustainability: Conflict or convergence?, Bull. Sci. Technol. Soc. 22, 249 (2002).
  • L. Chen, M. Zhang, and W. Wei, Graphene-based composites as cathode materials for lithium ion batteries, J. Nanomater. 2, 80 (2013).
  • R. Grau, M. Graells, J. Corominas, A. Espuna, and L. Puigjaner, Global strategy for energy and waste analysis 4245 in scheduling and planning of multiproduct batch chemical processes, Comp. Chem. Eng. 20, 853 (1996).
  • H. Xia and C. Huo, Electrochemical properties of MnO2/CNT nanocomposite in neutral aqueous electrolyte as cathode material for asymmetric supercapacitors, Int. J. Smart Nano Mater. 2, 283 (2011).
  • C. Long, T. Wei, J. Yan, L. Jiang, and Z. Fan, Supercapacitors based on graphene-supported iron nanosheets as negative electrode materials, ACS Nano. 7, 11325 (2013).
  • B. Radisavljevic, M. B. Whitwick, and A. Kis, Integrated circuits and logic operations based on single-layer MoS2, ACS Nano. 5, 9934 (2011).
  • A. Tiwari and M. Syvajarvi, Graphene Materials: Fundamentals and Emerging Applications, Wiley Scrivener Publishing, Beverly, MA (2015).
  • A. Tiwari, Y. Sharma, S. Hattori, D. Terada, A. K. Sharma, A. P. F. Turner, and H. Kobayashi, Influence of poly(n-isopropylacrylamide)–CNT–polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability, Biopolymers 99, 341 (2013).
  • S. J. Prabakar, Y. H. Hwang, E. G. Bae, S. Shim, D. Kim, M. S. Lah, K. S. Sohn,.and M. Pyo, SnO2/graphene composites with self‐assembled alternating oxide and amine layers for high li‐storage and excellent stability, Adv. Mat. 25, 3312 (2013).
  • R. Wang, C. Xu, J. Sun, L. Gao, and H. Yao, Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage, ACS Appl. Mater. Interf. 6, 3436 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.