892
Views
71
CrossRef citations to date
0
Altmetric
Reviews

A Guide for Hydrodynamic Reinforcement Effect in Nanoparticle-filled Polymers

&

References

  • D. Feldman, Elastomer nanocomposite; properties, J. Macromole. Sci. Part A 49, 784–793 (2012).
  • R. Sengupta, S. Chakraborty, S. Bandyopadhyay, S. Dasgupta, R. Mukhopadhyay, K. Auddy, and A. S. Deuri, A short review on rubber/clay nanocomposites with emphasis on mechanical properties, Polym. Eng. Sci. 47, 1956–1974 (2007).
  • J. Karger-Kocsis and C. M. Wu, Thermoset rubber/layered silicate nanocomposites. Status and future trends, Polym. Eng. Sci. 44, 1083–1093 (2004).
  • R. S. Sinha and M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28, 1539–1641 (2003).
  • G. Allegra, G. Raos, and M. Vacatello, Theories and simulations of polymer-based nanocomposites: From chain statistics to reinforcement, Prog. Polym. Sci. 33, 683–731 (2008).
  • Y. Zhang, Y. Song, and Q. Zheng, Mechanical and thermal properties of nanosized titanium dioxide filled rigid poly(vinyl chloride), Chin. J. Polym. Sci. 31, 325–332 (2013).
  • Z. Liu, J. Wu, H. Yang, Y. Song, and Q. Zheng, Melt compounding and mechanical properties of polyphenylene sulfide/low melting-temperature glass composites, Acta Polym. Sin. 141–149 (2014).
  • A. A. Gavrilov, A. V. Chertovich, P. G. Khalatur, and A. R. Khokhlov, Study of the mechanisms of filler reinforcement in elastomer nanocomposites, Macromolecules 47, 5400–5408 (2014).
  • V. Mansard and A. Colin, Local and non local rheology of concentrated particles, Soft Matt. 8, 4025–4043 (2012).
  • N. J. Balmforth, I. A. Frigaard, and G. Ovarlez, Yielding to stress: Recent developments in viscoplastic fluid mechanics, Annu. Rev. Fluid. Mech. 46, 121–146 (2014).
  • R. Krishnamoorti and K. Yurekli, Rheology of polymer layered silicate nanocomposites, Curr. Opin. Colloid In 6, 464–470 (2001).
  • R. S. Sinha, Rheology of polymer/layered silicate nanocomposites, J. Ind. Eng. Chem. 12, 811–842 (2006).
  • H. J. Choi and S. S. Ray, A review on melt-state viscoelastic properties of polymer nanocomposites, J. Nanosci. Nanotechnol. 11, 8421–8449 (2011).
  • F. J. Galindo-Rosales, P. Moldenaers, and J. Vermant, Assessment of the dispersion quality in polymer nanocomposites by rheological methods, Macromol. Mater. Eng. 296, 331–340 (2011).
  • R. Hill, A self-consistent mechanics of composite materials, J. Mech. Phys. Solids 13, 213–222 (1965).
  • J. S. Chong, E. B. Christiansen, and A. D. Baer, Rheology of concentrated suspensions, J. Appl. Polym. Sci. 15, 2007–2021 (1971).
  • J. Bicerano, J. F. Douglas, and D. A. Brune, Model for the viscosity of particle dispersions, J. Macromole. Sci. Part C 39, 561–642 (1999).
  • A. I. Leonov, On the rheology of filled polymers, J. Rheol. 34, 1039–1068 (1990).
  • X. Chateau, G. Ovarlez, and K. L. Trung, Homogenization approach to the behavior of suspensions of noncolloidal particles in yield stress fluids, J. Rheol. 52, 489–506 (2008).
  • S. Jiang, G. Li, Y. Lu, and Z. Wu, Advances in the rheology of polymer-based clay nanocomposite, Polym. Bull. 15, 51–53 (2002).
  • K. Saalwächter, Microstructure and molecular dynamics of elastomers as studied by advanced low-resolution nuclear magnetic resonance methods, Rubber Chem. Technol. 85, 350–386 (2012).
  • S. Bredeau, S. Peeterbroeck, D. Bonduel, M. Alexandre, and P. Dubois, From carbon nanotube coatings to high-performance polymer nanocomposites, Polym. Int. 57, 547–553 (2008).
  • K. Chrissopoulou and S. H. Anastasiadis, Polyolefin/layered silicate nanocomposites with functional compatibilizers, Eur. Polym. J. 47, 600–613 (2011).
  • X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, Dispersion and alignment of carbon nanotubes in polymer matrix: A review, Mater. Sci. Eng. R: Rep. 49, 89–112 (2005).
  • K.-t. Lau, C. Gu, and D. Hui, A critical review on nanotube and nanotube/nanoclay related polymer composite materials, Comps. Part B: Eng. 37, 425–436 (2006).
  • L. Bokobza, Multiwall carbon nanotube elastomeric composites: A review, Polymer 48, 4907–4920 (2007).
  • J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites, Carbon 44, 1624–1652 (2006).
  • S. C. Tjong, Structural and mechanical properties of polymer nanocomposites, Mater. Sci. Eng. R: Rep. 53, 73–197 (2006).
  • I. R. Rutgers, Relative viscosity and concentration, Rheol Acta 2, 305–348 (1962).
  • D. G. Thomas, Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles, J. Colloid Sci. 20, 267–277 (1965).
  • D. J. Jeffrey and A. Acrivos, The rheological properties of suspensions of rigid particles, AlChE J. 22, 417–432 (1976).
  • J. C. H. Affdl and J. L. Kardos, The Halpin-Tsai equations: A review, Polym. Eng. Sci. 16, 344–352 (1976).
  • W. B. Russel, Review of the role of colloidal forces in the rheology of suspensions, J. Rheol. 24, 287–317 (1980).
  • A. B. Metzner, Rheology of suspensions in polymeric liquids, J. Rheol. 29, 739–775 (1985).
  • A. Y. Malkin, Rheology of filled polymers, Adv. Polym. Sci. 96, 69–97 (1990).
  • L. B. Kandyrin and V. N. Kuleznev, Dependence of viscosity on the composition of concentrated dispersions and the free volume concept of disperse systems. In Free Radical Copolimerization Dispersions Glassy State Relaxation, Vol. 103, Springer, Berlin Heidelberg (1992); pp. 103–147.
  • L. Karásek and M. Sumita, Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites, J. Mater. Sci. 31, 281–289 (1996).
  • P. R. Hornsby, Rheology, compounding and processing of filled thermoplastics, Min. Fillers Thermoplast. 139, 155–217 (1999).
  • C. L. Tucker and E. Liang, Stiffness predictions for unidirectional short-fiber composites: Review and evaluation, Compos. Sci. Technol. 59, 655–671 (1999).
  • M. Klüppel and J. Schramm, A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems, Macromol. Theor. Simul, 9, 742–754 (2000).
  • D. Quemada and C. Berli, Energy of interaction in colloids and its implications in rheological modeling, Adv. Colloid Interf. Sci. 98, 51–85 (2002).
  • D. J. Kohls and G. Beaucage, Rational design of reinforced rubber, Curr. Opin. Solid State Mater. Sci. 6, 183–194 (2002).
  • G. Heinrich and M. Kluppel, Recent advances in the theory of filler networking in elastomers, Filled Elastom. Drug Deliv. Syst. 160, 1–44 (2002).
  • G. Heinrich, M. Kluppel, and T. A. Vilgis, Reinforcement of elastomers, Curr. Opin. Solid St. M 6, 195–203 (2002).
  • J. L. Leblanc, Rubber–filler interactions and rheological properties in filled compounds, Prog. Polym. Sci. 27, 627–687 (2002).
  • W. Pabst, Fundamental considerations on suspension rheology, Ceram-silikaty 48, 6–13 (2004).
  • G. M. Brown and F. Ellyin, Assessing the predictive capability of two-phase models for the mechanical behavior of alumina/epoxy nanocomposites, J. Appl. Polym. Sci. 98, 869–879 (2005).
  • J. E. Mark, R. Abou-Hussein, T. Z. Sen, and A. Kloczkowski, Some simulations on filler reinf,orcement in elastomers, Polymer 46, 8894–8904 (2005).
  • V. A. Buryachenko, A. Roy, K. Lafdi, K. L. Anderson, and S. Chellapilla, Multi-scale mechanics of nanocomposites including interface: Experimental and numerical investigation, Compos. Sci. Technol. 65, 2435–2465 (2005).
  • G. Lin, Y. Wu, X. Zhang, Y. Qian, Q. Jia, and L. Zhang, Change of structure and morphology of nanofiller/rubber system during storage period II. Factors and their influences on properties, China Synth. Rubber Industr., 28, 1–7 (2005).
  • J. Oberdisse, Aggregation of colloidal nanoparticles in polymer matrices, Soft Matt. 2, 29–36 (2006).
  • S. Z. Wu and J. E. Mark, Some simulations and theoretical studies on poly(dimethylsiloxane), Polym. Rev. 47, 463–485 (2007).
  • X.-Q. Wang and A. S. Mujumdar, A review on nanofluids - part I: theoretical and numerical investigations, Braz. J. Chem. Eng. 25, 613–630 (2008).
  • S.-Y. Fu, X.-Q. Feng, B. Lauke, and Y.-W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Comps. Part B: Eng. 39, 933–961 (2008).
  • J. C. Halpin, Stiffness and expansion estimates for oriented short fiber composites, J. Compos. Mater. 3, 732–734 (1969).
  • E. H. Kerner, The elastic and thermo-elastic properties of composite media, Proc. Phys. Soc. London Sect. B 69, 808 (1956).
  • L. E. Nielsen, Generalized equation for the elastic moduli of composite materials, J. Appl. Phys. 41, 4626–4627 (1970).
  • M. Takayanagi, T. Ogata, M. Morikawa, and T. Kai, Polymer composites of rigid and flexible molecules: System of wholly aromatic and aliphatic polyamides, J. Macromol. Sci.-Part B 17, 591–615 (1980).
  • L. Bokobza, New developments in rubber reinforcement, Kgk-Kautschuk Gummi Kunststoffe 62, 23–27 (2009).
  • B. A. Horri, P. Ranganathan, C. Selomulya, and H. Wang, A new empirical viscosity model for ceramic suspensions, Chem. Eng. Sci. 66, 2798–2806 (2011).
  • D. B. Genovese, Shear rheology of hard-sphere, dispersed, and aggregated suspensions, and filler-matrix composites, Adv. Colloid Interf. Sci. 171–172, 1–16 (2012).
  • J. Liu, L. Zhang, D. Cao, J. Shen, and Y. Gao, Computational simulation of elastomer nanocomposites: current progress and future challenges, Rubber Chem. Technol. 85, 450–481 (2012).
  • E. Hesami, D. Jelagin, N. Kringos, and B. Birgisson, An empirical framework for determining asphalt mastic viscosity as a function of mineral filler concentration, Constr. Build. Mater. 35, 23–29 (2012).
  • A. Papon, T. C. L. Guy, K. Saalwachter, J. Oberdisse, S. Merabia, D. Long, P. Sotta, H. H. Frielinghaus, A. Radulescu, B. Deme, L. Noirez, H. Montes, and F. Lequeux, Studying Model samples to understand mechanical Properties of filled Elastomers, Kgk-Kautschuk Gummi Kunststoffe 66, 52–58 (2013).
  • K. Jana, M. Patel, D. Rana, and P. Maiti, Nonlinear viscoelasticity of one dimensional filler reinforced elastomer composites. In Non-Linear Viscoelasticity of Rubber Composites and Nanocomposites, Vol. 264, D. Ponnamma and S. Thomas, Eds., Springer International Publishing (2014); pp. 15–41.
  • Y. Song and Q. Zheng, Linear rheology of nanofilled polymers, J. Rheol. 59, 155–191 (2015).
  • S. Faroughi and C. Huber, A generalized equation for rheology of emulsions and suspensions of deformable particles subjected to simple shear at low Reynolds number, Rheol Acta 54, 85–108 (2015).
  • R. Tuinier, T.-H. Fan, and T. Taniguchi, Depletion and the dynamics in colloid–polymer mixtures, Curr. Opin. Colloid In 20, 66–70 (2015).
  • C. I. Mendoza and I. Santamaría-Holek, The rheology of hard sphere suspensions at arbitrary volume fractions: An improved differential viscosity model, J. Chem. Phys. 130, 044904 (2009).
  • C. Mobuchon, P. J. Carreau, and M.-C. Heuzey, Structural analysis of non-aqueous layered silicate suspensions subjected to shear flow, J. Rheol. 53, 1025–1048 (2009).
  • M. Soutrenon, V. Michaud, and J. A. E. Manson, Influence of processing and storage on the shear Thickening Properties of Highly Concentrated Monodisperse Silica Particles in Polyethylene Glycol, Appl. Rheol. 23, 287–295 (2013).
  • A. Mukherjee, D. Sharma, S. S. Chauhan, and H. Singh, Time-dependent and shear-dependent transient viscosity of an alumina suspension, J. Dispersion Sci. Technol. 36, 951–969 (2014).
  • M. Van Den Tempel, Rheology of concentrated suspensions, J. Colloid Interf. Sci. 71, 18–20 (1979).
  • V. Pryamitsyn and V. Ganesan, Origins of linear viscoelastic behavior of polymer-nanoparticle composites, Macromolecules 39, 844–856 (2006).
  • Z. Y. Zhu, T. Thompson, S. Q. Wang, E. D. von Meerwall, and A. Halasa, Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene, Macromolecules 38, 8816–8824 (2005).
  • V. Prasad, V. Trappe, A. D. Dinsmore, P. N. Segre, L. Cipelletti, and D. A. Weitz, Universal features of the fluid to solid transition for attractive colloidal particles, Faraday Discuss. 123, 1–12 (2003).
  • V. Trappe and D. A. Weitz, Scaling of the viscoelasticity of weakly attractive particles, Phys. Rev. Lett. 85, 449–452 (2000).
  • G. Romeo, G. Filippone, A. Fernandez-Nieves, P. Russo, and D. Acierno, Elasticity and dynamics of particle gels in non-Newtonian melts, Rheol. Acta 47, 989–997 (2008).
  • Y. Kantor and I. Webman, Elastic properties of random percolating systems, Phys. Rev. Lett. 52, 1891–1894 (1984).
  • S. C. Feng and M. Sahimi, Position-space renormalization for elastic percolation networks with bond-bending forces, Phys. Rev. B 31, 1671–1673 (1985).
  • S. Arbabi and M. Sahimi, Elastic properties of three-dimensional percolation networks with stretching and bond-bending forces, Phys. Rev. B 38, 7173–7176 (1988).
  • M. Sahimi and S. Arbabi, Mechanics of disordered solids. II. Percolation on elastic networks with bond-bending forces, Phys. Rev. B 47, 703–712 (1993).
  • L. Benguigui, Lattice and continuum percolation transport exponents - experiments in 2-dimensions, Phys. Rev. B 34, 8176–8178 (1986).
  • L. Li and T. Masuda, Effect of dispersion of particles on viscoelasticity of CaCO3-filled polypropylene melts Polym. Eng. Sci. 30, 841–847 (1990).
  • J. X. Ren, A. S. Silva, and R. Krishnamoorti, Linear viscoelasticity of disordered polystyrene-polyisoprene block copolymer based layered-silicate nanocomposites, Macromolecules 33, 3739–3746 (2000).
  • M. I. Aranguren, E. Mora, J. V. DeGroot, and C. W. Macosko, Effect of reinforcing fillers on the rheology of polymer melts, J. Rheol. 36, 1165–1182 (1992).
  • S. S. Sternstein and A. J. Zhu, Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior, Macromolecules 35, 7262–7273 (2002).
  • M. A. Osman and A. Atallah, Effect of the particle size on the viscoelastic properties of filled polyethylene, Polymer 47, 2357–2368 (2006).
  • A. Yim, R. S. Chahal, and L. E. St. Pierre, The effect of polymer-filler interaction energy on the Tg of filled polymers, J. Colloid Interf. Sci. 43, 583–590 (1973).
  • A. S. Sarvestani and E. Jabbari, Modeling the viscoelastic response of suspension of particles in polymer solution: The effect of polymer-particle interactions, Macromol. Theor. Simul. 16, 378–385 (2007).
  • R. Krishnamoorti and E. P. Giannelis, Rheology of end-tethered polymer layered silicate nanocomposites, Macromolecules 30, 4097–4102 (1997).
  • P. Cassagnau, Melt rheology of organoclay and fumed silica nanocomposites, Polymer 49, 2183–2196 (2008).
  • J. Happel and H. Brenner, The viscosity of particulate systems. In Low Reynolds Number Hydrodynamics, Vol. 1, Springer, The Netherlands (1983); pp. 431–473.
  • S. Ahmed and F. R. Jones, A review of particulate reinforcement theories for polymer composites, J. Mater. Sci. 25, 4933–4942 (1990).
  • G. Kraus, Reinforcement of elastomers by carbon black, Adv. Polym. Sci. 8, 155–237 (1971).
  • M. A. Osman, A. Atallah, T. Schweizer, and H. C. Ottinger, Particle-particle and particle-matrix interactions in calcite filled high-density polyethylene-steady shear, J. Rheol. 48, 1167–1184 (2004).
  • A. Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat, An.n Phys. 17, 549–560 (1905).
  • A. Einstein, Berichtigung zu meiner Arbeit: “Eine neue Bestimmung der Moleküldimensionen”, Ann. Phys. 34, 591–592 (1911).
  • H. M. Smallwood, Limiting law of the reinforcement of rubber, J. Appl. Phys. 15, 758–766 (1944).
  • R. D. Sudduth, Modulus evaluation of particulate composites using generalized viscosity model for solutions with suspended particles, J. Appl. Polym. Sci. 54, 1243–1262 (1994).
  • Y. Song, Q. Zheng, and Q. Cao, On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers, J. Rheol. 53, 1379–1388 (2009).
  • A. Acrivos, Shear-induced particle diffusion in concentrated suspensions of noncolloidal particles, J. Rheol. 39, 813–826 (1995).
  • I. Santamaria-Holek and C. I. Mendoza, The rheology of concentrated suspensions of arbitrarily-shaped particles, J. Colloid Interf. Sci. 346, 118–126 (2010).
  • A. M. Wierenga and A. P. Philipse, Low-shear viscosity of isotropic dispersions of (Brownian) rods and fibres; a review of theory and experiments, Colloids Surf. A 137, 355–372 (1998).
  • E. Guth, Theory of filler reinforcement, J. Appl. Phys. 16, 20–25 (1945).
  • S. Mueller, E. W. Llewellin, and H. M. Mader, The rheology of suspensions of solid particles, Proc. Roy. Soc. London Ser. A Mathem. Phys. Sci. 466, 1201–1228 (2010).
  • I. Pliskin and N. Tokita, Bound rubber in elastomers - Analysis of elastomer-filler interaction and its effect on viscosity and modulus of composite systems, J. Appl. Polym. Sci. 16, 473–492 (1972).
  • H. A. Barnes, Shear‐thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in newtonian liquids, J. Rheol. 33, 329–366 (1989).
  • T. A. Witten, M. Rubinstein, and R. H. Colby, Reinforcement of rubber by fractal aggregates, J. Phys. II France 3, 367–383 (1993).
  • F. Booth, The electroviscous effect for suspensions of solid spherical particles, Proc. Roy. Soc. London Ser. A Mathem. Phys. Sci. 203, 533–551 (1950).
  • H. X. Zhou, Calculation of translational friction and intrinsic viscosity. I. General formulation for arbitrarily shaped particles, Biophys. J. 69, 2286–2297 (1995).
  • C.-J. Lin, J. H. Peery, and W. R. Schowalter, Simple shear flow round a rigid sphere: inertial effects and suspension rheology, J. Fluid Mech. 44, 1–17 (1970).
  • P. Cassagnau, Linear viscoelasticity and dynamics of suspensions and molten polymers filled with nanoparticles of different aspect ratios, Polymer 54, 4762–4775 (2013).
  • S. Y. Kim and C. F. Zukoski, Super- and sub-Einstein intrinsic viscosities of spherical nanoparticles in concentrated low molecular weight polymer solutions, Soft Matt. 8, 1801–1810 (2012).
  • M. Wang and R. J. Hill, Anomalous bulk viscosity of polymer-nanocomposite melts, Soft Matt. 5, 3940–3953 (2009).
  • K. Nusser, G. J. Schneider, W. Pyckhout-Hintzen, and D. Richter, Viscosity decrease and reinforcement in polymer–silsesquioxane composites, Macromolecules 44, 7820–7830 (2011).
  • A. Tuteja, M. E. Mackay, C. J. Hawker, and B. Van Horn, Effect of ideal, organic nanoparticles on the flow properties of linear polymers:  Non-einstein-like behavior, Macromolecules 38, 8000–8011 (2005).
  • M. E. Mackay, T. T. Dao, A. Tuteja, D. L. Ho, B. Van Horn, H.-C. Kim, and C. J. Hawker, Nanoscale effects leading to non-Einstein-like decrease in viscosity, Nat. Mater. 2, 762–766 (2003).
  • R. G. Schmidt, G. V. Gordon, C. c. A. Dreiss, T. Cosgrove, V. J. Krukonis, K. Williams, and P. M. Wetmore, A critical size ratio for viscosity reduction in poly(dimethylsiloxane)-polysilicate nanocomposites, Macromolecules 43, 10143–10151 (2010).
  • J. T. Kalathi, G. S. Grest, and S. K. Kumar, Universal viscosity behavior of polymer nanocomposites, Phys. Rev. Lett. 109, 198301 (2012).
  • H. Goldansaz, F. Goharpey, F. Afshar-Taromi, I. Kim, F. J. Stadler, E. van Ruymbeke, and V. Karimkhani, Anomalous rheological behavior of dendritic nanoparticle/linear polymer nanocomposites, Macromolecules 48, 3368–3375 (2015).
  • G. D. Smith, D. Bedrov, L. Li, and O. Byutner, A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites, J. Chem. Phys. 117, 9478–9489 (2002).
  • J. Mewis and N. J. Wagner, Current trends in suspension rheology, J. Non-Newtonian Fluid Mech. 157, 147–150 (2009).
  • W. B. Russel and A. P. Gast, Nonequilibrium statistical mechanics of concentrated colloidal dispersions: Hard spheres in weak flows, J. Chem. Phys. 84, 1815–1826 (1986).
  • B. Cichocki, M. L. Ekiel-Jeżewska, and E. Wajnryb, Three-particle contribution to effective viscosity of hard-sphere suspensions, J. Chem. Phys. 119, 606–619 (2003).
  • C. U. Thomas and M. Muthukumar, Three‐body hydrodynamic effects on viscosity of suspensions of spheres, J. Chem. Phys. 94, 5180–5189 (1991).
  • B. Cichocki and B. U. Felderhof, Linear viscoelasticity of semidilute hard-sphere suspensions, Phys. Rev. A 43, 5405–5411 (1991).
  • B. Cichocki and B. U. Felderhof, Linear viscoelasticity of colloidal suspensions, Phys. Rev. A 46, 7723–7732 (1992).
  • G. K. Batchelor and J. T. Green, The determination of the bulk stress in a suspension of spherical particles to order c2, J. Fluid. Mech. 56, 401–427 (1972).
  • R. Pasquino, N. Grizzuti, P. L. Maffettone, and F. Greco, Rheology of dilute and semidilute noncolloidal hard sphere suspensions, J. Rheol. 52, 1369–1384 (2008).
  • R. S. Simha, A treatment of the viscosity of concentrated suspensions, J. Appl. Phys. 23, 1020–1024 (1952).
  • E. Guth and O. Gold, On the hydrodynamical theory of the viscosity of suspensions, Phys. Rev. 53, 322 (1938).
  • N. Saitô, Concentration dependence of the viscosity of high polymer solutions. I, J. Phys. Soc. Jpn. 5, 4–8 (1950).
  • M. Schneider, J. Claverie, C. Graillat, and T. F. McKenna, High solids content emulsions. I. A study of the influence of the particle size distribution and polymer concentration on viscosity, J. Appl. Polym. Sci. 84, 1878–1896 (2002).
  • D. Quemada, Rheology of concentrated disperse systems and minimum energy dissipation principle, Rheol. Acta 16, 82–94 (1977).
  • C. G. de Kruif, E. M. F. van Iersel, A. Vrij, and W. B. Russel, Hard sphere colloidal dispersions: Viscosity as a function of shear rate and volume fraction, J. Chem. Phys. 83, 4717–4725 (1985).
  • H. Eggers and P. Schummer, Reinforcement mechanisms in carbon black and silica loaded rubber melts at low stresses, Rubb. Chem. Technol. 69, 253–265 (1996).
  • J. G. Oldroyd, The elastic and viscous properties of emulsions and suspensions, Proc. Roy. Soc. London Ser. A. Mathemat. Phys. Sci. 218, 122–132 (1953).
  • J. M. Peterson and M. Fixman, Viscosity of polymer solutions, J. Chem. Phys. 39, 2516–2523 (1963).
  • J. W. Ju and T. M. Chen, Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities, Acta Mech. 103, 123–144 (1994).
  • D. Bedeaux, R. Kapral, and P. Mazur, The effective shear viscosity of a uniform suspension of spheres, Physica A 88, 88–121 (1977).
  • C. W. J. Beenakker, The effective viscosity of a concentrated suspension of spheres (and its relation to diffusion), Physica A 128, 48–81 (1984).
  • K. F. Freed and M. Muthukumar, Cluster theory for concentration dependence of shear viscosity for suspensions of interacting spheres. I, J. Chem. Phys. 76, 6186–6194 (1982).
  • C. U. Thomas and M. Muthukumar, Convergence of multiple scattering series for two‐body hydrodynamic effects on shear viscosity of suspensions of spheres, J. Chem. Phys. 94, 4557–4567 (1991).
  • H.-S. Chen and A. Andreas, The effective elastic moduli of composite materials containing spherical inclusions at non–dilute concentrations, Int. J. Solids Struct. 14, 349–364 (1978).
  • G. K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech. 83, 97–117 (1977).
  • J. Bergenholtz and N. J. Wagner, The Huggins coefficient for the square-well colloidal fluid, Ind. Eng. Chem. Res. 33, 2391–2397 (1994).
  • R. Verberg, I. M. de Schepper, and E. G. D. Cohen, Viscosity of colloidal suspensions, Phys. Rev. E 55, 3143–3158 (1997).
  • V. Vand, Viscosity of solutions and suspensions. I. Theory, J. Phys. Colloid Chem. 52, 277–299 (1948).
  • G. J. Kynch, The effective viscosity of suspensions of spherical particles, Proc. Roy. Soc. London. Ser. A Mathemat. Phys. Sci. 237, 90–116 (1956).
  • A. J. Banchio and G. Nägele, Short-time transport properties in dense suspensions: From neutral to charge-stabilized colloidal spheres, J. Chem. Phys. 128, 104903 (2008).
  • E. Guth and O. Gold, On the hydrodynamical theory of the viscosity of suspensions, Phys. Rev. 53, 322 (1938).
  • S. J. Choi and W. R. Schowalter, Rheological properties of nondilute suspensions of deformable particles, Phys. Fluids, 18, 420–427 (1975).
  • R. A. Lionberger, Viscosity of bimodal and polydisperse colloidal suspensions, Phys. Rev. E 65, 061408 (2002).
  • B. Cichocki and B. U. Felderhof, Diffusion coefficients and effective viscosity of suspensions of sticky hard spheres with hydrodynamic interactions, J. Chem. Phys. 93, 4427–4432 (1990).
  • J. Bergenholtz and N. J. Wagner, The Huggins coefficient for the square-well colloidal fluid, Ind. Eng. Chem. Res. 33, 2391–2397 (1994).
  • A. T. J. M. Woutersen, J. Mellema, C. Blom, and C. G. de Kruif, Linear viscoelasticity in dispersions of adhesive hard spheres, J. Chem. Phys. 101, 542–553 (1994).
  • A. T. J. M. Woutersen and C. G. de Kruif, The viscosity of semidilute, bidisperse suspensions of hard spheres, J. Rheol. 37, 681–693 (1993).
  • W. B. Russel, The Huggins coefficient as a means for characterizing suspended particles, J. Chem. Soc. Faraday Trans. 2: Molecul. Chem. Phys. 80, 31–41 (1984).
  • R. C. Ball and P. Richmond, Dynamics of colloidal dispersions, Phys. Chem. Liq. 9, 99–116 (1980).
  • S. Arrhenius, The viscosity of solutions, Biochem. J. 11, 112–133 (1917).
  • A. Leviton and A. Leighton, Viscosity relationships in emulsions containing milk fat, J. Phys. Chem. 40, 71–80 (1935).
  • D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys. 416, 636–664 (1935).
  • C. H. Hsueh and W. C. J. Wei, Analyses of effective viscosity of suspensions with deformable polydispersed spheres, J. Phys. D: Appl. Phys. 42, 075503 (2009).
  • H. C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys. 20, 571–571 (1952).
  • N.-S. Cheng and A. W.-K. Law, Exponential formula for computing effective viscosity, Powder Technol. 129, 156–160 (2003).
  • W. Pabst and E. Gregorová, Derivation of the simplest exponential and power-law relations for the effective tensile modulus of porous ceramics via functional equations, J. Mater. Sci. Lett. 22, 1673–1675 (2003).
  • J. F. Brady, The rheological behavior of concentrated colloidal dispersions, J. Chem. Phys. 99, 567–581 (1993).
  • R. Roscoe, The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys. 3, 267 (1952).
  • R. D. Sudduth, A generalized model to predict the viscosity of solutions with suspended particles. I, J. Appl. Polym. Sci. 48, 25–36 (1993).
  • R. D. Sudduth, A generalized model to predict the viscosity of solutions with suspended particles. III. Effects of particle interaction and particle size distribution, J. Appl. Polym. Sci. 50, 123–147 (1993).
  • R. D. Sudduth, A new method to predict the maximum packing fraction and the viscosity of solutions with a size distribution of suspended particles. II, J. Appl. Polym. Sci. 48, 37–55 (1993).
  • R. D. Sudduth, A generalized model to predict the viscosity of solutions with suspended particles. IV. Determination of optimum particle-by-particle volume fractions, J. Appl. Polym. Sci. 52, 985–996 (1994).
  • A. J. Poslinski, M. E. Ryan, R. K. Gupta, S. G. Seshadri, and F. J. Frechette, Rheological behavior of filled polymeric systems II. The effect of a bimodal size distribution of particulates, J. Rheol. 32, 751–771 (1988).
  • I. M. Krieger and T. J. Dougherty, A mechanism for non-newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol. 3, 137–152 (1959).
  • M. Mooney, The viscosity of a concentrated suspension of spherical particles, J. Colloid Sci. 6, 162–170 (1951).
  • V. Vand, Viscosity of solutions and suspensions. II. Experimental determination of the viscosity–concentration function of spherical suspensions, J. Phys. Colloid Chem. 52, 300–314 (1948).
  • J. G. Brodnyan, The concentration dependence of the newtonian viscosity of prolate ellipsoids, Trans. Soc. Rheol. 3, 61–68 (1959).
  • S. Ahmed and F. R. Jones, A review of particulate reinforcement theories for polymer composites, J. Mater. Sci. 25, 4933–4942 (1990).
  • E. Barnea and J. Mizrahi, On the “effective” viscosity of liquid-liquid dispersions, Ind. Eng. Chem. Fundam. 15, 120–125 (1976).
  • D. He and N. N. Ekere, Viscosity of concentrated noncolloidal bidisperse suspensions, Rheol. Acta 40, 591–598 (2001).
  • T. Hao, Viscosities of liquids, colloidal suspensions, and polymeric systems under zero or non-zero electric field, Adv. Colloid Interf. Sci. 142, 1–19 (2008).
  • E. Ruiz-Reina, F. Carrique, F. J. Rubio-Hernández, A. I. Gómez-Merino, and P. García-Sánchez, Electroviscous effect of moderately concentrated colloidal suspensions, J. Phys. Chem. B, 107, 9528–9534 (2003).
  • A. Graham, On the viscosity of suspensions of solid spheres, Appl. Sci. Res. 37, 275–286 (1981).
  • N. A. Frankel and A. Acrivos, On the viscosity of a concentrated suspension of solid spheres, Chem. Eng. Sci. 22, 847–853 (1967).
  • C. I. Mendoza, Effective static and high-frequency viscosities of concentrated suspensions of soft particles, J. Chem. Phys. 135, 054904 (2011).
  • A. Chougnet, A. Audibert, and M. Moan, Linear and non-linear rheological behaviour of cement and silica suspensions. Effect of polymer addition, Rheol. Acta 46, 793–802 (2007).
  • C. Tsenoglou, Scaling concepts in suspension rheology, J. Rheol. 34, 15–24 (1990).
  • A. L. Graham, R. D. Steele, and R. B. Bird, Particle clusters in concentrated suspensions. 3. Prediction of suspension viscosity, Ind. Eng. Chem. Fundam. 23, 420–425 (1984).
  • T. Gillespie, The effect of aggregation and liquid penetration on the viscosity of dilute suspensions of spherical particles, J. Colloid Sci. 18, 32–40 (1963).
  • D. I. Lee, The viscosity of concentrated suspensions, Trans. Soc. Rheol. 13, 273–288 (1969).
  • J. W. Bullard, A. T. Pauli, E. J. Garboczi, and N. S. Martys, A comparison of viscosity–concentration relationships for emulsions, J. Colloid Interf. Sci. 330, 186–193 (2009).
  • T. Dabak and O. Yucel, Shear viscosity behavior of highly concentrated suspensions at low and high shear-rates, Rheol. Acta 25, 527–533 (1986).
  • A. Ogawa, H. Yamada, S. Matsuda, K. Okajima and M. Doi, Viscosity equation for concentrated suspensions of charged colloidal particles, J. Rheol. 41, 769–785 (1997).
  • H.-S. Chen, Y. Ding, Y. He, and C. Tan, Rheological behaviour of ethylene glycol based titania nanofluids, Chem. Phys. Lett. 444, 333–337 (2007).
  • H.-S. Chen, Y. Ding, and C. Tan, Rheological behaviour of nanofluids, New J. Phys. 9, 367 (2007).
  • H. J. H. Brouwers, Viscosity of a concentrated suspension of rigid monosized particles, Phys. Rev. E 81, 051402 (2010).
  • R. S. Farr, Simple heuristic for the viscosity of polydisperse hard spheres, J. Chem. Phys. 141, 214503 (2014).
  • H. Eilers, Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration, Kolloid-Zeitschrift, 97, 313–321 (1941).
  • R. F. Fedors, Viscosity of Newtonian suspensions, Polymer 16, 305–306 (1975).
  • D. Leighton and A. Acrivos, Viscous resuspension, Chem. Eng. Sci. 41, 1377–1384 (1986).
  • I. R. Collins, On the viscosity of concentrated aggregated suspensions, J. Colloid Interf. Sci. 178, 361–363 (1996).
  • A. Tsutsumi, K. Yoshida, M. Yui, S. Kanamori, and K. Shibata, Shear viscosity behavior of flocculated suspensions, Powder Technol. 78, 165–172 (1994).
  • P. Gondret and L. Petit, Dynamic viscosity of macroscopic suspensions of bimodal sized solid spheres, J. Rheol. 41, 1261–1274 (1997).
  • B. Dames, B. R. Morrison, and N. Willenbacher, An empirical model predicting the viscosity of highly concentrated, bimodal dispersions with colloidal interactions, Rheol. Acta 40, 434–440 (2001).
  • D. Quemada, Rheology of concentrated disperse systems II. A model for non-newtonian shear viscosity in steady flows, Rheol. Acta 17, 632–642 (1978).
  • P. Mills and P. Snabre, Apparent viscosity and particle pressure of a concentrated suspension of non-Brownian hard spheres near the jamming transition, Europ. Phys. J. E 30, 309–316 (2009).
  • D.-M. Liu, Particle packing and rheological property of highly-concentrated ceramic suspensions: ϕm determination and viscosity prediction, J. Mater. Sci. 35, 5503–5507 (2000).
  • S. H. Maron and P. E. Pierce, Application of ree-eyring generalized flow theory to suspensions of spherical particles, J. Colloid Sci. 11, 80–95 (1956).
  • T. Kitano, T. Kataoka, and T. Shirota, An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers, Rheol. Acta 20, 207–209 (1981).
  • V. Pryamitsyn and V. Ganesan, A coarse-grained explicit solvent simulation of rheology of colloidal suspensions, J. Chem. Phys. 122, 104906 (2005).
  • A. Dörr, A. Sadiki, and A. Mehdizadeh, A discrete model for the apparent viscosity of polydisperse suspensions including maximum packing fraction, J. Rheol. 57, 743–765 (2013).
  • P. Mills, Non-Newtonian behaviour of flocculated suspensions, J. Phys. Lett. 46, 301–309 (1985).
  • P. Snabre and P. Mills, I. Rheology of weakly flocculated suspensions of rigid particles, J. Phys. III France 6, 1811–1834 (1996).
  • A. J. Hughes, The Einstein relation between relative viscosity and volume concentration of suspensions of spheres, Nature 173, 1089–1090 (1954).
  • D. R. Oliver and S. G. Ward, Relationship between relative viscosity and volume concentration of stable suspensions of spherical particles, Nature 171, 396–397 (1953).
  • T. F. Ford, Viscosity-concentration and fluidity-concentration relationships for suspensions of spherical particles in Newtonian liquids, J. Phys. Chem. 64, 1168–1174 (1960).
  • T. S. Lundgren, Slow flow through stationary random beds and suspensions of spheres, J. Fluid Mech. 51, 273–299 (1972).
  • D. Bedeaux, The effective shear viscosity for two-phase flow, Physica A 121, 345–361 (1983).
  • J. Mellema and M. W. M. Willemse, Effective viscosity of dispersions approached by a statistical continuum method, Phys. A 122, 286–312 (1983).
  • B. Abedian and M. Kachanov, On the effective viscosity of suspensions, Int. J. Eng. Sci. 48, 962–965 (2010).
  • B. Budiansky, On the elastic moduli of some heterogeneous materials, J. Mech. Phys. Solids 13, 223–227 (1965).
  • H. J. H. Clercx and P. P. J. M. Schram, High-frequency effective viscosity of hard-sphere suspensions, Phys. Rev. A 45, 860–872 (1992).
  • C. H. Hsueh and W. C. J. Wei, Effective viscosity of semidilute suspensions of rigid ellipsoids, J. Appl. Phys. 107, 024905 (2010).
  • D. Bedeaux, The effective viscosity for a suspension of spheres, J. Colloid Interf. Sci. 118, 80–86 (1987).
  • J. Smeets, G. J. M. Koper, J. P. M. van der Ploeg, and D. Bedeaux, Viscosity of droplet-phase water/AOT/isooctane microemulsions: Solid sphere behavior and aggregation, Langmuir 10, 1387–1392 (1994).
  • R. A. Lionberger and W. B. Russel, High frequency modulus of hard sphere colloids, J. Rheol. 38, 1885–1908 (1994).
  • J. C. van der Werff, C. G. de Kruif, C. Blom, and J. Mellema, Linear viscoelastic behavior of dense hard-sphere dispersions, Phys. Rev. A 39, 795–807 (1989).
  • A. J. C. Ladd, Hydrodynamic transport coefficients of random dispersions of hard spheres, J. Chem. Phys. 93, 3484–3494 (1990).
  • C.-H. Hsueh and P. F. Becher, Effective viscosity of suspensions of spheres, J. Am. Ceram. Soc. 88, 1046–1049 (2005).
  • H. Furuse, Viscosity of concentrated solution, Jpn. J. Appl. Phys. 11, 1537 (1972).
  • K. Toda and H. Furuse, Extension of Einstein's viscosity equation to that for concentrated dispersions of solutes and particles, J. Biosci. Bioeng. 102, 524–528 (2006).
  • T. Gillespie, The effect of aggregation and particle size distribution on the viscosity of Newtonian suspensions, J. Colloid Interf. Sci. 94, 166–173 (1983).
  • S. Hess, Non-Newtonian viscosity and normal pressure differences of simple liquids, Phys. Rev. A. 25, 614–616 (1982).
  • A. De Noni Jr, D. E. Garcia, and D. Hotza, A modified model for the viscosity of ceramic suspensions, Ceram. Int. 28, 731–735 (2002).
  • I. E. Zarraga, D. A. Hill, and D. T. Leighton, The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids, J. Rheol. 44, 185–220 (2000).
  • B. H. A. A. van den Brule and R. J. J. Jongschaap, Modeling of concentrated suspensions, J. Stat. Phys. 62, 1225–1237 (1991).
  • G. S. Khodakov, On suspension rheology, Theor. Found. Chem. Eng. 38, 430–439 (2004).
  • H. L. Cox, The elasticity and strength of paper and other fibrous materials, Br. J. Appl. Phys. 3, 72–79 (1952).
  • B. Paul, Prediction of elastic constants of multiphase materials, Trans. Am. Instit. Min. Metallurg. Eng. 218, 36–41 (1960).
  • S.-Y. Fu, X. Hu, and C.-Y. Yue, A new model for the transverse modulus of unidirectional fiber composites, J. Mater. Sci. 33, 4953–4960 (1998).
  • S.-Y. Fu, G. Xu, and Y.-W. Mai, On the elastic modulus of hybrid particle/short-fiber/polymer composites, Comps. Part B: Eng. 33, 291–299 (2002).
  • Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids 11, 127–140 (1963).
  • U. J. Counto, The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete, Mag. Concr. Res. 16, 129–138 (1964).
  • O. Ishai and L. J. Cohen, Elastic properties of filled and porous epoxy composites, Int. J. Mech. Sci. 9, 539–546 (1967).
  • J. Lee and A. F. Yee, Fracture behavior of glass bead filled epoxies: Cleaning process of glass beads, J. Appl. Polym. Sci. 79, 1371–1383 (2001).
  • N. Jouault, F. Dalmas, F. Boué, and J. Jestin, Multiscale characterization of filler dispersion and origins of mechanical reinforcement in model nanocomposites, Polymer 53, 761–775 (2012).
  • S. S. Sternstein, S. Amanuel, and M. L. Shofner, Reinforcement mechanisms in nanofilled polymer melts and elastomers, Rubb. Chem. Technol. 83, 181–198 (2010).
  • R. Buscall, I. J. McGowan, and C. A. Mumme-Young, Rheology of weakly interacting colloidal particles at high concentration, Faraday Discuss. Chem. Soc. 90, 115–127 (1990).
  • C. Prestidge and T. F. Tadros, Rheological investigation of depletion flocculation of concentrated sterically stabilised polystyrene latex dispersions, Colloids Surf. 31, 325–346 (1988).
  • W. B. Russel, The rheology of suspensions of charged rigid spheres, J. Fluid Mech. 85, 209–232 (1978).
  • R. Buscall, Effect of long-range repulsive forces on the viscosity of concentrated latices: comparison of experimental data with an effective hard-sphere model, J. Chem. Soc. Faraday Trans. 87, 1365–1370 (1991).
  • R. Buscall, Comment on the interaction forces of polymer-coated surfaces, Langmuir 8, 2077–2079 (1992).
  • R. Buscall, An effective hard-sphere model of the non-Newtonian viscosity of stable colloidal dispersions: Comparison with further data for sterically stabilised latices and with data for microgel particles, Colloids Surf. A 83, 33–42 (1994).
  • J. Jancar, J. F. Douglas, F. W. Starr, S. K. Kumar, P. Cassagnau, A. J. Lesser, S. S. Sternstein, and M. J. Buehler, Current issues in research on structure-property relationships in polymer nanocomposites, Polymer 51, 3321–3343 (2010).
  • J. J. Brennan, T. E. Jermyn, and B. B. Boonstra, Carbon black-polymer interaction: A measure of reinforcement, J. Appl. Polym. Sci. 8, 2687–2706 (1964).
  • J. L. Leblanc, Elastomer–filler interactions and the rheology of filled rubber compounds, J. Appl. Polym. Sci. 78, 1541–1550 (2000).
  • J. L. Leblanc, Rubber-filler interactions and rheological properties in filled compounds, Prog. Polym. Sci. 27, 627–687 (2002).
  • A. Banc, A.-C. Genix, M. Chirat, C. Dupas, S. Caillol, M. Sztucki, and J. Oberdisse, Tuning structure and rheology of silica-latex nanocomposites with the molecular weight of matrix chains: A coupled SAXS-TEM-simulation approach, Macromolecules 47, 3219–3230 (2014).
  • J. L. White and J. W. Crowder, The influence of carbon black on the extrusion characteristics and rheological properties of elastomers: Polybutadiene and butadiene–styrene copolymer, J. Appl. Polym. Sci. 18, 1013–1038 (1974).
  • K. Qin and A. A. Zaman, Viscosity of concentrated colloidal suspensions: comparison of bidisperse models, J. Colloid Interf. Sci. 266, 461–467 (2003).
  • Z. Zhou, P. J. Scales and D. V. Boger, Chemical and physical control of the rheology of concentrated metal oxide suspensions, Chem Eng Sci, 56, 2901–2920 (2001).
  • A. Zohrevand, A. Ajji, and F. Mighri, Relationship between rheological and electrical percolation in a polymer nanocomposite with semiconductor inclusions, Rheol. Acta 53, 235–254 (2014).
  • Y. Fukahori, A. A. Hon, V. Jha, and J. J. C. Busfield, Modified guth–gold equation for carbon black–filled rubbers, Rubb. Chem. Technol. 86, 218–232 (2013).
  • M. Bailly, M. Kontopoulou, and K. El Mabrouk, Effect of polymer/filler interactions on the structure and rheological properties of ethylene-octene copolymer/nanosilica composites, Polymer 51, 5506–5515 (2010).
  • M. Kluppel, The role of disorder in filler reinforcement of elastomers on various length scales, Adv. Polym. Sci. 164, 1–86 (2003).
  • A. I. Medalia, Effective degree of immobilization of rubber occluded within carbon black aggregates, Rubb. Chem. Technol. 45, 1171–1194 (1972).
  • J.-C. Majesté and F. Vincent, A kinetic model for silica–filled rubber reinforcement, J. Rheol. 59, 405–427 (2015).
  • R. Scotti, L. Conzatti, M. D'Arienzo, B. Di Credico, L. Giannini, T. Hanel, P. Stagnaro, A. Susanna, L. Tadiello, and F. Morazzoni, Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: Role of the particle morphology on the filler reinforcing effect, Polymer 55, 1497–1506 (2014).
  • A. I. Medalia, Morphology of aggregates: I. Calculation of shape and bulkiness factors; application to computer-simulated random flocs, J. Colloid Interf. Sci. 24, 393–404 (1967).
  • J. R. Potts, O. Shankar, L. Du, and R. S. Ruoff, Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites, Macromolecules 45, 6045–6055 (2012).
  • A. K. Van Dyk, T. Chatterjee, V. V. Ginzburg, and A. I. Nakatani, Shear-dependent interactions in hydrophobically modified ethylene oxide urethane (HEUR) based coatings: Mesoscale structure and viscosity, Macromolecules 48, 1866–1882 (2015).
  • L. Mullins and N. R. Tobin, Stress softening in rubber vulcanizates. I. Use of a strain-amplification factor to describe the elastic behavior of filler-reinforced vulcanized rubber, J. Appl. Polym. Sci. 9, 2993–3009 (1965).
  • A. I. Medalia, Effect of carbon black on dynamic properties of rubber vulcanizates, Rubb. Chem. Technol. 51, 437–523 (1978).
  • V. M. Litvinov and H. W. Spiess, Molecular mobility in the adsorption layer and chain orientation in strained poly(dimethylsiloxane) networks by 2H NMR, Die Makromolekulare Chemie 193, 1181–1194 (1992).
  • V. M. Litvinov and P. A. M. Steeman, EPDM-carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR, Macromolecules 32, 8476–8490 (1999).
  • S. Westermann, M. Kreitschmann, W. PyckhoutHintzen, D. Richter, and E. Straube, Strain amplification effects in polymer networks, Physica B, 234, 306–307 (1997).
  • S. Westermann, M. Kreitschmann, W. Pyckhout-Hintzen, D. Richter, E. Straube, B. Farago, and G. Goerigk, Matrix chain deformation in reinforced networks: a SANS approach, Macromolecules 32, 5793–5802 (1999).
  • A. Botti, W. Pyckhout-Hintzen, D. Richter, and E. Straube, Filled elastomers: polymer chain and filler characterization by a SANS–SAXS approach, Physica A 304, 230–234 (2002).
  • A. Botti, W. Pyckhout-Hintzen, D. Richter, V. Urban, and E. Straube, A microscopic look at the reinforcement of silica-filled rubbers, J. Chem. Phys. 124, 174908 (2006).
  • G. D. Hattemer and G. Arya, Viscoelastic properties of polymer-grafted nanoparticle composites from molecular dynamics simulations, Macromolecules 48, 1240–1255 (2015).
  • E. Voyiatzis, M. Rahimi, F. Müller-Plathe, and M. C. Böhm, How thick is the polymer interphase in nanocomposites? Probing it by local stress anisotropy and gas solubility, Macromolecules 47, 7878–7889 (2014).
  • W. Gleissle and B. Hochstein, Validity of the Cox-Merz rule for concentrated suspensions, J. Rheol. 47, 897–910 (2003).
  • L. A. Faitel'son and É. É. Yakobson, Rheology of filled polymers. Steady-state shear flow and periodic deformation. 1. Relaxation time spectra, viscosity, Mech. Compos. Mater. Struct. 13, 898–906 (1977).
  • R. Pal, Complex shear modulus of concentrated suspensions of solid spherical particles, J. Colloid Interf. Sci. 245, 171–177 (2002).
  • J. Domurath, M. Saphiannikova, G. Ausias, and G. Heinrich, Modelling of stress and strain amplification effects in filled polymer melts, J. Non-Newtonian Fluid Mech. 171, 8–16 (2012).
  • J. Domurath, M. Saphiannikova, and G. Heinrich, Non-linear viscoelasticity of filled polymer melts: Stress and strain amplification approach, Macromol. Symp. 338, 54–61 (2014).
  • S. Govindjee, An evaluation of strain amplification concepts via monte carlo simulations of an ideal composite, Rubb. Chem. Technol. 70, 25–37 (1997).
  • Y. Merckel, J. Diani, M. Brieu, P. Gilormini, and J. Caillard, Effect of the microstructure parameters on the mullins softening in carbon-black filled styrene–butadiene rubbers, J. Appl. Polym. Sci. 123, 1153–1161 (2012).
  • J. Rault, J. Marchal, P. Judeinstein, and P. A. Albouy, Chain orientation in natural rubber, Part II: 2H-NMR study, Europ. Phys. J. E 21, 243–261 (2006).
  • J. Rault, J. Marchal, P. Judeinstein, and P. A. Albouy, Stress-induced crystallization and reinforcement in filled natural rubbers: ; 2H NMR study, Macromolecules 39, 8356–8368 (2006).
  • S. Trabelsi, P. A. Albouy, and J. Rault, Effective local deformation in stretched filled rubber, Macromolecules 36, 9093–9099 (2003).
  • Y. Aoki, A. Hatano, T. Tanaka, and H. Watanabe, Nonlinear stress relaxation of ABS polymers in the molten state, Macromolecules 34, 3100–3107 (2001).
  • J. S. Bergstrom and M. C. Boyce, Mechanical behavior of particle filled elastomers, Rubb. Chem. Technol. 72, 633–656 (1999).
  • A. P. Ting and R. H. Luebbers, Viscosity of suspensions of spherical and other isodimensional particles in liquids, AlChE J. 3, 111–116 (1957).
  • F. Bueche, Mullins effect and rubber-filler interaction, J. Appl. Polym. Sci. 5, 271–281 (1961).
  • F. Bueche, Molecular basis for the mullins effect, J. Appl. Polym. Sci. 4, 107–114 (1960).
  • E. Hatschek, The general theory of viscosity of two-phase systems, Trans. Faraday Soc. 9, 80–92 (1913).
  • E. Hatschek, Die Viskositat der Dispersoide, Kolloid-Zeitschrift 8, 34–39 (1911).
  • L. E. Nielsen, Simple theory of stress-strain properties of filled polymers, J. Appl. Polym. Sci. 10, 97–103 (1966).
  • M. Narkis, L. Nicolais, and E. Joseph, The elastic modulus of particulate-filled polymers, J. Appl. Polym. Sci. 22, 2391–2394 (1978).
  • S. Govindjee and J. Simo, A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins' effect, J. Mech. Phys. Solids 39, 87–112 (1991).
  • S. Govindjee and J. Simo, Transition from micro-mechanics to computationally efficient phenomenology: Carbon black filled rubbers incorporating mullins' effect, J. Mech. Phys. Solids 40, 213–233 (1992).
  • A. S. Ermilov and E. M. Nurullaev, Mechanical properties of elastomers filled with solid particles, Mech. Compos. Mater. 48, 243–252 (2012).
  • A. S. Ermilov and E. M. Nurullaev, Energy of the mechanical destruction of an elastomer filled with solid particles, Mech. Compos. Mater. 50, 757–762 (2015).
  • T. L. Smith, Volume changes and dewetting in glass bead‐polyvinyl chloride elastomeric composites under large deformations, Trans. Soc. Rheol. 3, 113–136 (1959).
  • G. Huber and T. A. Vilgis, Universal properties of filled rubbers: Mechanisms for reinforcement on different length scales, Kaut. Gummi. Kunstst. 52, 102–107 (1999).
  • D. Y. Perera, Effect of pigmentation on organic coating characteristics, Prog. Org. Coat 50, 247–262 (2004).
  • R. Pérez-Aparicio, M. Schiewek, J. L. Valentín, H. Schneider, D. R. Long, M. Saphiannikova, P. Sotta, K. Saalwächter, and M. Ott, Local chain deformation and overstrain in reinforced elastomers: An NMR study, Macromolecules 46, 5549–5560 (2013).
  • R. Pérez-Aparicio, A. Vieyres, P.-A. Albouy, O. Sanséau, L. Vanel, D. R. Long, and P. Sotta, Reinforcement in natural rubber elastomer nanocomposites: Breakdown of entropic elasticity, Macromolecules 46, 8964–8972 (2013).
  • S. Dupres, D. R. Long, P.-A. Albouy, and P. Sotta, Local deformation in carbon black-filled polyisoprene rubbers studied by NMR and X-ray diffraction, Macromolecules 42, 2634–2644 (2009).
  • A. Crié, C. Baritaud, R. Valette, and B. Vergnes, Rheological behavior of uncured styrene-butadiene rubber at low temperatures, pure and filled with carbon black, Polym. Eng. Sci. DOI: 10.1002/pen.24090 (2015).
  • S. B. Ross-Murphy and S. Todd, Ultimate tensile measurements of filled gelatin gels, Polymer 24, 481–486 (1983).
  • K. R. Langley and M. L. Green, Compression strength and fracture properties of model particulate food composites in relation to their microstructure and particle-matrix interaction, J. Texture. Stud. 20, 191–207 (1989).
  • B. Turcsányi, B. Pukánszky, and F. Tüdõs, Composition dependence of tensile yield stress in filled polymers, J. Mater. Sci. Lett. 7, 160–162 (1988).
  • X. Li, Z. Li, and Y. Xia, Test and calculation of the carbon black reinforcement effect on the hyper-elastic properties of tire rubbers, Rubb. Chem. Technol. 88, 98–116 (2015).
  • Y. Song and Q. Zheng, Linear viscoelasticity of polymer melts filled with nano-sized fillers, Polymer 51, 3262–3268 (2010).
  • P. Cassagnau, Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state, Polymer 44, 2455–2462 (2003).
  • Y. Song and Q. Zheng, Application of two phase model to linear viscoelasticity of reinforced rubbers, Polymer 52, 593–596 (2011).
  • Y. Song and Q. Zheng, Application of two phase model to linear dynamic rheology of filled polymer melts, Polymer 52, 6173–6179 (2011).
  • Y. Tan, X. Yin, M. Chen, Y. Song, and Q. Zheng, Influence of annealing on linear viscoelasticity of carbon black filled polystyrene and low-density polyethylene, J. Rheol. 55, 965–979 (2011).
  • Q. Cao, Y. Song, Y. Tan, and Q. Zheng, Thermal-induced percolation in high-density polyethylene/carbon black composites, Polymer 50, 6350–6356 (2009).
  • Q. Cao, Y. Song, Y. Tan, and Q. Zheng, Conductive and viscoelastic behaviors of carbon black filled polystyrene during annealing, Carbon 48, 4268–4275 (2010).
  • Y. Song, Q. Cao, and Q. Zheng, Annealing-induced rheological and electric resistance variations in carbon black-filled polymer melts, Colloid Polym. Sci. 290, 1837–1842 (2012).
  • A. Guan, Y. Song, Y. Tan, and Q. Zheng, Time-dependent dynamic modulus percolation of multi-walled carbon nanotubes filled polystyrene melts during annealing, Acta Polym. Sin. 11–17 (2013).
  • M. Chen, Y. Tan, and Y. Song, Rheological behavior of carbon black filled polystyrene melts, Chem. J. Chinese. U. 34, 2228–2232 (2013).
  • A. Guan, Y. Song, Y. Tan, and Q. Zheng, Dynamic rheological properties of polystyrene/multi-walled carbon nanotubes composites, Acta Polym. Sin. 224–229 (2011).
  • Y. Song and Q. Zheng, Dynamic rheology of vapor grown carbon nanofiber filled polystyrene melts, Acta Polym. Sin. 21, 1383–1388 (2012).
  • L. Zhao, H. Yang, Y. Song, G. Hu, and Q. Zheng, Effect of mixing condition on electrical percolation and dynamic rheological behavior for vapor grown carbon fiber filled polystyrene composites, Acta Polym. Sin. 1305–1310 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.