2,098
Views
129
CrossRef citations to date
0
Altmetric
Reviews

A Review of Research Trends in Microwave Processing of Metal-Based Materials and Opportunities in Microwave Metal Casting

&

References

  • E. T. Thostenson and T. Chou, Microwave processing: fundamentals and applications, Compos. Part A 30, 1055 (1999).
  • R. R. Mishra and A. K. Sharma, Microwave–material interaction phenomena: Heating mechanisms, challenges and opportunities in material processing, Compos. Part A 81, 78 (2016).
  • A. K. Sharma and Pradeep Kumar, Advanced manufacturing processes, NPTEL e-learning course. Available http://nptel.ac.in/courses/112107077/ (accessed August 7, 2015).
  • M. Gupta, E. W. W. Leong, and W. L. Wong, Microwaves and Metals, John Wiley and Sons, Singapore (2007).
  • R. J. Meredith, Engineers' Handbook of Industrial Microwave Heating, No. 25, IET, London, UK (1998).
  • A. C. Metaxas and R. J. Meredith, Industrial Microwave Heating, No. 4, IET, London, UK (1983).
  • M. Ignatenko, M. Tanaka, and M. Sato, Absorption of microwave energy by a spherical nonmagnetic metal particle, Jpn. J. Appl. Phys. 48, 067001(2009).
  • V. D. Buchelnikov, D. V. Louzguine-Luzgin, G. Xie, S. Li, N. Yoshikawa, M. Sato, A. P. Anzulevich, I. V. Bychkov, and A. Inoue, Heating of metallic powders by microwaves: experiment and theory, J. Appl. Phys. 104, 113505 (2008).
  • M. Ignatenko and M. Tanaka, Effective permittivity and permeability of coated metal powders at microwave frequency, Physica B 405, 352 (2010).
  • V. D. Buchelnikov, D. V. Louzguine-Luzgin, A. P. Anzulevich, I. V. Bychkov, N. Yoshikawa, M. Sato, and A. Inoue, Modeling of microwave heating of metallic powders, Physica B 403, 4053 (2008).
  • M. Suzuki, M. Ignatenko, M. Yamashiro, M. Tanaka, and M. Sato, Numerical study of microwave heating of micrometer size metal particles, ISIJ Int. 48, 681 (2008).
  • M. Ignatenko, and M. Tanaka, Numerical analysis of the microwave heating of compacted copper powders in single-mode cavity, Jpn. J. Appl. Phys. 50, 097302 (2011).
  • J. Ma, J. F. Diehl, E. J. Johnson, K. R. Martin, N. M. Miskovsky, C. T. Smith, G. J. Weisel, B. L. Weiss, and D. T. Zimmerman, Systematic study of microwave absorption, heating, and microstructure evolution of porous copper powder metal compacts, J. Appl. Phys. 101, 074906 (2007).
  • K. I. Rybakov, V. E. Semenov, S. V. Egorov, A. G. Eremeev, I. V. Plotnikov, and Y. V. Bykov, Microwave heating of conductive powder materials, J. Appl. Phys. 99, 023506 (2006).
  • P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods, vol. 2, World Scientific, Singapore (1990).
  • S. A. Maier and H. A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J. Appl. Phys. 98, 011101 (2005).
  • T. Nishitani, Method for sintering refractories and an apparatus there for, U.S. patent, 4,147,911 (1979).
  • R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili, Full sintering of powdered-metal bodies in a microwave field, Nature 399, 668 (1999).
  • R. Roy, J. Cheng, and D. K. Agrawal, Process for sintering powder metal components, U.S. patent, 6,365,885 B1 (2002).
  • K. Saitou, Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders, Scripta Mater. 54, 875 (2006).
  • R. M. Anklekar, K. Bauer, D. K. Agrawal, and R. Roy, Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel, Powder Metall. 48, 39 (2005).
  • E. Kubel, Advancement in microwave heating technology, Ind. Heat. 62, 43 (2005).
  • M. Gupta and W. L. E. Wong, Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering, Scripta Mater. 52, 479 (2005).
  • S. Gedevanishvili, D. K. Agrawal, R. Roy, and B. Vaidhyanathan, Microwave processing using highly microwave absorbing powdered material layers, U.S. Patent, 6512216 B2 (2003).
  • J. Kim, S. C. Mun, H.-U. Ko, Ki-B. Kim, M. A. H. Khondoker, and L. Zhai, Review of microwave assisted manufacturing technologies, Int. J. Precision Eng. Manuf. 13, 2263 (2012).
  • S. Das, A. K. Mukhopadhyay, S. Datta, and D. Basu, Prospects of microwave processing: an overview, Bull. Mater. Sci. 32, 1 (2009).
  • M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and applications, J. Alloys Compd. 494, 175 (2010).
  • S. Chandrasekaran, S. Ramanathan, and T. Basak, Microwave material processing – a review, AIChE J. 58, 330 (2012).
  • K. I. Rybakov, E. A. Olevsky, and E. V. Krikun, Microwave sintering: fundamentals and modeling, J. Am. Ceram. Soc. 96, 1003 (2013).
  • R. R. Mishra, S. Rajesha, and A. K. Sharma, Microwave sintering of metal powders- A review, Int. J. Adv. Mech. Eng. 4, 315 (2014).
  • S. Singh, D. Gupta, V. Jain, and A. K. Sharma, Microwave processing of materials and applications in manufacturing industries: a review, Mater. Manuf. Processes. 30, 1 (2015).
  • A. Mondal, A. Upadhyaya, and D. Agrawal, Effect of heating mode on sintering of tungsten, Int. J. Refract. Met. Hard Mater. 28, 597 (2010).
  • A. Mondal, A. Shukla, A. Upadhyaya, and D. Agrawal, Effect of porosity and particle size on microwave heating of copper, Sci. Sinter. 42, 169 (2010).
  • D. Demirskyi, D. Agrawal, and A. Ragulya. Neck growth kinetics during microwave sintering of copper, Scripta Mater. 62, 552 (2010).
  • D. Demirskyi, D. Agrawal, and A. Ragulya. Neck formation between copper spherical particles under single-mode and multimode microwave sintering, Mater. Sci. Eng. A 527, 2142 (2010).
  • D. Demirskyi, D. Agrawal, and A. Ragulya, Neck growth kinetics during microwave sintering of nickel powder, J. Alloys Compd. 509, 1790 (2011).
  • S. D. Luo, M. Yan, G. B. Schaffer, and M. Qian, Sintering of titanium in vacuum by microwave radiation, Metall. Mater. Trans. A 42, 2466 (2011).
  • K. Wang, X. P. Wang, R. Liu, T. Hao, T. Zhang, C. S. Liu, and Q. F. Fang, The study on the microwave sintering of tungsten at relatively low temperature, J. Nucl. Mater. 431, 206 (2012).
  • F. Xu, Y. Li, X. Hu, Y. Niu, J. Zhao, and Z. Zhang, In situ investigation of metal's microwave sintering, Mater. Lett. 67, 162 (2012).
  • D. Demirskyi, D. Agrawal, and A. Ragulya, A scaling law study of the initial stage of microwave sintering of iron spheres, Scripta Mater. 66, 323 (2012).
  • R. Annamalai, A. Upadhyaya, and D. Agrawal, An investigation on microwave sintering of Fe, Fe–Cu and Fe–Cu–C alloys, Bull. Mater. Sci. 36, 447 (2013).
  • O. Ertugrul, H.-S. Park, K. Onel, and M. Willert-Porada, Effect of particle size and heating rate in microwave sintering of 316L stainless steel, Powder Technol. 253, 703 (2014).
  • C. A. Crane, M. L. Pantoya, B. L. Weeks, and M. Saed, The effects of particle size on microwave heating of metal and metal oxide powders, Powder Technol. 256, 113 (2014).
  • A. M. Imam, J. Feng, B. Y. Rock, and A. W. Fliflet, Processing of titanium and its alloys by microwave energy, Adv. Mater. Res. 1019, 11 (2014).
  • M. M. Mahmouda, G. Link, and M. Thumm, The role of the native oxide shell on the microwave sintering of copper metal powder compacts, J. Alloys Compd. 627, 231 (2015).
  • C. Padmavathi, A. Upadhyaya, and D. Agrawal, Effect of microwave and conventional heating on sintering behavior and properties of Al–Mg–Si–Cu alloy, Mater. Chem. Phys. 130, 449 (2011).
  • C. Y. Tang, L. N. Zhang, C. T. Wong, K. C. Chan, and T. M. Yue, Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering, Mater. Sci. Eng. A 528, 6006 (2011).
  • A. Mondal, A. Upadhyaya, and D. Agrawal, Effect of heating mode and sintering temperature on the consolidation of 90W–7Ni–3Fe alloys, J. Alloys Compd. 509, 301 (2011).
  • Y. Zhou, K. Wang, R. Liu, X. P. Wang, C. S. Liu, and Q. F. Fang, High performance tungsten synthesized by microwave sintering method, Int. J. Refract. Met. Hard Mater. 34, 13 (2012).
  • R. Liu, T. Hao, K. Wang, T. Zhang, X. P. Wang, C. S. Liu, and Q. F. Fang, Microwave sintering of W/Cu functionally graded materials, J. Nucl. Mater. 431, 196 (2012).
  • C. Padmavathi, A. Upadhyaya, and D. Agrawal, Microwave assisted sintering of Al-Cu-Mg-Si-Sn alloy, J. Microwave Power E.E. 46, 115 (2012).
  • W. Liu, Y. Ma, and J. Zhang, Properties and microstructural evolution of W-Ni-Fe alloy via microwave sintering, Int. J. Refract. Met. Hard Mater. 35, 138 (2012).
  • K. Kashimura, J. Fukushima, T. Mitani, M. Sato, and N. Shinohara, Metal Ti–Cr alloy powders nitriding under atmospheric pressure by microwave heating, J. Alloys Compd. 550, 239 (2013).
  • N. Saheb, Spark plasma and microwave sintering of Al6061 and Al2124 alloys, Int. J. Min. Met. Mater. 20, 152 (2013).
  • C. Y. Tang, C. T. Wong, L. N. Zhang, M. T. Choy, T. W. Chow, K. C. Chan, T. M. Yue, and Q. Chen, In situ formation of Ti alloy/TiC porous composites by rapid microwave sintering of Ti6Al4V/MWCNTs powder, J. Alloys Compd. 557, 67 (2013).
  • S. D. Luo, C. L. Guan, Y. F. Yang, G. B. Schaffer, and M. Qian, Microwave heating, isothermal sintering, and mechanical properties of powder metallurgy titanium and titanium alloys, Metall. Mater. Trans. A 44, 1842 (2013).
  • M. A. Imam, R. W. Bruce, J. Feng, and A. W. Fliflet, Consolidation of blended titanium/magnesium powders by microwave processing, Key Eng. Mater. 551, 73 (2013).
  • Y. Ma, J. Zhang, W. Liu, P. Yue, and B. Huang. Microstructure and dynamic mechanical properties of tungsten-based alloys in the form of extruded rods via microwave heating, Int. J. Refract. Met. Hard Mater. 42, 71 (2014).
  • Y. Ma, J. Zhang, W. Liu, and Y. Zhao, Transient liquid-phase sintering characteristic of W-Ni-Fe alloy via microwave-assisted heating. Rare Metal Mat. Eng. 43, 2108 (2014).
  • J. L. Xu, X. F. Jin, J. M. Luo, and Z. C. Zhong, Fabrication and properties of porous NiTi alloys by microwave sintering for biomedical applications. Mater. Lett. 124, 110 (2014).
  • L. Xu, M. Yan, Y. Xia, J. Peng, W. Li, L. Zhang, C. Liu, G. Chen, and Y. Li, Influence of copper content on the property of Cu–W alloy prepared by microwave vacuum infiltration sintering, J. Alloys Compd. 592, 202 (2014).
  • J. L. Xu, L. Z. Bao, A. H. Liu, X. J. Jin, Y. X. Tong, J. M. Luo, Z. C. Zhong, and Y. F. Zheng, Microstructure, mechanical properties and super elasticity of biomedical porous NiTi alloy prepared by microwave sintering. Mater. Sci. Eng. C 46, 387 (2015).
  • W. W. L. Eugene and M. Gupta, Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering, J. Microwave Power E. E. 44, 14 (2010).
  • M. K. Habibi, S. P. Joshi, and M. Gupta, Hierarchical magnesium nano-composites for enhanced mechanical response, Acta Mater. 58, 6104 (2010).
  • G. C. Reddy, K. Rajkumar, and S. Aravindan, Fabrication of copper–TiC–graphite hybrid metal matrix composites through microwave processing, Int. J. Adv. Manuf. Technol. 48, 645 (2010).
  • K. Venkateswarlu, S. Saurabh, V. Rajinikanth, R. K. Sahu, and A. K. Ray, Synthesis of tin reinforced aluminium metal matrix composites through microwave sintering. J. Mater. Eng. Perform. 19, 231 (2010).
  • K. Rajkumar and S. Aravindan, Tribological performance of microwave-heat-treated copper–graphite composites. Tribol. Lett. 37, 131 (2010).
  • S. M. L. Nai, J. V. M. Kuma, M. E. Alam, X. L. Zhong, P. Babaghorbani, and M. Gupta, Using microwave-assisted powder metallurgy route and nano-size reinforcements to develop high-strength solder composites, J. Mater. Eng. Perform. 19, 335 (2010).
  • K. Rajkumar and S. Aravindan, Tribological performance of microwave sintered copper–TiC–graphite hybrid composites, Tribol. Int. 44, 347 (2011).
  • M. K. Habibia, M. Paramsothy, A. M. S. Hamouda, and M. Gupta, Using integrated hybrid (Al+CNT) reinforcement to simultaneously enhance strength and ductility of magnesium, Compos. Sci. Technol. 71, 734 (2011).
  • Y. V. Bykov, S. V. Egorov, A. G. Eremeev, I. V. Plotnikov, K. I. Rybakov, V. E. Semenov, A. A. Sorokin, and V. V. Holoptsev, Fabrication of metal ceramic functionally graded materials by microwave sintering, Inorg. Mater. Appl. Res. 3, 261 (2012).
  • B. Twomey, A. Breen, G. Byrne, A. Hynes, and D. P. Dowling, Rapid discharge sintering of nickel–diamond metal matrix composites, J. Mater. Process. Technol. 211, 1210 (2011).
  • K. Rajkumar and S. Aravindan, Tribological studies on microwave sintered copper–carbon nanotube composites, Wear 270, 613 (2011).
  • S. Lin and W. Xiong, Microstructure and abrasive behaviors of TiC-316L composites prepared by warm compaction and microwave sintering, Adv. Powder Technol. 23, 419 (2012).
  • Y. Chen, J. Ma, W. Guo, L. Jiang, and P. Yang, Microwave sintering of SiCp/Al composite, Key Eng. Mater. 492, 138 (2012).
  • K. Rajkumar and S. Aravindan, Tribological behaviour of microwave processed copper–nano graphite composites. Tribol. Int. 57, 282 (2013).
  • S. Jayalakshmi, S. Gupta, S. Sankaranarayanan, S. Sahu, and M. Gupta, Structural and mechanical properties of Ni60Nb40 amorphous alloy particle reinforced Al-based composites produced by microwave-assisted rapid sintering, Mater. Sci. Eng. A 581, 119 (2013).
  • S. Jayalakshmi, S. Sahu, S. Sankaranarayanan, S. Gupta, and M. Gupta. Development of novel Mg–Ni60Nb40amorphous particle reinforced composites with enhanced hardness and compressive response, Mater. Des. 53, 849 (2014).
  • Y. Zhou, Q. X. Sun, R. Liu, X. P. Wang, C. S. Liu, and Q. F. Fang, Microstructure and properties of fine grained W–15 wt.% Cu composite sintered by microwave from the sol–gel prepared powders, J. Alloys Compd. 547, 18 (2013).
  • R. Bo, J. Yi, Y. Peng, and H. Zhang, Effects of microwave sintering temperature and soaking time on microstructure of WC−8Co, Trans. Nonferrous Met. Soc. China, 23, 372 (2013).
  • J. Meng, X.-Li Wang, K.-C. Chou, and Q. Li, Hydrogen storage properties of graphite-modified Mg-Ni-Ce composites prepared by mechanical milling followed by microwave sintering, Metall. Mater. Trans. A 44A, 58 (2013).
  • S. Seetharaman, J. Subramanian, K. S. Tun, A.S. Hamouda, and Manoj Gupta. Synthesis and characterization of nano boron nitride reinforced magnesium composites produced by the microwave sintering method, Materials 6, 1940 (2013).
  • R. Bao and J. Yi, Densification and alloying of microwave sintering WC–8 wt.%Co composites, Int. J. Refract. Met. Hard Mater. 43, 269 (2014).
  • O. Ertugrul, H. S. Park, K. Onel, and M. Willert-Porada, Structure and properties of SiC and emery powder reinforced PM 316l matrix composites produced by microwave and conventional sintering, Powder Metall. 58, 41 (2015).
  • Y. C. Li, F. Xu, X. F. Hu, D. Kang, T. Q. Xiao, and X. P. Wu, In situ investigation on the mixed-interaction mechanisms in the metal–ceramic system's microwave sintering, Acta Mater. 66, 293 (2014).
  • S. Mula, J. Panigrahi, P. C. Kang, and C. C. Koch, Effect of microwave sintering over vacuum and conventional sintering of Cu based nanocomposites, J. Alloys Compd. 588, 710 (2014).
  • Y. V. Bykov, S. V. Egorov, A. G. Eremeev, V. V. Holoptsev, I. V. Plotnikov, K. I. Rybakov, V. E. Semenov, and A. A. Sorokin, Temperature profile optimization for microwave sintering of bulk Ni–Al2O3 functionally graded materials, J. Mater. Process. Technol. 214, 210 (2014).
  • M. T. Choy, C. Y. Tang, L. Chen, C. T. Wong, and C. P. Tsui, In vitro and in vivo performance of bioactive Ti6Al4V/TiC/HA implants fabricated by a rapid microwave sintering technique, Mater. Sci. Eng. C 42, 746 (2014).
  • R. R. Zheng, Y. Wu, S. L. Liao, W. Y. Wang, W. B Wang, and A. H. Wang, Microstructure and mechanical properties of Al/(Ti,W)C composites prepared by microwave sintering, J. Alloys Compd. 590, 168 (2014).
  • H. Zhu, G. Guo, T. Cui, J. Huang, J. Li, and Z. Xie, In situ aluminum matrix composites fabricated from AleNi2O3 system through microwave synthesis, Mater. Chem. Phy. 153, 333 (2015).
  • S. Sankaranarayanan, V. H. Shankar, S. Jayalakshmi, N. Q. Bau, and M. Gupta, Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach, J. Alloys Compd. 627, 192 (2015).
  • D. Agrawal, Microwave sintering, brazing and melting of metallic materials, Proc. of Sohn International Symposium Advanced Processing of Metals and Materials, Singapore, 4, 183 (2006).
  • D. E. Budinger, Microwave brazing process, U.S. patent, 7775416 (2006).
  • M. Barmatz, W. Jackson, and R. P. Radtke, Microwave technique for brazing materials, U.S. patent, 6054693 (2000).
  • E. Siores and D. Rego, Microwave applications in materials joining, J. Mater. Process Technol. 48, 619 (1995).
  • A. K. Sharma, M. S. Srinath, and P. Kumar, Microwave joining of metallic materials, Indian patent, Application no. 1994/Del/2009 (2009).
  • M. S. Srinath, A. K. Sharma, and P. Kumar, A new approach to joining of bulk copper using microwave energy, Mater. Des. 32, 2685 (2011).
  • M. S. Srinath, A. K. Sharma, and P. Kumar, Investigation on microstructural and mechanical properties of microwave processed dissimilar joints, J. Manuf. Process. 13, 141 (2011).
  • M. S. Srinath, A. K. Sharma, and P. Kumar, A novel route for joining of austenitic stainless steel (SS-316) using microwave energy, Proc. IMechE Part B: J. Eng. Manufac. 225, 1083 (2011).
  • A. Bansal, A. K. Sharma, P. Kumar, and S. Das, Characterization of bulk stainless steel joints developed through microwave hybrid heating, Mater. Charact. 91, 34 (2014).
  • A. Bansal, A. K. Sharma, P. Kumar, and S. Das, Joining of mild steel plates using microwave energy, Adv. Mater. Res. 585, 465 (2012).
  • A. Bansal, A. K. Sharma, P. Kumar, and S. Das, Metallurgical and mechanical characterization of mild steel-mild steel joint formed by microwave hybrid heating process, Sadhna 38, 679 (2013).
  • S. P. Dwivedi, and S. Sharma, Effect of process parameters on tensile strength of 1018 mild steel joints fabricated by microwave welding, Metallogr. Microstruct. Anal. 3, 58 (2014).
  • A. Bansal, A. K. Sharma, P. Kumar, and S. Das, Application of electromagnetic energy for joining Inconel 718 plates, i-Manager's J. Mechan. Eng. 2, 18 (2012).
  • R. I. Badiger, S. Narendranath, and M. S. Srinath, Joining of Inconel-625 alloy through microwave hybrid heating and its characterization, J. Manuf. Process. 18, 117 (2015).
  • A. Bansal, A. K. Sharma, P. Kumar, and S. Das, Investigation on microstructure and mechanical properties of the dissimilar weld between mild steel and stainless steel-316 formed using microwave energy, Proc. IMechE Part B: J. Eng. Manufact. (2014).
  • A. Bansal, A. K. Sharma, S. Das, and P. Kumar, On microstructure and strength properties of microwave welded Inconel 718/stainless steel (SS-316L), Proc. of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications,
  • A. Bansal, A. K. Sharma, P. Kumar, and S. Das, Structure–property correlations in microwave joining of inconel 718, JOM 67, 2087 (2015).
  • A. K. Sharma and D. Gupta, A method of cladding/coating of metallic and non metallic powders on metallic substrates by microwave irradiation, Indian patent, Application no. 527/Del/2010 (2010).
  • D. Gupta and A. K. Sharma, Development and microstructural characterization of microwave cladding on austenitic stainless steel, Surf. Coat. Technol. 205, 5147 (2011).
  • D. Gupta and A.K. Sharma, Copper coating on austenitic stainless steel using microwave hybrid heating, Proc. IMechE (Part E), Journal of Process Mechanical Engineering 225, 132 (2012).
  • D. Gupta, P. M. Bhovi, A. K. Sharma, and S. Dutta, Development and characterization of microwave composite cladding, J. Manuf. Process. 14, 243 (2012).
  • S. Zafar and A. K. Sharma, Development and characterisations of WC–12Co microwave clad, Mater. Charact. 96, 241 (2014).
  • D. Gupta and A. K. Sharma, Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation, Wear 271, 1642 (2011).
  • D. Gupta and A. K. Sharma, Microstructural characterisation of cermet cladding on austenitic stainless steel developed through microwave irradiation, J. Mater. Eng. Perform. 21, 2165 (2012).
  • A. K. Sharma and D. Gupta, On microstructure and flexural strength of metal-ceramic composite cladding developed through microwave heating, Appl. Surf. Sci. 258, 5583 (2012).
  • S. Zafar and A. K. Sharma, On Friction and wear behavior of WC-12Co microwave clad, Tribol. T. 58, 584 (2015).
  • S. Zafar, A. Bansal, A. K. Sharma, N. Arora, and C. S. Ramesh, Dry erosion wear performance of Inconel 718 microwave clad, Surf. Eng. 30, 852 (2014).
  • S. Zafar and A. K. Sharma, Dry sliding wear performance of nano structured WC-12Co deposited through microwave cladding, Tribolo. Int. http://dx.doi.org/10.1016/j.triboint.2015.06.023
  • S. Zafar and A. K. Sharma, Abrasive and erosive wear behaviour of nanometric WC–12Co microwave clads, Wear 346, 29 (2016).
  • A. Bansal, S. Zafar, and A. K. Sharma, Microstructure and abrasive wear performance of Ni-WC composite microwave clad, J. Mater. Eng. Perform. 24, 3708 (2015).
  • E. B. Ripley and J. A. Oberhaus, Melting and heat treating metals using microwave heating, Ind. Heat. 72, 61 (2005).
  • D. Agrawal, Latest global developments in microwave materials processing, Mater. Res. Innov. 14, 3 (2010).
  • S. Chandrasekaran, T. Basak, and S. Ramanathan, Experimental and theoretical investigation on microwave melting of metals, J. Mater. Process. Technol. 211, 482 (2011).
  • A. F. Moore, E. S. Donald, and S. M. Marvin, Method and apparatus for melting metals, US patent, 7011136, (2006).
  • B. Warren, M. H. Awida, and A. E. Fathy, Microwave heating of metals, IET Microw. Antennas Propag. 6, 196 (2012).
  • O. Wiedenmann, R. Ramakrishnan, E. Kilic, P. Saal, U. Siart, and T. F. Eibert, A multi-physics model for microwave heating in metal casting applications embedding a mode stirrer, Microwave Conference (GeMiC), the 7th German, IEEE, 2012; pp. 1–4.
  • B. P. Pehrson and A. F. Moore, Method and mold for casting thin metal objects, U.S. patent, 870803 (2014).
  • B. P. Pehrson and A. F. Moore, Method for casting thin metal object, U.S. patent, 9004148 (2015).
  • M. Choudhury and S. Puri, Development of microwave casting, dissertation, Roorkee (India): Indian Institute of Technology Roorkee, Roorkee, India 2013.
  • R. R. Mishra and A. K. Sharma, A new in-situ casting technique using microwave energy at 2.45 GHz, Proc. of the India International Science Festival- Young Scientists' Meet, DST, Government of India, Design 58, 2015; pp. 1–7.
  • V. Bist, Investigations on use of microwave energy in workshop waste treatment, dissertation, Indian Institute of Technology Roorkee, Roorkee, India, 2014.
  • Y. Meir and E. Jerby, Localized rapid heating by low-power solid-state microwave drill, IEEE Trans. Microwave Theory Tech. 60, 2665 (2012).
  • E. Jerby and A. M. Thompson, Microwave drilling of ceramic thermal‐barrier coatings, J. Am. Ceram. Soc. 87, 308 (2004).
  • E. Jerby, O. Aktushev, and V. Dikhtyar, Theoretical analysis of the microwave-drill near-field localized heating effect, J. Appl. Phys. 97, 034909 (2005).
  • N. K. Lautre, A. K. Sharma, P. Kumar, and S. Das, A simulation approach to material removal in microwave drilling of soda lime glass at 2.45 GHz, Appl. Phys. A 120,1261 (2015).
  • N. K. Lautre, A. K. Sharma, P. Kumar, and S. Das, A photoelasticity approach for characterization of defects in microwave drilling of soda lime glass, J. Mater. Process. Technol. 225, 151 (2015).
  • N. K. Lautre, A. K. Sharma, S. Das, and P. Kumar, On crack control strategy in near field microwave drilling of soda lime glass using precursors, J. Thermal Sci. Eng. Appl. 7, 1 (2015).
  • S. Das and A. K. Sharma, Microwave drilling of materials, BARC Newslett. 329, 15 (2012).
  • D. Loganathan, A. Gnanavelbabu, K. Rajkumar, and R. Ramadoss, Effect of microwave heat treatment on mechanical properties of AA6061 sheet metal, Procedia Eng. 97, 1692 (2014).
  • K. Rajkumar, J. Charles, K. V. Kumar, J. Praveen, and A. Padmanathan, Comparison studies on microwave and muffle furnace heat treatment for Al-B4C composite, Adv. Mater. Res. 768, 280 (2013).
  • J. R. Thomas Jr., Particle size effect in microwave-enhanced catalysis, Catal. Lett. 49, 137 (1997).
  • J. Demel, S. E. Park, J. Čejka, and P. Štěpnička, The use of palladium nanoparticles supported with MCM-41 and basic (Al) MCM-41 mesoporous sieves in microwave-assisted Heck reaction, Catal. Today 132, 63 (2008).
  • W. L. Perry, D. W. Cooke, J. D. Katz, and A. K. Datye, On the possibility of a significant temperature gradient in supported metal catalysts subjected to microwave heating, Catal. Lett. 47, 1 (1997).
  • S. S. Lam, R. K. Liew, C. K. Cheng, and H. A. Chase, Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char, Appl. Catal. B 176, 601 (2015).
  • S. Zhang, Q. Dong, L. Zhang, and Y. Xiong, High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts, Bioresour. Technol. 191, 17 (2015).
  • L. A. Campanone and N. E. Zaritzky, Mathematical analysis of microwave heating process, J. Food Eng. 69, 359 (2005).
  • K. G. Ayappa, H. T. Davis, E. A. Davis, and J. Gordon, Analysis of microwave heating of materials with temperature‐dependent properties, AIChE J. 37, 313 (1991).
  • K. G. Ayappa, H. T. Davis, G. Crapiste, E. A. Davis, and J. Gordon, Microwave heating: an evaluation of power formulations, Chem. Engg. Sci. 46, 1005 (1991).
  • T. Basak, Generalized analysis on microwave-assisted material processing for one-dimensional slabs: Metallic support versus free space, Ind. Eng. Chem. Res. 44, 3075 (2005).
  • T. Basak, Role of reflective (metallic) support on microwave heating, AIChE J. 51, 1319 (2005).
  • T. Basak and A. S. Priya, Role of metallic and ceramic supports on enhanced microwave heating processes, Chem. Eng. Sci. 60, 2661 (2005).
  • T. Basak, Influence of various shapes of annular metallic support on microwave heating of 2D cylinders, Chem. Eng. Sci. 61, 2023 (2006).
  • T. Basak, Tanmay, Role of metallic, ceramic and composite plates on microwave processing of composite dielectric materials, Mater. Sci. Eng. A 457, 261 (2007).
  • K. Aparna, T. Basak, and A. R. Balakrishnan, Role of metallic and composite (ceramic–metallic) supports on microwave heating of porous dielectrics, Int. J. Heat Mass Transfer. 50, 3072 (2007).
  • S. K. Samanta, T. Basak, and B. Sengupta, Theoretical analysis on microwave heating of oil–water emulsions supported on ceramic, metallic or composite plates, Int. J. Heat Mass Transfer. 51, 6136 (2008).
  • S. K. Samanta and T. Basak, Enhanced microwave processing of oil-water emulsions confined within ceramic and ceramic/metallic or composite plates, Chem. Eng. Process. Process Intensif. 48, 706 (2009).
  • T. Basak, Theoretical analysis on the role of annular metallic shapes for microwave processing of food dielectric cylinders with various irradiations, Int. J. Heat Mass Transfer. 54, 242 (2011).
  • M. Bhattacharya and T. Basak, A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface, Energy 55, 278 (2013).
  • S. Komarneni, D. Li, B. Newalkar, H. Katsuki, and A. S. Bhalla, Microwave-polyol process for Pt and Ag nanoparticles, Langmuir 18, 5959 (2002).
  • M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, and T. Tsuji, Microwave‐assisted synthesis of metallic nanostructures in solution, Chem. Eur. J. 11, 440 (2005).
  • V. Abdelsayed, A. Aljarash, M. S. El-Shall, Z. A. A. Othman, and A. H. Alghamdi, Microwave synthesis of bimetallic nanoalloys and CO oxidation on ceria-supported nanoalloys, Chem. Mater. 21, 2825 (2009).
  • J. Okal, M. Zawadzki, and W. Tylus, Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method, Appl. Catal. B 101, 548 (2011).
  • M. N. Nadagouda, T. F. Speth, and R. S. Varma, Microwave-assisted green synthesis of silver nanostructures, Acc. Chem. Res. 44, 469 (2011).
  • M. Tsuji, K. Matsumoto, P. Jiang, R. Matsuo, X. L. Tang, and K. S. N. Kamarudin, Roles of Pt seeds and chloride anions in the preparation of silver nanorods and nanowires by microwave-polyol method, Colloids Surf. A 316, 266 (2008).
  • J. Sullivan and D. Worsley, Evolution and fractal growth of micro/nano structured wires of ruthenium synthesised by microwave irradiation of ruthenium dioxide, Mater. Lett. 63, 2335 (2009).
  • M. B. Gawande, S. N. Shelke, R. Zboril, and R. S. Varma, Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics, Acc. Chem. Res. 47, 1338 (2014).
  • X. Cao, B. Ding, J. Yu, and S. S. Al-Deyab, In situ growth of silver nanoparticles on TEMPO-oxidized jute fibers by microwave heating, Carbohydr. Polym. 92, 571 (2013).
  • J. F. Zhu and Y. J. Zhu, Microwave-assisted one-step synthesis of polyacrylamide-metal (M = Ag, Pt, Cu) nanocomposites in ethylene glycol, J. Phys. Chem. B 110, 8593 (2006).
  • J. H. Ahn, J. N. Lee, Y. C. Kim, and B. T. Ahn, Microwave-induced low-temperature crystallization of amorphous Si thin films, Curr. Appl. Phys. 2, 135 (2002).
  • A. Birnboim, J. P. Calame, and Y. Carmel, Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing, J. Appl. Phys. 85, 478 (1999).
  • J. W. Lin, J. -Wen, H.-C. Chang, and M.-H. Wu, Comparison of mechanical properties of pure copper welded using friction stir welding and tungsten inert gas welding, J. Manuf. Process. 16, 296 (2014).
  • R. K. Buddu, N. Chauhan, and P. M. Raole, Mechanical properties and microstructural investigations of TIG welded 40mm and 60mm thick SS 316L samples for fusion reactor vacuum vessel applications, Fusion Eng. Des. 89, 3149 (2014).
  • X. Meng, G. Qin, Y. Zhang, B. Fu, and Z. Zou, High speed TIG–MAG hybrid arc welding of mild steel plate, J. Mater. Process. Technol. 214, 2417 (2014).
  • H. Zhang, Q. Chang, J. Liu, H. Lu, H. Wu, and J. Feng, A novel rotating wire GMAW process to change fusion zone shape and microstructure of mild steel, Mater. Lett. 123, 101 (2014).
  • D. Krenz, A. T. Egbewande, H. R. Zhang, and O. A. Ojo, Single pass laser joining of Inconel 718 superalloy with filler, Mater. Sci. Technol. 27, 268 (2011).
  • W. Wenyong, S. Hu, and J. Shen. Microstructure, mechanical properties and corrosion behavior of laser welded dissimilar joints between ferritic stainless steel and carbon steel, Mater. Des. 65, 855 (2015).
  • Z. Shen, Y. Chen, M. Haghshenas, T. Nguyen, J. Galloway, and A. P. Gerlich, Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding, Mater. Charact. 104, 1 (2015).
  • M. Afzal, M. Ajmal, A. N. Khan, A. Hussain, and R. Akhter, Surface modification of air plasma spraying WC–12% Co cermet coating by laser melting technique, Opt. Laser Technol. 56, 202 (2014).
  • X. M. He, X. B. Liu, M. D. Wang, M. S. Yang, S. H. Shi, G. Y. Fu, and S. F. Chen, Elevated temperature dry sliding wear behaviour of nickel-based composite coating on austenitic stainless steel deposited by a novel central hollow laser cladding. Appl. Surf. Sci. 258, 535 (2011).
  • J. Lambarri, J. Leunda, V.G. Navas, C. Soriano, and C. Sanz, Microstructural and tensile characterization of Inconel 718 laser coatings for aeronautic components, Opt. Lasers Eng. 51, 813 (2013).
  • H.-M. Hu. Development of research on ZA27 alloy-A review, Mater. Rev. 12, 17 (1998).
  • J. D. Rutherford, ZA alloy die casting, ZA casting alloys conference, Proc. of Materials Science Forum 5, (1985) pp. 33–36.
  • R.-X. Li, R.-D. Li, and Y.-H. Bai, Effect of specific pressure on microstructure and mechanical properties of squeeze casting ZA27 alloy, Nonferr. Met. Soc. China, 20, 59 (2010).
  • T. J. Chen, Y. Hao, J. Sun, and Y. D. Li, Effects of Mg and RE additions on the semi-solid microstructure of a zinc alloy ZA27, Sci. Technol. Adv. Mater. 4, 495 (2004).
  • H. Asahuri, Globular structure of ZA27 alloy by thermo mechanical and semi-solid treatment, Mater. Sci. Eng. A 391, 77 (2005).
  • S. Ashouri, M. N.-Ahmadabadi, M. Moradi, and M Iranpour, Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP, J. Alloys Compd. 466, 67 (2008).
  • C. Qiang, Y. Bao-guo, Z. Gao-zhan, S. Da-yu, H. Chuan-kai, Z. Zu-de, and Z. Zhi-xiang, Microstructural evolution during reheating and tensile mechanical properties of thixoforged AZ91D-RE magnesium alloy prepared by squeeze casting-solid extrusion, Mater. Sci. Eng. A 537, 25 (2012).
  • J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen, and S. J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys. 103, 41 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.