808
Views
31
CrossRef citations to date
0
Altmetric
Reviews

In2O3- and SnO2-based Ozone Sensors: Design and Characterization

, &

References

  • G. M. Hansford, R. A. Freshwater, R. A. Bosch, R. A. Cox, R. L. Jones, K. F. E. Pratt, and D. E. Williams, A low cost instrument based on a solid state sensor for balloon–borne atmospheric O3 profile soundin, J. Environ. Monit. 7, 158–162 (2005).
  • G. Korotcenkov and B. K. Cho, Ozone measuring: What can limit the application of SnO2–based gas sensors? Sens. Actuat. B 161, 28–44 (2012).
  • G. Korotcenkov, V. Brinzari, and B. K. Cho, In2O3 and SnO2–based thin film ozone sensors. Fundamentals, J. Sensors, Article ID 3816094 (2016)
  • T. Takada, K. Suzuki, and M. Nakane, Highly sensitive ozone sensor, Sens. Actuat. B 13–14, 404–407 (1993).
  • D. Sauter, U. Weimar, G. Noetzel, J. Mitrovics, and W. Gopel, Development of modular ozone sensor system for application in practical use, Sens. Actuat. B 69, 1–9 (2000).
  • T. K. H. Starke and G. S. V. Coles, High sensitivity ozone sensors for environmental monitoring produced using laser ablated nanocrystalline metal oxides, IEEE Sensors J. 2(1), 12–19 (2002).
  • European Union (EU). Directive 2002/3/EC of the European Parliament and of the Council relating to ozone in ambient air, Official Journal of the European Communities 9.3.2002, L67/14–30 (2002).
  • J. D. McClurkin and D. E. Maier, Half-life time of ozone as a function of air conditions and movement, In: Proceedings of 10th International Working Conference on Stored Product Protection, June 27–July 2, 2010, Estoril, Portugal, pp. 381–385.
  • H. Chen, C. O. Stanier, M. A. Young, and V. H. Grassian, A kinetic study of ozone decomposition on illuminated oxide surfaces, J. Phys. Chem. A 115(43), 11979–11987 (2011).
  • J. Frank, M. Fleischer, M. Zimmer, and H. Meixner, Ozone sensing using In2O3–modified Ga2O3 thin films, IEEE Sensors J. 1(4), 318–321 (2001).
  • L. A. Obvintseva, F.Kh. Chibirova, A. K. Avetisov, N. F. Elansky, A. I. Skorochod, and R. F. Shumskii, Possibility of using a semiconductor ozonometer for monitoring ozone in the atmosphere, Atmosph. Oceanic Optics 18(11), 910–913 (2005).
  • D. M. Wilson, S. Hoyt, J. Janata, K. Booksh, and L. Oband, Chemical sensors for portable, handheld field instruments, IEEE Sensors J. 1(4), 256–274 (2001).
  • A. Gurlo, N. Bârsan, and U. Weimar, Gas sensors based on semiconducting metal oxides. In J. L. G. Fierro (ed.), Metal Oxides. Chemistry and Applications. Taylor and Francis, New York, 2006, pp. 683–738.
  • G. Korotcenkov, Metal oxides for solid state gas sensors. What determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007).
  • F. Rock, N. Barsan, and U. Weimar, Electronic nose: Current status and future trends, Chem. Rev. 108, 705–725 (2008).
  • J. Spannhake, A. Helwig, O. Schulz, and G. Muller, Micro–fabrication of gas sensors, In E. Comini, G. Faglia, G. Sberveglieri (eds.), Solid State Gas Sensing. Springer, New York, 2009, pp. 1–46.
  • J. W. Gardner, P. K. Guha, F. Udrea, and J. A. Covington, CMOS interfacing for integrated gas sensors: A review, IEEE Sensors J. 10(12), 1833–1848 (2010).
  • G. Korotcenkov and V. Sysoev, Conductometric metal oxide gas sensors. In G. Korotcenkov (ed.), Chemical Sensors: Comprehensive Sensor Technologies. Vol. 4. Solid State Devices, Momentum Press, New York, 2011, pp. 53–186.
  • C. Wang, Metal organic chemical vapor deposition of indium oxide for ozone sensing. Ph.D. Thesis, Albert–Ludwigs–Universität Freiburg, Germany, 2009.
  • G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique, Sens. Actuat. B 124, 187–191 (2007).
  • A. Labidi, M. Gaidi, J. Guérin, A. Bejaoui, M. Maaref, and K. Aguir, Alternating current investigation and modeling of the temperature and ozone effects on the grains and the grain boundary contributions to the WO3 sensor responses, Thin Solid Films 518, 355–361 (2009).
  • F.S.–S. Chien, C.–R. Wang, Y.–L. Chan, H.–L. Lin, M.–H. Chen, and R.–J.g Wu, Fast–response ozone sensor with ZnO nanorods grown by chemical vapor deposition, Sens. Actuat. B 144, 120–125 (2010).
  • J. Ollitrault, N. Martin, J.–Y. Rauch, J.–B. Sanchez, and F. Berger, Improvement of ozone detection with GLAD WO3 films, Mater. Lett. 155, 1–3 (2015).
  • A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimar, and W. Gopel, In2O3 and MoO3–In2O3 thin film semiconductor sensors: interaction with NO2 and O3, Sens. Actuat. B 47, 92–99 (1998).
  • M. Ivanovskaya, A. Gurlo, and P. Bogdanov, Mechanism of O3 and NO2 detection and selectivity of In2O3 sensors, Sens. Actuat. B 77, 264–267 (2001).
  • A. Sharma, M. Tomar, and V. Gupta, Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters, Sens. Actuat. B 181, 735–742 (2013).
  • T. Takada and K. Komatsu, Ozone detection by In2O3 thin films gas sensor, In. Proceedings of the 4th Int. Conf. on Solid–State Sensors and Actuators, Tokyo, Japan, June 2–5, 1987, pp. 693–696.
  • T. Takada, Ozone detection by In2O3 thin films gas sensor, In T. Seiyama (ed.), Chemical Sensor Technology. Kodansha, Tokyo–Elsevier, 1989, Vol. 2. pp. 59–70.
  • G. Korotcenkov, Handbook of Gas Sensor Materials, Vols. 1–2. Springer, New York, 2013.
  • G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, V. Golovanov, A. Cornet, J. Morante, A. Cabot, and J. Arbiol, The influence of film structure on In2O3 gas response, Thin Solid Films 460, 315–323 (2004).
  • G. Korotcenkov, A. Cerneavschi, V. Brinzari, A. Vasiliev, A. Cornet, J. Morante, A. Cabot, and J. Arbiol, In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors, Sens. Actuat. B 99(2–3), 304–310 (2004).
  • G. Korotcenkov, I. Blinov, M. Ivanov, and J. R. Stetter, Ozone sensors on the base of SnO2 films deposited by spray pyrolysis, Sens. Actuat. B 120, 679–686 (2007).
  • G. Korotcenkov, V. Brinzari, A. Cerneavschi, M. Ivanov, A. Cornet, J. Morante, A. Cabot, and J. Arbiol, In2O3 films deposited by spray pyrolysis: gas response to reducing (CO, H2) gases, Sens. Actuat. B 98(2–3), 236–243 (2004).
  • A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, and P. Siciliano, Polycrystalline well–shaped blocks of indium oxide obtained by the sol–gel method and their gas–sensing properties, Chem. Mater. 15, 4377–4383 (2003).
  • M. Epifani, E. Comini, J. Arbiol, R. Diaz, N. Sergent, T. Pagnier, P. Siciliano, G. Faglia, and J. R. Morante, Chemical synthesis of In2O3 nanocrystals and their application in highly performing ozone-sensing devices, Sens. Actuat. B 130, 483–487 (2008).
  • T. Wagner, J. Hennemann, C.-D. Kohl, and M. Tiemann, Photocatalytic ozone sensors based on mesoporous indium oxide: influence of the relative humidity on the sensing performance, Thin Solid Films 520, 918–921 (2011).
  • D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sens. Actuat. 18, 71–113 (1989).
  • H. Geistlinger, Electron theory of thin-film gas sensors, Sens. Actuat. B 17, 47–60 (1993).
  • P. Weisz, Effects of electronic charge transfer between absorbate and solid on chemisorption and catalysis, J. Chem. Phys. 21, 1531–1538 (1953).
  • S. R. Morrison, Selectivity in semiconductor gas sensors, Sens. Actuat. 12, 425–440 (1987).
  • P. Romppainen, H. Torvela, J. Vaananen, and S. Leppavuori, Effect of CH4, SO2 and NO on the CO response of a SnO2–based thick film gas sensor in combustion gases, Sens. Actuat. 8, 271–279 (1985).
  • J. Tamaki, M. Nagaishi, Y. Teraoka, N. Miura, N. Yamazoe, Adsorption behaviour of CO and interfering gases on SnO2, Surf. Sci. 221, 183–196 (1989).
  • H. Torvela, J. Huusko, V. Lantto, Reduction of the interference caused by NO and SO2 in the CO response of Pd-catalysed SnO2 combustion gas sensors, Sens. Actuat. B 4, 479–484 (1991).
  • A. Marikutsa, M. Rumyantseva, and A. Gaskov, Selectivity of catalytically modified tin dioxide to CO and NH3 gas mixtures, Chemosens. 3, 241–252 (2015).
  • Y. Hosoya, Y. Itagaki, H. Aono, and Y. Sadaoka, Ozone detection in air using SmFeO3 gas sensor, Sens. Actuat. B 108, 198–201 (2005).
  • M. Losch, M. Baumbach, and A. Schutze, Ozone detection in the ppb-range with improved stability and reduced cross sensitivity, Sens. Actuat. B 130, 367–373 (2008).
  • G. Korotcenkov, V. Brinzari, and B. K. Cho, Interference effects between hydrogen and ozone in the response of SnO2-based gas sensors, Sens. Actuat. B 243, 507–515 (2017).
  • G. Korotcenkov, I. Blinov, V. Brinzari, and J. R. Stetter, Effect of air humidity on gas response of SnO2 thin film- ozone sensors, Sens. Actuat. B 122, 519–526 (2007).
  • Z. U. Abideen, J.-H. Kim, and S. S. Kim, Optimization of metal nanoparticle amount on SnO2 nanowires to achieve superior gas sensing properties, Sens. Actuat. B 238, 374–380 (2017).
  • L. A. Obvintseva, Metal oxide semiconductor sensors for determination of reactive gas impurities in air, Russ. J. General Chem. 78(12), 2545–2555 (2008).
  • G. Korotcenkov and J. R. Stetter, Chemical gas mixture analysis and the electronic nose: Current status, future trends. In G. Korotcenkov (ed.), Chemical Sensors: Comprehensive Sensor Technologies. Vol. 6. Chemical Sensors Applications, Momentum Press, New York, 2011, pp. 1–56.
  • G. Korotcenkov and B. K. Cho, Engineering approaches to improvement operating characteristics of conductometric gas sensors. Part 1: Improvement of sensor sensitivity and selectivity, Sens. Actuat. B 188, 709–728 (2013).
  • P. Lee and J. Davidson, Evaluation of activated carbon filters for removal of ozone at the PPB level, Am. Ind. Hyg. Assoc. J. 60(5), 589–600 (1999).
  • C. Seyffer, Ozone and air filters, ASHRAE J. 2012, 82–84 (2012). (www.ashrae.org)
  • T. V. Belysheva, L. P. Bogovtseva, and E. E. Gutman, Application of metal oxide semiconducting heterosystems for gas analysis, Int. Sci. J. Altern. Energy Ecol., ISJAEE 2(10), 60–66 (2004) ( in Russian).
  • L. F. da Silva, V. R. Mastelaro, A. C. Catto, C. A. Escanhoela Jr., S. Bernardini, S. C. Zilio, E. Longo, and K. Aguir, Ozone and nitrogen dioxide gas sensor based on a nanostructured SrTi0.85Fe0.15O3 thin film, J. Alloys Comp. 638, 374–379 (2015).
  • G. Korotcenkov and B. K. Cho, Instability of metal oxide–based conductometric gas sensors and approaches to stability improvement, Sens. Actuat. B 156, 527–538 (2011).
  • G. Korotcenkov and B. K. Cho, The role of grain size on the thermal stability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization, Prog. Crystal. Growth. Character. Mater. 58, 167–208 (2012).
  • G. Korotcenkov, V. Brinzari, M. Ivanov, A. Cerneavschi, J. Rodriguez, A. Cirera, A. Cornet, and J. Morante, Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing, Thin Solid Films 479(1–2), 38–51 (2005).
  • S. R. Morrison, The Chemical Physics of Surfaces, Plenum Press, New York, 1977.
  • M. Egashira, M. Nakashima, S. Kawasuma, and T. Selyama, Temperature programmed desorption study of water adsorbed on metal oxides. Part 2. Tin oxide surfaces, J. Phys. Chem. 85, 4125–4130 (1981).
  • G. Korotcenkov and B. K. Cho, Engineering approaches to improvement operating characteristics of conductometric gas sensors. Part 2: Decrease of dissipated (consumable) power and improvement stability and reliability, Sens. Actuat. B 198, 316–341 (2014).
  • G. Faglia, B. Allieri, E. Comini, L. E. Depero, L. Sangaletti, and G. Sberveglieri, Electrical and structural properties of RGTO–In2O3 sensors for ozone detection, Sens. Actuat. B 57, 188–191 (1999).
  • M. Epifani, S. Capone, R. Rella, P. Siciliano, and L. Vasanelli, In2O3 thin films obtained through a chemical complexation based sol-gel process and their application as gas sensor devices, J. Sol-Gel Sci. Technol. 26, 741–744 (2003).
  • L. A. Obvintseva, K. V. Zhernikov, I. B. Belikov, V. L. Kuchaev, F.Kh. Chibirova, A. K. Avetisov, and N. F. Elansky, Semiconductor sensors and sensor containing gas analyzer for ozone monitoring in the atmosphere. In Proceedings of European Conference «Eurosensors XXII», September 7–10, 2008, Dresden, Germany, pp. 1594–1597.
  • C.-C. Jeng, P. J. H. Chong, G.-J. Jiang, H.-J. Lin, R.-J. Wu, and C.-H. Wu, Dynamic equilibrium method for the SnO2-based ozone sensors using UV-LED continuous irradiation, Sens. Actuat. B 195, 702–706 (2014).
  • G. V. Samsonov, The Oxide Handbook. IFI/Plenum, New York, 1973.
  • V. Binas, I. Kortidis, E. Gagaoudakis, K. Moschovis, and G. Kiriakidis, Ageing resistant indium oxide ozone sensing films, Sensor Lett. 14(6), 563–566 (2016).
  • G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric–type gas sensors, Mater. Sci. Eng. R. 61, 1–39 (2008).
  • G. Korotcenkov, S. D. Han, B. K. Cho, and V. Brinzari, Grain size effects in sensor response of nanostructured SnO2– and In2O3–based conductometric gas sensor, Crit. Rev. Sol. St. Mater. Sci. 34(1–2), 1–17 (2009).
  • G. Korotcenkov and B. K. Cho, The role of film thickness in sensor response of SnO2–based devices, Sensor Lett. 9(1), 364–368 (2011).
  • G. Korotcenkov and B. K. Cho, Thin film SnO2–based gas sensors: Film thickness influence, Sens. Actuat. B 142, 321–330 (2009).
  • A. Gurlo, M. Ivanovskaya, N. Barsan, U. Weimar, and W. Gopel, Grain size control in nanocrystalline In2O3 semiconductor gas sensors, Sens. Actuat. B 44, 327–333 (1997).
  • G. Korotcenkov, V. Brinzari, and B. K. Cho, Thin film SnO2 and In2O3 ozone sensors design: Selection of film parameters, Appl. Mech. Mater. 799–800, 910–914 (2015).
  • G. Korotcenkov and B. K. Cho, Synthesis and deposition of sensor materials. In G. Korotcenkov (ed.), Chemical Sensors: Fundamentals of Sensing Materials. Vol. 1: General Approaches, Momentum Press, New York, 2010, pp. 215–304.
  • T. V. Belysheva, G. N. Gerasimov, V. F. Gromov, and L. I. Trachtenberg, Sensor properties of Fe2O3–In2O3 films: Ozone detection in air in the range of low concentration, Russ. J. Phys. Chem. 82(10), 1721–1725 (2008).
  • Th. Becker, L. Tomasi, Chr. Bosch–v. Braunmuhl, G. Muller, G. Sberveglieri, G. Faglia, and E. Comini, Ozone detection using low–power–consumption metal–oxide gas sensors, Sens. Actuat. B 74, 229–232 (1999).
  • M. V. Kalinina, P. A. Tikhonov, and A. T. Nakusov, Preparation, electrical conductivity, and sensory properties of oxide films in the In2O3–SnO2 and In2O3–ZrO2 systems, Glass Phys. Chem. 29(6), 626–631 (2003).
  • C. Baratto, M. Ferroni, G. Faglia, and G. Sberveglieri, Iron–doped indium oxide by modified RGTO deposition for ozone sensing, Sens. Actuat. B 118, 221–225 (2006).
  • T. Doll, A. Fuchs, I. Eisele, G. Faglia, S. Groppelli, and G. Sberveglieri, Conductivity and work function ozone sensors based on indium oxide, Sens. Actuat. B 49, 63–67 (1998).
  • M.Z Atashbar, B. Gong, H.T Sun, W. Wlodarski, and R. Lamb, Investigation on ozone–sensitive In2O3 thin films, Thin Solid Films 354, 222–226 (1999).
  • C.-H. Wu, G.-J. Jiang, C.-C. Chiu, P. Chong, C.-C. Jeng, R.-J. Wu, and J.-H. Chen, Fast gas concentration sensing by analyzing the rate of resistance change, Sens. Actuat. B 209, 906–910 (2015).
  • O. Korostynska, K. Arshak, G. Hickey, and E. Forde, Ozone and gamma radiation sensing properties of In2O3:ZnO:SnO2 thin films, Microsyst. Technol. 14, 557–566 (2008).
  • G. Korotcenkov, V. Macsanov, V. Tolstoy, V. Brinzari, J. Schwank, and G. Faglia, Structural and gas response characterization of nano–size SnO2 films deposited by SILD method, Sens. Actuat. B 96, 602–609 (2003).
  • G. Korotcenkov, B. K. Cho, L. Gulina, and V. Tolstoy, Ozone sensors based on SnO2 films modified by SnO2–Au nanocomposites synthesized by the SILD method, Sens. Actuat. B 138, 512–517 (2009).
  • S. Mills, M. Lim, B. Lee, and V. Misra, Atomic layer deposition of SnO2 for selective room temperature low ppb level O3 sensing, ECS J. Solid State Sci. Technol. 4(10), S3059–S3061 (2015).
  • J. Rombach, O. Bierwagen, A. Papadogianni, M. Mischo, V. Cimalla, T. Bertholdc, S. Krischok, and M. Himmerlich, Electrical conductivity and gas–sensing properties of Mg–doped and undoped single–crystalline In2O3 thin films: bulk vs. surface, Procedia Eng. 120, 79–82 (2015).
  • G. Korotcenkov, V. Brinzari, J. Schwank, and A. Cerneavschi, Possibilities of aerosol technology for deposition of SnO2–based films with improved gas sensing characteristics, J. Mater. Sci. Eng. C 19(1–2), 73–77 (2001).
  • G. Korotcenkov, V. Brinzari, M. DiBattista, J. Schwank, and A. Vasiliev, Peculiarities of SnO2 thin film deposition by spray pyrolysis for gas sensor application, Sens. Actuat. B 77, 244–252 (2001).
  • G. Korotcenkov, V. Brinzari, and S. Dmitriev, Processes development for low cost and low power consuming SnO2 thin film gas sensors (TFGS), Sens. Actuat. B 54, 202–209 (1999).
  • J. George, Preparation of Thin Films, M. Dekker, New York, 1992.
  • H. Yu and W. Liao, Evaporation of solution droplets in spray pyrolysis, Int. J. Heat Mass Transfer 41, 993–1001 (1998).
  • P. S. Patil, Versatility of chemical spray pyrolysis technique, Mater. Chem. Phys. 59, 185–198 (1999).
  • G. Korotcenkov, B. K. Cho, and V. Brinzari, Spray pyrolysis of metal oxides SnO2 and In2O3 as an example of thin film technology: Advantages and limitations for application in conductometric gas sensors, Adv. Mater. Res. 748, 22–27 (2013).
  • G. Korotcenkov, M. DiBattista, J. Schwank, and V. Brinzari, Structural characterization of SnO2 gas sensing films deposited by spray pyrolysis, J. Mater. Sci. Eng. B 77, 33–39 (2000).
  • G. Korotcenkov, A. Cerneavschi, V. Brinzari, A. Cornet, J. Morante, A. Cabot, and J. Arbiol, Crystallographic characterization of In2O3 films deposited by spray pyrolysis, Sens. Actuat. B 84, 37–42 (2002).
  • V. Brinzari, G. Korotcenkov, J. Schwank, V. Lantto, S. Saukko, and V. Golovanov, Morphological rank of nano–scale tin dioxide films deposited by spray pyrolysis from SnCl4·5H2O water solution, Thin Solid Films 408, 51–58 (2002).
  • G. Korotcenkov, A. Cornet, E. Rossinyol, J. Arbiol, V. Brinzari, and Y. Blinov, Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic chloride water solution, Thin Solid Films 471(1–2), 310–319 (2005).
  • G. Korotcenkov, V. Brinzari, and I. Boris, (Cu, Fe, Co or Ni)–doped tin dioxide films deposited by spray pyrolysis: Doping influence on film morphology, J. Mater. Sci. 43(8), 2761–2770 (2008).
  • G. Korotcenkov and S. D. Han, (Cu, Fe, Co and Ni)–doped tin dioxide films deposited by spray pyrolysis: Doping influence on thermal stability of the film structure, Mater. Chem. Phys. 113, 756–763 (2009).
  • G. Korotcenkov and B. K. Cho, Spray pyrolysis deposition of undoped SnO2 and In2O3 films and their structural properties, Prog. Cryst. Growth. Charact. Mater. (2017) ( in press).
  • K. L. Choy, Chemical vapour deposition of coatings, Prog. Mater. Sci. 48(2), 57–170 (2003).
  • Ch.Y. Wang, V. Cimalla, Th. Kups, C.–C. Röhlig, H. Romanus, V Lebedev, J. Pezoldt, Th. Stauden, and O. Ambacher, Photoreduction and oxidation behavior of In2O3 nanoparticles by metal organic chemical vapor deposition, J. Appl. Phys. 102, 044310 (2007).
  • A. Walsh and C. R. A. Catlow, Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn–doped indium oxide (ITO) from density functional theory, J. Mater. Chem. 20, 10438–10444 (2010).
  • P. Agoston and K. Albe, Thermodynamic stability, stoichiometry, and electronic structure of bcc–In2O3 surfaces, Phys. Rev. B 84, 045311 (2011).
  • C. Li, D. Zhang, S. Han, X. Liu, T. Tang, B. Lei, Z. Liu, and C. Zhou, Synthesis, electronic properties, and applications of indium oxide vanowires, Ann. N.Y. Acad. Sci. 1006, 104–121 (2003).
  • T. Sahm, A. Gurlo, N. Bârsan, and U. Weimar, Properties of indium oxide semiconducting sensors deposited by different techniques, Partic. Sci. Technol. 24(4), 441–452 (2006).
  • M. Epifani, E. Comini, J. Arbiol, E. Pellicer, P. Siciliano, G. Faglia, and J. R. Morante, Nanocrystals as very active interfaces: Ultrasensitive room–temperature ozone sensors with In2O3 nanocrystals prepared by a low–temperature sol–gel process in a coordinating environment, J. Phys. Chem. C 111, 13967–13971 (2007).
  • A. Gaddari, F. Berger, M. Amjoud, J. B. Sanchez, M. Lahcini, B. Rhouta, D. Mezzane, C. Mavon, E. Beche, and V. Flaud, A novel way for the synthesis of tin dioxide sol–gel derived thin films: Application to O3 detection at ambient temperature, Sens. Actuat. B 176, 811–817 (2013).
  • A. Dieguez, A. Romano–Rodriguez, J. R. Morante, J. Kappler, N. Barsan, and W. Gopel, Nanoparticle engineering for gas sensor optimisation: improved sol–gel fabricated nanocrystalline SnO2 thick film gas sensor for NO2 detection by calcination, catalytic metal introduction and grinding treatments, Sens. Actuat. B 60, 125–137 (1999).
  • A. Dieguez, A. Romano–Rodriguez, J. L. Alay, J. R. Morante, N. Barsan, J. Kappler, U. Weimar, and W. Gopel, Parameter optimization in SnO2 gas sensors for NO2 detection with low cross–sensitivity to CO: sol–gel preparation, film preparation. Powder calcination, doping and grinding, Sens. Actuat. B 65, 166–168 (2000).
  • A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies, Nanoscale 3, 154–165 (2011).
  • M. Shi, F. Xu, K. Yu, Z. Zhu, and J. Fang, Controllable synthesis of In2O3 nanocubes, truncated nanocubes, and symmetric multipods, J. Phys. Chem. Chem. C 111, 16267–16271 (2007).
  • M. Ivanovskaya, Ceramic and film metaloxide sensors obtained by sol–gel method: structural features and gas–sensitive properties, Electron. Technol. 33(1/2), 108–112 (2000).
  • L. Sangaletti, L. E. Depero, B. Allieri, F. Pioselli, R. Angelucci, A. Poggi, T. Tagliani, and S. Nicoletti, Microstructural development in pure and V–doped SnO2 nanopowders, J. Eur. Ceram. Soc. 19, 2073–2077 (1999).
  • A. Cabot, A. Dieguez, A. Romano–Rodriguez, J. Morante, and N. Barsan, Influence of the catalytic introduction procedure on the nano– SnO2 gas sensor performance. Where and how stay the catalytic atoms? Sens. Actuat. B 79, 98–106 (2001).
  • I. T. Weber, R. Andrade, E. R. Leite, and E. Longo, A study of the SnO2–Nb2O5 system for an ethanol vapour sensor: a correlation between microstructure and sensor performance, Sens. Actuat. B 72, 180–183 (2001).
  • F. H. Aragón, J. A. H. Coaquira, D. S. Candela, E. Baggio Saitovitch, P. Hidalgo, D. Gouvêa, and P. C. Morais, Structural and hyperfine properties of Cr–doped SnO2 nanoparticles, J. Phys. Conf. Ser. 217, 012079 (2010).
  • Z. Zhan, J. Chen, S. Guan, L. Si, and P. Zhang, Highly sensitive and thermal stable CO gas sensor based on SnO2 modified by SiO2, J. Nanosci. Nanotechnol. 13(2), 1507–1510 (2013).
  • M. Elimelech, J. Gregory, X. Jia, R. A. Williams, J. Gregory, X. Jia, and R.A Williams, Particle Deposition and Aggregation: Measurement, Modelling and Simulation, Butterworth–Heinemann, Oxford, UK, 1995.
  • C. Kaya, J. Y. He, X. Gu, and E. G. Butler, Nanostructured ceramic powders by hydrothermal synthesis and their applications, Microporous Mesoporous Mater. 54, 37–49 (2002).
  • G. Chabanis, I. Parkin, and D. E. Williams, A simple equivalent circuit model to represent microstructure effects on the response of semiconducting oxide–based gas sensors, Meas. Sci. Technol. 14, 76–86 (2003).
  • C. C. Koch, Synthesis of nanostructured materials by mechanical milling: problems and opportunities, Nanostuct. Mater. 9, 13–22 (1997).
  • V. Brynzari, G. Korotchenkov, and S. Dmitriev, Theoretical study of semiconductor thin film gas sensitivity: Attempt to consistent approach, J. Electron Technology 33, 225–235 (2000).
  • N. Barsan and U. Weimar, Conduction model of metal oxide gas sensors, J. Electroceram. 7(3), 143–167 (2001).
  • B. Slater, C. R. A. Catlow, D. E. William, and A. M. Stoneham, Dissociation of O2 on the reduced SnO2(110) surface, Chem. Commun. 123, 1235–1236 (2000).
  • Y. Yamaguchi, Y. Nagasawa, S. Shimomura, K. Tabata, and E. Suzuki, A density functional theory study of the interaction of oxygen with a reduced SnO2(110) surface, Chem. Phys. Lett. 316(5–6), 477–482 (2003).
  • M. Belaqziz, M. Amjoud, A. Gaddari, B. Rhouta, and D. Mezzane, Enhanced room temperature ozone response of SnO2 thin film sensor, Superlatt. Microstructur. 71, 185–189 (2014).
  • S.–R. Kim, H.–K. Hong, C. H. Kwon, D. H. Yun, K. Lee, and Y. K. Sung, Ozone sensing properties of In2O3–based semiconductor thick films, Sens. Actuat. B 66, 59–62 (2000).
  • D. Klaus, D. Klawinski, S. Amrehn, M. Tiemann, and T. Wagner, Light–activated resistive ozone sensing at room temperature utilizingnanoporous In2O3 particles: Influence of particle size, Sens. Actuat. B 217, 181–185 (2015).
  • C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements, Sens. Actuat. B 3, 147–155 (1991).
  • X. Wang, S. S. Yee, and W. P. Carey, Transition between neck controlled and grain-boundary-controlled sensitivity of metal oxide gas sensors, Sens. Actuat. B 25, 454–457 (1995).
  • A. Rothschild and Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, J. Appl. Phys. 95, 6374–6380 (2004).
  • M. A. Kozhushner, L. I. Trakhtenberg, V. L. Bodneva, T. V. Belisheva, and A. C. Landerville, I. I. Oleynik, Effect of temperature and nanoparticle size on sensor properties of nanostructured tin dioxide films, J. Phys. Chem. C 118, 11440–11444 (2014).
  • S. Vallejos, V. Khatko, K. Aguir, K. A. Ngo, J. Calderer, I. Gracia, C. Cane, E. Llobet, and X. Correig, Ozone monitoring by micro-machined sensors with WO3 sensing films, Sens. Actuat. B 126, 573–578 (2007).
  • S. Vallejos, V. Khatko, J. Calderer, I. Gracia, C. Cané, E. Llobet, and X. Correig, Micro-machined WO3-based sensors selective to oxidizing gases, Sens. Actuat. B 132, 209–215 (2008).
  • G. Kiriakidis, M. Bender, N. Katsarakis, E. Gagaoudakis, E. Hourdakis, E. Douloufakis, and V. Cimalla, Ozone sensing properties of polycrystalline indium oxide films at room temperature, Phys. Status Sol. (a) 185(1), 27–32 (2001).
  • M. Suchea, N. Katsarakis, S. Christoulakis, S. Nikolopoulou, and G. Kiriakidis, Low temperature indium oxide gas sensors, Sens. Actuat. B 118, 135–141 (2006).
  • V. Krivetskiy, M. Rumyantseva, and A. Gaskov, Design, synthesis and application of metal oxide based sensing elements: A chemical principles approach. In M. A. Carpenter, S. Mathur, and A. Kolmakov (eds.), Metal Oxide Nanomaterials for Chemical Sensors, Springer Science+Business Media, New York, 2013, pp. 69–118.
  • A. Dieguez, A. Romano–Rodriguez, A. Vila, and J. R. Morante, The complete Raman spectrum of nanometric SnO2 particles, Appl. Phys. 90, 1550–1557 (2001).
  • Ch.Y. Wang, V. Cimalla, C.-C. Roehlig, Th. Stauden, F. Niebelschuetz, O. Ambacher, O. Kiesewetter, and S. Kittelmann, A new type of highly sensitive portable ozone sensor operating at room temperature. In Proceedings of IEEE SENSORS 2006, EXCO, Daegu, Korea, October 22–25, 2006, pp. 81–84.
  • Th. Becker, S. Ahlers, C. Bosch–v. Braunmühl, G. Müller, and O. Kiesewetter, Gas sensing properties of thin– and thick–film tin–oxide materials, Sens. Actuat. B 77, 55–61 (2001).
  • G. Korotcenkov, V. Brinzari, J. R. Stetter, I. Blinov, and V. Blaja, The nature of processes controlling the kinetics of indium oxide–based thin film gas sensor response, Sens. Actuat. B 128, 51–63 (2007).
  • J. W. Gardner, A non–linear diffusion–reaction model of electrical conduction in semiconductor gas sensors, Sens. Actuat. B 1, 166–170 (1990).
  • D. E. Williams, G. S. Henshaw, and K. F. E. Pratt, Reaction–diffusion effects and systematic design of gas–sensitive resistors based on semiconducting oxides, J. Chem. Soc. Faraday Trans. 91(23), 4299–4307 (1995).
  • D. E. Williams and K. F. E. Patt, Theory of self–diagnostic sensor array devices using gas–sensitive resistors, J. Chem. Soc. Faraday Trans. 91(13), 1961–1966 (1995).
  • D. E. Williams and K. F. E. Patt, Classification of reactive sites on the surface of polycrystalline tin dioxide, J. Chem. Soc. Faraday Trans. 94, 3493–3500 (1998).
  • K. Ihokura and J. Watson, The Stannic Oxide Gas Sensor, Principle and Applications, CRC Press, Boca Raton, FL, 1994.
  • N. Yamazoe and K. Shimanoe, Overview of gas sensor technology. In D. K. Aswal and S. K. Gupta (eds.), Science and Technology of Chemiresistor Gas Sensors, Nova Science Publishers, New York, 2007, pp. 1–31.
  • T. Kida, S. Fujiyama, K. Suematsu, M. Yuasa, and K. Shimanoe, Pore and particle size control of gas sensing films using SnO2 nanoparticles synthesized by seed-mediated growth: Design of highly sensitive gas sensors, J. Phys. Chem. C 117, 17574–17582 (2013).
  • I. Brovchenko and A. Oleinikova, Effect of pore size on the condensation/evaporation transition of confined water in equilibrium with saturated bulk water, J. Phys. Chem. B 115, 9990–10000 (2011).
  • S. J. Gentry and P. T. Walsh, The theory of poisoning of catalytic flammable gas sensing elements. In P. T. Moseley and B. C. Tofield (eds.), Solid State Gas Sensors. Adam Hilger, Bristol, Philadelphia, 1987, pp. 32–50.
  • G. E. de Souza Brito, C. V. Santilli, and S. H. Pulcenelli, Evolution of the fractal structure during sintering of SnO2 compacted sol-gel powder, Coloids Surf. A 97, 217–225 (1995).
  • J. F. Mc Aleer, P. T. Moseley, J. O. Norris, and D. E. Williams, Tin dioxide gas sensors. Part 1.—Aspects of the surface chemistry revealed by electrical conductance variations, J. Chem. Soc. Faraday Trans. I 83, 1323–1346 (1987).
  • Y. Liu, E. Koep, and M. Liu, A highly sensitive and fast–responding SnO2 sensor fabricated by combustion chemical vapor deposition, Chem. Mater. 17, 3997–4000 (2005).
  • M. N. Rumyantseva, A. M. Gaskov, N. Rosman, T. Pagnier, and J. R. Morante, Raman surface vibration modes in nanocrystalline SnO2:  Correlation with gas sensor performances, Chem. Mater. 17, 893–901 (2005).
  • G. Korotcenkov, Gas response control through structural and chemical modification of metal oxides: State of the art and approaches, Sens. Actuat. B 107, 209–232 (2005).
  • X.-G. Han, H.-Z. He, Q. Kuang, X. Zhou, X.-H. Zhang, T. Xu, Z.-X. Xie, and L.-S. Zheng, Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites, J. Phys. Chem. C 113, 584–589 (2009).
  • X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, and L. Zheng, Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties, Angew. Chem. Int. Ed. 48, 9180–9183 (2009).
  • N. Yamazoe and K. Shimanoe, Roles of shape and size of component crystals in semiconductor gas sensors: I. Response to oxygen, J. Electrochem. Soc. 155, J85–J92 (2008).
  • Y. Hao, G. Meng, C. Ye, and L. Zhang, Controlled synthesis of In2O3 octahedrons and nanowires, Crystal Growth Design 5(4), 1617–1621 (2005).
  • K. H. L. Zhang, A. Walsh, C. R. A. Catlow, V. K. Lazarov, and R. G. Egdell, Surface energies control the self-organization of oriented In2O3 nanostructures on cubic zirconia, Nano Lett. 10(9), 3740–3746 (2010).
  • G. Korotcenkov and J. R. Stetter, Comparative study of SnO2– and In2O3–based ozone sensors, ECS Trans. 6(20), 29–41 (2008).
  • J.–B. Sun, J. Xu, B. Wang, P. Sun, F.-M. Liu, and G.–Y. Lu, UV–enhanced room temperature ozone sensor based on hierarchical SnO2–In2O3, Chem. Res. Chinese Univer. 28(3), 483–487 (2012).
  • M. J. Madou and S. R. Morrison, Chemical Sensing with Solid State Devices, Academic Press Inc., New York, 1988.
  • P. Agoston, Point defect and surface properties of In2O3 and SnO2: A comparative study by first–principles methods. Ph.D. thesis, Technische Universität Darmstadt, Germany, 2011.
  • O. Bierwagen and J. S. Speck, High electron mobility In2O3(001) and (111) thin films with nondegenerate electron concentration, Appl. Phys. Lett. 97, 072103 (2010).
  • M. Batzill and U. Diebold, The surface and materials science of tin oxide, Prog. Surf. Sci. 79, 47–154 (2005).
  • D. A. Dulin, A. K. Avetisov, Yu.A. Mishchenko, and A. I. Gelbshtein, The isotopic exchange of oxygen on indium trioxide. In Proceedings of All–Union Seminar “Isotopic Methods in Studies of Mechanisms of Catalysis”, Novosibirsk, 1980, pp. 1–8 ( in Russian).
  • G. Korotcenkov, M. Ivanov, I. Blinov, and J. R. Stetter, Kinetics of In2O3–based thin film gas sensor response: The role of “redox” and adsorption/desorption processes in gas sensing effects, Thin Solid Films 515(7–8), 3987–3996 (2007).
  • O. A. Maslova, E. A. Makeeva, M. N. Rumyantseva, and A. M. Gaskov, Kinetics of interaction between nanocrystalline SnO2[M] (M = In, Fe, Ru, Ce) and oxygen, Inorg. Mater. 45(10), 1153–1157 (2009).
  • V. Brinzari, G. Korotcenkov, M. Ivanov, V. Nehasil, V. Matolin, K. Mašek, and M. Kamei, Valence band and band gap photoemission study of (111) In2O3 epitaxial films under interactions with oxygen, water and carbon monoxide, Surf. Sci. 601, 5585–5594 (2007.
  • V. Brinzari, B. K. Cho, M. Kamei, and G. Korotcenkov, Photoemission surface characterization of (001) In2O3 thin film through the interactions with oxygen, water and carbon monoxide: Comparison with (111) orientation, Appl. Surf. Sci. 324, 123–133 (2015).
  • P. D. C. King, T. D. Veal, D. J. Payne, A. Bourlange, R. G. Egdell, C. F. McConville, Surface electron accumulation and the charge neutrality level in In2O3, Phys. Rev. Lett. 101, 116808 (2008).
  • O. Bierwagen, J. S. Speck, T. Nagata, T. Chikyow, Y. Yamashita, H. Yoshikawa, and K. Kobayashi, Depletion of the In2O3(001) and (111) surface electron accumulation by an oxygen plasma surface treatment, Appl. Phys. Lett. 98, 172101 (2011).
  • D. R. Hagleitner, M. Menhart, P. Jacobson, S. Blomberg, K. Schulte, E. Lundgren, M. Kubicek, J. Fleig, F. Kubel, C. Puls, A. Limbeck, H. Hutter, L. A. Boatner, M. Schmid, and U. Diebold, Bulk and surface characterization of In2O3(001) single crystals, Phys. Rev. B 85, 115441 (2012).
  • P. D. C. King, T. D. Veal, P. H. Jefferson, S. A. Hatfield, L. F. J. Piper, C. F. McConville, F. Fuchs, J. Furthmüller, F. Bechstedt, Hai Lu, W. J. Schaff, Determination of the branch–point energy of InN: Chemical trends in common–cation and common–anion semiconductors, Phys. Rev. B 77, 045316 (2008).
  • K. H. Zhang, R. G. Egdell, F. Offi, S. Iacobucci, L. Petaccia, S. Gorovikov, and P. D. C. King, Microscopic origin of electron accumulation in In2O3, Phys. Rev. Lett. 110, 056803 (2013).
  • G. Korotcenkov, B. K. Cho, V. Brinzari, L. Gulina, and V. Tolstoy, Catalytically active filters deposited by SILD method for inhibitting sensitivity to ozone of SnO2–based conductometric gas sensors, Ferroelectrics 459(1), 46–51 (2014).
  • W. X. Huang, J. W. Teng, T. X. Cai, and X. H. Bao, Silver as a promoter for the catalytic decomposition of NOx under oxygen–excess condition: Evidence for oxygen spillover from noble metals to silver, Stud. Surf. Sci. Catal. 130, 1409–1414 (2000).
  • B. Chwieroth, B. R. Patton, and Y. Wang, Conduction and gas–surface reaction modelling in metal oxide gas sensors, J. Electroceram. 6, 27–41 (2001).
  • G. D. Papakonstantinou, J. M. Jaksic, D. Labou, A. Siokou, and M. M. Jaksic, Spillover phenomena and its striking impacts in electrocatalysis for hydrogen and oxygen electrode reactions, Adv. Phys. Chem. 2011, ID 412165 (2011).
  • G. Korotcenkov, V. Tolstoy, and J. Schwank, Successive ionic layer deposition (SILD) as a new sensor technology: synthesis and modification of metal oxides, Meas. Sci. Techn. 17, 1861–1869 (2006).
  • G. Korotcenkov, B. K. Cho, L. B. Gulina, V. P. Tolstoy, Gas sensor application of Ag nanoclusters synthesized by SILD method, Sens. Actuat. B 166–167, 402–410 (2012).
  • W. C. Conner, Jr. and J. L. Falconer, Spillover in heterogeneous catalysis, Chem. Rev. 95, 759–788 (1995).
  • M. N. Rumyantseva, O. V. Safonova, M. N. Boulova, L. I. Ryabova, and A. M. Gaskov, Dopants in nanocrystalline tin dioxide, Russ. Chem. Bull., Int. Ed. 52(6), 1217–1238 (2003).
  • G. Korotcenkov, V. Macsanov, V. Brinzari, V. Tolstoy, J. Schwank, A. Cornet, and J. Morante, Influence of Cu, Fe, Co, and Mn oxide nanoclusters on sensing behavior of SnO2 films, Thin Solid Films 467(1–2), 209–214 (2004).
  • G. Korotcenkov, V. Brinzari, L. Gulina, and B. K. Cho, The influence of gold nanoparticles on the conductivity response of SnO2–based thin film gas sensors, Appl. Surf. Sci. 353, 793–803 (2015).
  • G. Korotcenkov, V. Brinzari, S. H. Han, L. B. Gulina, V. P. Tolstoy, and B. K. Cho, SnO2 films decorated by Au clusters and their gas sensing properties, Mater. Sci. Forum 827, 251–256 (2015).
  • G. Korotcenkov, V. Brinzari, S. H. Han, and B. K. Cho, Gas sensing properties of In2O3 films modified with gold nanoparticles, Mater. Chem. Phys. 175, 188–199 (2016).
  • G. Korotcenkov, L. Gulina, B. K. Cho, S. H. Han, and V. Tolstoy, SnO2–Au nanocomposite synthesized by successive ionic layer deposition (SILD) method: characterization and application in gas sensors, Mater. Chem. Phys. 128(3), 433–441 (2011).
  • A. Labidi, E. Gillet, R. Delamare, M. Maaref, and K. Aguir, Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd, Sens. Actuat. B 120, 338–345 (2006).
  • G. Korotcenkov, L. B. Gulina, B. K. Cho, V. Brinzari, and V. P. Tolstoy, Au nanoclusters on the surface of SnO2 and In2O3 films: Synthesis by SILD method and characterization, Pure Appl. Chem. 86(5), 801–817 (2014).
  • N. Saliba, D. Parker, and B. Koela, Adsorption of oxygen on Au(111) by exposure to ozone, Surf. Sci. 410, 270–282 (1998).
  • J. Kim, E. Samano, and B. E. Koel, Oxygen adsorption and oxidation reactions on Au(211) surfaces: exposures using O2 at high pressures and ozone (O3) in UHV, Surf. Sci. 600, 4622–4632 (2006).
  • R. G. Pavelko, H. Daly, C. Hardacre, A. A. Vasiliev, and E. Llobet, Interaction of water, hydrogen and their mixtures with SnO2 based materials: the role of surface hydroxyl groups in detection mechanisms, Phys. Chem. Chem. Phys. 12, 2639–2647 (2010).
  • G. Korotcenkov, V. Brinzari, Y. Boris, M. Ivanov, J. Schwank, and J. Morante, Surface Pd doping influence on gas sensing characteristics of SnO2 thin films deposited by spray pyrolysis, Thin Solid Films 436(1), 119–126 (2003).
  • R. G. Pavelko, A. A. Vasiliev, E. Llobet, X. Vilanova, V. G. Sevastyanov, and N. T. Kuznetsov, Selectivity problem of SnO2 based materials in the presence of water vapors, Procedia Eng. 5, 111–114 (2010).
  • M. Ivanovskaya, D. Kotsikau, G. Faglia, P. Nelli, and S. Irkaev, Gas–sensitive properties of thin film heterojunction structures based on Fe2O3–In2O3 nanocomposites, Sens. Actuat. B 93, 422–430 (2003).
  • E. E. Gutman, T. V. Belysheva, and L. P. Bogovtseva, Heterostructure microsystems for ozone and chlorine sensor monitoring. In Proceeding of the 3rd NEXUSPAN Workshop on Microsystems in Environmental Monitoring, December 13–14, 1996, Moscow, Russia, pp. 65–68.
  • S. F. Timashev, S. P. Perov, and E. E. Gutman, Problems of physicochemistry of earth ozone layer, Russ. J. Phys. Chem. 68, 1360–1372 (1994).
  • G. Korotcenkov, I. Boris, V. Brinzari, Yu. Luchkovsky, G. Karkotsky, V. Golovanov, A. Cornet, E. Rossinyol, J. Rodriguez, and A. Cirera, Gas sensing characteristics of one–electrode gas sensors on the base of doped In2O3 ceramics, Sens. Actuat. B 103, 13–22 (2004).
  • G. Korotcenkov, I. Boris, V. Brinzari, S. H. Han, and B. K. Cho, The role of doping effect on the response of SnO2-based thin film gas sensors: Analysis based on the results obtained for Co-doped SnO2 films deposited by spray pyrolysis, Sens. Actuat. B 182, 112–124 (2013).
  • A. Hattori, H. Tachibana, N. Yoshiike, and A. Yoshida, Ozone sensor made by dip coating method, Sens. Actuat.A 77, 120–125 (1999).
  • R.–J. Wu and T.–M. Wu, High sensor response and short response time of ozone sensor using Au/TiO2–SnO2 material at room temperature, Sensor Lett. 8(4), 564–569 (2010).
  • G. Korotcenkov, Iu. Boris, V. Brinzari, S. H. Han, B. K. Cho, and Yu.N. Lychkovsky, In2O3:Ga and In2O3:P–based one–electrode gas sensors: Comparative study, Ceram. Intern. 41, 7478–7488 (2015).
  • G. Korotcenkov, I. Boris, A. Cornet, J. Rodriguez, A. Cirera, V. Golovanov, Yu. Lychkovsky, and G. Karkotsky, The influence of additives on gas sensing and structural properties of In2O3–based ceramics, Sens. Actuat. B 120, 657–664 (2007).
  • G. Korotcenkov, B. K. Cho, I. Boris, S. H. Han, Yu. Lychkovsky, and G. Karkotsky, Indium oxide ceramics doped by selenium for one–electrode gas sensors, Sens. Actuat. B 174, 586–593 (2012).
  • R. G. Pavelko, A. A. Vasiliev, E. Llobet, V. G. Sevastyanov, and N. T. Kuznetsov, Selectivity problem of SnO2 based materials in the presence of water vapors, Sens. Actuat. B 170, 51–59 (2012).
  • G. Korotcenkov, I. Boris, and B. K. Cho, SnO2:Cu films doped during spray pyrolysis deposition: The reasons of gas sensing properties change, Mater. Chem. Phys. 142, 124–131 (2013).
  • G. Korotcenkov and B. K. Cho, Bulk doping influence on the response of conductometric SnO2 gas sensors: Understanding through cathodoluminescence study, Sens. Actuat. B 196, 80–98 (2014).
  • G. Korotcenkov, B. K. Cho, M. Nazarov, D.-Y. Noh, and E. Kolesnikova, Cathodoluminescence studies of un-doped and (Cu, Fe, and Co)–doped tin dioxide films deposited by spray pyrolysis deposition, Curr. Appl. Phys. 10, 1123–1131 (2010).
  • W.–X. Wang, J.–F. Wang, H.–C. Chen, W.–B. Su, and G.–Z. Zang, Electrical nonlinearity of (Cu, Ni, Nb)–doped SnO2 varistors system, Mater. Sci. Eng. B 99, 457–460 (2003).
  • B. Kim, J. Jung, J. Lee, and J. Kim, Precipitate concentration of Co2SnO4 in CoO–doped SnO2 ceramics at different oxygen chemical potentials, Solid State Ionics 144, 321–327 (2001).
  • E. E. Gutman, T. V. Belysheva, and F.Kh. Chibirova, Structure effects in gas sensing by metal oxides. In Proceedings of 11th Eur. Conf. Solid–State Transducers (Eurosensors XI), Warsaw, Poland, September 21–24, 1997, pp. 341–344.
  • G. Brankovic, Z. Brankovic, M. R. Davolos, M. Cilense, and J. A. Varela, Influence of the common varistor dopants (CoO, Cr2O3 and Nb2O5) on the structural properties of SnO2 ceramics, Mater. Character. 52, 243–251 (2004).
  • L. Schimka, J. Harl, A. Stroppa, A. Grüneis, M. Marsman, F. Mittendorfer, and G. Kresse, Accurate surface and adsorption energies from many–body perturbation theory, Nat. Mater. 9, 741–744 (2010).
  • J. Oviedo and M. J. Gillan, First–principles study of the interaction of oxygen with the SnO2(110) surface, Surf. Sci. 490, 221–236 (2001).
  • J. Hays, A. Punnoose, R. Baldner, M. H. Engelhard, J. Peloquin, and K. M. Reddy, Relationship between the structural and magnetic properties of Co–doped SnO2 nanoparticles, Phys. Rev. B 72, 075203 (2005).
  • K.–S. Lee, I.–S. Han, D.–W. Seo, and S.–K. Woo, Improvement of strength in porous ceramics by control of additives, Mater. Sci. Forum 439, 68–73 (2003).
  • A. Ratko, O. Babushkin, A. Baran, and S. Baran, Sorption and gassensitive properties of In2O3 based ceramics doped with Ga2O3, J. Eur. Ceram. Soc. 18, 2227–2232 (1998).
  • A. Tricoli, M. Graf, and S. E. Pratsinis, Optimal doping for enhanced SnO2 sensitivity and thermal stability, Adv. Funct. Mater. 18, 1969–1976 (2008).
  • A. Kolmakov and M. Moskovits, Chemical sensing and catalysis by one-dimentioanl metal oxide nanostructures, Annu. Rev. Mater. Res. 34, 151–180 (2004).
  • E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, and G. Sberveglieri, Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors, Progress Mater. Sci. 54, 1–67 (2009).
  • R. S. Devan, R. A. Patil, J.-H. Lin, and Y.-R. Ma, One-dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications, Adv. Funct. Mater. 22(16), 3326–3370 (2012).
  • Y. Li, X.-Y. Yang, Y. Feng, Z.-Y. Yuan, and B.-L. Su, One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: Synthesis, characterizations, properties and applications, Crit. Rev. Sol. St. Mater. Sci. 37, 1–74 (2012).
  • F. Hernandez-Ramirez, A. Tarancon, O. Casals, J. Arbiol, A. Romano- Rodriguez, and J. R. Morante, High response and stability in CO and humidity measures using a single SnO2 nanowire, Sens. Actuat. B 121, 3–17 (2007).
  • M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature, Angew. Chem. Int. Ed. 41, 2405–2408 (2002).
  • D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, and C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett. 4, 1919–1924 (2004).
  • C. S. Rout, K. Ganesh, A. Govindaraj, and C. N. R. Rao, Sensors for the nitrogen oxides, NO2, NO, and N2O, based on In2O3 and WO3 nanowires, Appl. Phys. A 85, 241–246 (2006).
  • A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, and G. Sberveglieri, Controlled growth and sensing properties of In2O3 nanowires, Crystal Growth Des. 7, 2500–2504 (2007).
  • D. C. Meier, S. Semancik, B. Button, E. Strelcov, and A. Kolmakov, Coupling nanowire chemiresistors with MEMS microhotplate gas sensing platforms, Appl. Phys. Lett. 91, 63118–63120 (2007).
  • Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires, Nano Lett. 2, 717–720 (2002).
  • M. Tiemann, Repeated templating, Chem. Mater. 20(3), 961–971 (2008).
  • Y. Xie, D. Kocaefe, C. Chen, and Y. Kocaefe, Review of research on template methods in preparation of nanomaterials, J. Nanomater. 2016, 2302595 (2016).
  • B. Ding, C. Kim, H. Kim, M. Seo, and S. Park, Titanium dioxide nanofibers prepared by using electrospinning method, Fiber. Polym. 5, 105–109 (2004).
  • I. Raible, M. Burghard, U. Schlecht, A. Yasuda, and T. Vossever, V2O5 nanofibers: Novel gas sensors with extremely high sensitivity and selectivity to amines, Sens. Actuat. B 106, 730–735 (2005).
  • G. Wang, Y. Ji, X. Huang, X. Yang, P. Gouma, and M. Dudley, Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing, J. Phys. Chem. B 110, 23777–23782 (2006).
  • W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang, and C. Wang, A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers, Sens. Actuat. B 142, 61–65 (2009).
  • S. K. Lim, S. H. Hwang, D. Chang, and S. Kim, Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor, Sens. Actuat. B 149, 28–33 (2010).
  • Y. Wang, I. Ramos, and J. Santiago-Aviles, Detection of moisture and methanol gas using a single electrospun tin oxide nanofiber, IEEE Sensors J. 7, 1347–1348 (2007).
  • Y. Zhang, X. He, J. Li, Z. Miao, and F. Huang, Fabrication and ethanol-sensing properties of micro gas sensor based on electrospun SnO2 nanofibers, Sens. Actuat. B 132, 67–73 (2008).
  • A. Yang, X. Tao, and R. Wang, Room temperature gas sensing properties of SnO2/multiwall-carbon nanotube composite nano fibers, Appl. Phys. Lett. 91, 133110 (2007).
  • I. Kim, A. Rothschild, B. Lee, D. Kim, S. Jo, and H. Tuller, Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers, Nano Lett. 6, 2009–2013 (2006).
  • O. Landau, A. Rothschild, and E. Zussman, Processing-microstructure-properties correlation of ultrasensitive gas sensors produced by electrospinning, Chem. Mater. 21, 9–11 (2009).
  • J.-H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: Overview, Sens. Actuat. B 140, 319–336 (2009).
  • G. Korotcenkov, S. H. Han, and B. K. Cho, Material design for metal oxide chemiresistive gas sensors, J. Sens. Sci. Technol. 22(1), 1–17 (2013).
  • L. He, Y. Jia, F. Meng, M. Li, and J. Liu, Development of sensors based on CuO-doped SnO2 hollow spheres for ppb level H2S gas sensing, J. Mater. Sci. 44, 4326–4333 (2009).
  • Z. Lin, W. Song, and H. Yang, Highly sensitive gas sensor based on coral-like SnO2 prepared with hydrothermal treatment, Sens. Actuat. B 173, 22–27 (2012).
  • K. Choi, H. R. Kim, and J. H. Lee, Enhanced CO sensing characteristics of hierarchical and hollow In2O3 microspheres, Sens. Actuat. B 138, 497–503 (2009).
  • T. Hyodo, Y. Shimizu, and M. Egashira, Gas-sensing properties of ordered mesoporous SnO2 and effects of coating thereof, Sens. Actuat. B 93, 590–600 (2003).
  • A. Kaushik, R. Kumar, S. K. Arya, M. Nair, B. D. Malhotra, and S. Bhansali, Organic−inorganic hybrid nanocomposite–based gas sensors for environmental monitoring, Chem. Rev. 115, 4571–4606 (2015).
  • F.-L. Meng, Z. Guo, and X.-J. Huang, Graphene–based hybrids for chemiresistive gas sensors, Trends Anal. Chem. 68, 37–47 (2015).
  • A. Kaniyoor and S. Ramaprabhu, Hybrid carbon nanostructured ensembles as chemiresistive hydrogen gas sensors, Carbon 49, 227–236 (2011).
  • V. M. Aroutiounian, Metal oxide gas sensors decorated with carbon nanotubes, Lithuanian J. Phys. 55(4), 319–329 (2015).
  • U. Latif and F. L. Dickert, Graphene hybrid materials in gas sensing applications, Sensors 15, 30504–30524 (2015).
  • W. L. Hawkins, Polymer Degradation and Stabilization, Springer–Verlag, Berlin, 1984.
  • S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, Recent advances in graphene based gas sensors, Sens. Actuat. B 218, 160–183 (2015).
  • F. Berger, B. Ghaddab, J. B. Sanchez, and C. Mavon, Development of an ozone high sensitive sensor working at ambient temperature, J. Phys. Conf. Ser. 307, 012054 (2011).
  • B. Ghaddab, J. B. Sanchez, C. Mavon, M. Paillet, R. Parret, A. A. Zahab, J. L. Bantignies, V. Flaud, E. Beche, and F. Berger, Detection of O3 and NH3 using hybrid tin dioxide/carbon nanotubes sensors: Influence of materials and processing on sensor's sensitivity, Sens. Actuat. B 170, 67–74 (2012).
  • J. M. Simmons, B. M. Nichols, S. E. Baker, M. S. Marcus, O. Castellini, C. S. Lee, R. J. Hamers, and M. A. Eriksson, Effect of ozone oxidation on single–walled carbon nanotubes, J. Phys. Chem. B 110, 7113–7118 (2006).
  • W. Wongwiriyapan, S.–I. Honda, H. Konishi, T. Mizuta T., T. Ikuno, T. Ohmori, T. Ito, R. Shimazaki, T. Maekawa, K. Suzuki, H. Ishikawa, K. Oura, and M. Katayama, Ultrasensitive ozone detection using single walled carbon nanotube networks, Jpn. J. Appl. Phys. 45, 3669–3671 (2006).
  • Y. Park, K. Y. Dong, J. Lee, J. Choi, G. M. Bae, and B. K. Ju, Development of an ozone gas sensor using single walled carbon nanotubes, Sens. Actuat. B 140, 407–411 (2009).
  • K. Toda, R. Furue, and S. Hayami, Recent progress in applications of graphene oxide for gas sensing: A review, Anal. Chim. Acta 878, 43–53 (2015).
  • A. Kuznetsova, J. T. Yates Jr., V. V. Simonyan, J. K. Johnson, C. B. Huffman, and R. E. Smalley, Optimization of Xe adsorption kinetics in single walled carbon nanotubes, J. Chem. Phys. 115, 6691–6698 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.