713
Views
3
CrossRef citations to date
0
Altmetric
Review

Overview of Hydroxyapatite–Graphene Nanoplatelets Composite as Bone Graft Substitute: Mechanical Behavior and In-vitro Biofunctionality

, &

References

  • J. E. Fleming, Jr., C. N. Cornell, and G. F. Muschler, Bone cells and matrices in orthopedic tissue engineering, Orthop. Clin. North. Am. 31, 357–374 (2000).
  • W. G. De Long, Jr., T. A. Einhorn, K. Koval, M. McKee, W. Smith, R. Sanders, and T. Watson, Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis, J. Bone. Joint. Surg. Am. 89, 649–658 (2007).
  • F. Moussy, Biomaterials for the developing world, J. Biomed. Mater. Res. A 94, 1001–1003 (2010).
  • P. Kumar, B. Vinitha, and G. Fathima, Bone grafts in dentistry, J. Pharm. Bioallied. Sci. 5(Suppl 1), S125–S127 (2013).
  • C. Laurencin, Y. Khan, and S. F. El-Amin, Bone graft substitutes, Expert Rev. Med. Dev., 3, 49–57 (2006).
  • M. R. Urist, Bone: Formation by autoinduction, Science 150, 893–899 (1965).
  • M. R. Urist, Bone transplants and implants, In Fundamental and Clinical Bone Physiology, M. R. Urist (ed.), Lippincott Williams and Wilkins, Philadelphia (1980). pp. 331–368.
  • Y. Yang, Y. Kang, M. Sen, and S. Park, Bioceramics in Tissue Engineering, In Biomaterials for Tissue Engineering Applications: A Review of the Past and Future Trends, J. Burdick and R. L. Mauck (eds.), Springer-Verlag/Wien (2011). pp. 75–118.
  • L. G. Yu, K. A. Khor, H. Li, and P. Cheang, Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings, Biomaterials 24, 2695–2705 (2003).
  • C. Y. Tan, S. Ramesh, R. Tolouei, I. Sopyan, and W. D. Teng, Synthesis of high fracture toughness of hydroxyapatite bioceramics, Adv. Mater. Res. 264, 1849–1855 (2011).
  • M. J. Coathup, J. Blackburn, A. E. Goodship, J. L. Cunningham, T. Smith, and G. W. Blunn, Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components, Biomaterials 26, 4161–4169 (2005).
  • D. Lahiri, A. P. Benaduce, F. Rouzaud, J. Solomon, A. K. Keshri, L. Kos, and A. Agarwal, Wear behavior and in vitro cytotoxicity of wear debris generated from hydroxyapatite–carbon nanotube composite coating, J. Biomed. Mater. Res. A 96, 1–12 (2011).
  • S. P. Khanal, H. Mahfuz, and A. J. Rondinone, Th. Leventouri, Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon, Mater. Sci. Eng. C 60, 204–210 (2016).
  • W. J. Basirun, S. Baradaran, and B. Nasiri-Tabrizi, Hydroxyapatite–Graphene as Advanced Bioceramic Composites for Orthopedic Applications. In Advanced 2D Materials, A. Tiwari and M. Syväjärvi (eds.), Scrivener Publishing LLC (2016). pp. 473–502.
  • U. Ripamonti, Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models, Biomaterials 17, 31–35 (1996).
  • S. Baradaran, E. Moghaddam, W. J. Basirun, M. Mehrali, M. Sookhakian, M. Hamdi, M. R. Nakhaei Moghaddam, and Y. Alias, Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite, Carbon 69, 32–45 (2014).
  • J. H. Lee, Y. C. Shin, S. M. Lee, O. S. Jin, S. H. Kang, S. W. Hong, C. M. Jeong, J. B. Huh, and D. W. Han, Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites, Sci. Rep. 5, 18833 (2015).
  • A. Janković, S. Eraković, M. Mitrić, I. Z. Matić, Z. D. Juranić, G.C.P. Tsui, V. Mišković-Stanković, K. Yop Rhee, and S. J. Park, Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid, J. Alloys Compd. 624 (2015) 148–57.
  • D. Lahiri, S. Ghosh, A. Agarwal, Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: A review, Mater. Sc. Eng. C 32, 1727–1758 (2012).
  • L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Z. Xing, and Y. Chen, A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility, Carbon 61, 105–115 (2013).
  • C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 385–388 (2008).
  • J. Liu, H. Yan, M. J. Reece, and K. Jiang, Toughening of zirconia/alumina composites by the addition of graphene platelets, J. Eur. Ceram. Soc. 32, 4185–4193 (2012).
  • Sh. Guo and Sh. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications, Chem. Soc. Rev. 40, 2644–2672 (2011).
  • J. Liu, H. Yan, and K. Jiang, Mechanical properties of graphene platelet-reinforced alumina ceramic composites, Ceram. Int. 39, 6215–6221 (2013).
  • K. Wang, Y. Wang, Z. Fan, J. Yan, and T. Wei, Preparation of graphene nanosheet/alumina composites by spark plasma sintering, Mater. Res. Bull. 46, 315–318 (2011).
  • L. Zhang, X. G. Zhang, Y. Chen, J. N. Su, W. W. Liu, T. H. Zhang, F. Qi, and Y. G. Wang, Interfacial stress transfer in a graphene nanosheet toughened hydroxyapatite composite, Appl. Phys. Lett. 105, 161908 (2014).
  • B. Nasiri-Tabrizi, B. Pingguan-Murphy, W. J. Basirun, and S. Baradaran, Crystallization behavior of tantalum and chlorine co-substituted hydroxyapatite nanopowders, J. Ind. Eng. Chem. 33, 316–325 (2016).
  • A. Fahami, B. Nasiri-Tabrizi, G. W. Beall, and B. Pingguan-Murphy, Effect of ion concentration on mechanosynthesis of carbonated chlorapatite nanopowders, Mater. Lett. 146, 16–19 (2015).
  • B. Nasiri-Tabrizi, E. Zalnezhad, B. Pingguan-Murphy, W. J. Basirun, A.M.S. Hamouda, and S. Baradaran, Structural and morphological study of mechanochemically synthesized crystalline nanoneedles of Zr-doped carbonated chlorapatite, Mater. Lett. 149, 100–104 (2015).
  • M. Šupová, Substituted hydroxyapatites for biomedical applications: A review, Ceram. Int. 41, 9203–9231 (2015).
  • S. V. Dorozhkin, Calcium orthophosphate-based bioceramics, Materials 6, 3840–3942 (2013).
  • M. Sadat-Shojai, M. T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater. 9, 7591–7621 (2013).
  • Boundless. “Connective Tissues: Bone, Adipose, and Blood.” Boundless Biology. Boundless, May 26, 2016. Available at https://www.boundless.com/biology/textbooks/boundless-biology-textbook/the-animal-body-basic-form-and-function-33/animal-primary-tissues-193/connective-tissues-bone-adipose-and-blood-739-11969/ (accessed July 23, 2016).
  • K. Sato, Mechanism of hydroxyapatite mineralization in biological systems, J. Ceram. Soc. Japan 115, 124–130 (2007).
  • P. Malmberg and H. Nygren, Methods for the analysis of the composition of bone tissue, with a focus on imaging mass spectrometry (TOF-SIMS), Proteomics 8, 3755–3762 (2008).
  • D. L. Batchelar, M.T.M. Davidson, W. Dabrowski, and I. A. Cunningham, Bonecomposition imaging using coherent-scatter computed tomography: Assessing bone health beyond bone mineral density, Med. Phys. 33, 904–915 (2006).
  • A. Rabiei, T. Blalock, B. Thomas, J. Cuomo, Y. Yang, and J. Ong, Microstructure, mechanical properties, and biological response to functionally graded HA coatings, Mater. Sci. Eng. C 27, 529–533 (2007).
  • L. Chen, J. M. Mccrate, J.C.M. Lee, and H. Li, The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells, Nanotechnology 22, 105708 (2011).
  • D. Chen D, C. Tang, K. Chan, C. Tsui, P.H.F. Yu, M.C.P. Leung, and P. S. Uskokovic, Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite, Compos. Sci. Technol. 67, 1617–1626 (2007).
  • I. M. Pelin, S. S. Maier, G. C. Chitanu, and V. Bulacovschi, Preparation and characterization of a hydroxyapatite–collagen composite as component for injectable bone substitute, Mater. Sci. Eng. C 29, 2188–2194 (2009).
  • Y. Gu, K. Khor, and P. Cheang, Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS), Biomaterials 25, 4127–4134 (2004).
  • P. O'Hare, B. J. Meenan, G. A. Burke, G. Byrne, D. Dowling, and J. A. Hunt, Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique, Biomaterials 31, 515–522 (2010).
  • K. Sato, Mechanism of hydroxyapatite mineralization in biological systems, J. Ceram. Soc. Japan 115, 124–30 (2007).
  • C. Barry Carter and M. Grant Norton, Ceramic Materials: Science and Engineering, 2nd ed., Springer (2013).
  • P. Habibovic, M. C. Kruyt, M. V. Juhl, S. Clyens, R. Martinetti, L. Dolcini, N. Theilgaard, and C. A. van Blitterswijk, Comparative in vivo study of six hydroxyapatite-based bone graft substitutes, J. Orthop. Res. 26, 1363–1370 (2008).
  • T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27, 2907–15 (2006).
  • E. Marini, P. Ballanti, G. Silvestrini, F. Valdinucci, and E. Bonucci, The presence of different growth factors does not influence bone response to hydroxyapatite:preliminary results, J. Orthopaed. Traumatol. 5, 34–43 (2004).
  • S. Rabiee, F. Moztarzadeh, and M. Solati-Hashjin, Synthesis and characterization of hydroxyapatite cement, J. Mol. Struct. 969, 172–175 (2010).
  • R. Kniep and P. Simon, Fluorapatite–gelatine-nanocomposites: Self-organized morphogenesis, real structure and relations to natural hard materials, Top Curr. Chem. 270, 73–125 (2007).
  • S. Eiden-Assmann, M. Viertelhaus, A. Heiss, K. Hoetzer, and J. Felsche, The influence of amino acids on the biomineralization of hydroxyapatite in gelatin, J. Inorg. Biochem. 91, 481–486 (2002).
  • A. Bigi, F. Marchetti, A. Ripamonti, N. Roveri, and E. Foresti, Magnesium and strontium interaction with carbonate-containing hydroxyapatite in aqueous medium, J. Inorg. Biochem. 15, 317–327 (1981).
  • L. B. Gower, Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization, Chem. Rev. 108, 4551–4627 (2008).
  • M. Iijima, C. Du, C. Abbott, Y. Doi, J. Moradian-Oldak, Control of apatite crystal growth by the co-operative effect of a recombinant porcine amelogenin and fluoride, Eur. J. Oral. Sci. 114 (2006) 304–7.
  • J. Li, Y. Yin, F. Yao, L. Zhang, and K. Yao, Effect of nano-and micro-hydroxyapatite/chitosan–gelatin network film on human gastric cancer cells, Mater. Lett. 62, 3220–3223 (2008).
  • C. H. Hou, S. M. Hou, Y. S. Hsueh, J. Lin, H. C. Wu, and F. H. Lin, The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy, Biomaterials 30, 3956–3960 (2009).
  • L. Trombelli, A. Simonelli, M. Pramstraller, U.M.E. Wikesjo, and R. Farina, Single flap approach with and without guided tissue regeneration and a hydroxyapatite biomaterial in the management of intraosseous periodontal defects, J. Periodontol. 81, 1256–1263 (2010).
  • T. Furukawa, Y. Matsusue, T. Yasunaga, Y. Nakagawa, Y. Okada, Y. Shikinami, M. Okuno, and T. Nakamura, Histomorphometric study on high-strength hydroxyapatite/poly(Llactide) composite rods for internal fixation of bone fractures, J. Biomed. Mater. Res. 50, 410–419 (2000).
  • Q. Ye, K. Ohsaki, K. Li, D. J. Li, C. S. Zhu, T. Ogawa, S. Tenshin, and T. Takano-Yamamoto, Histological reaction to hydroxyapatite in the middle ear of rats, Auris. Nasus. Larynx. 28, 131–136 (2001).
  • Q. Lv, L. Nair, and C. T. Laurencin, Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors, J. Biomed. Mater. Res. 91, 679–691 (2009).
  • Y. J. Seol, J. Y. Kim, E. K. Park, S. Y. Kim, and D. W. Cho, Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology, Microelectron. Eng. 86, 1443–1446 (2009).
  • F. P. Strietzel, P. A. Reichart, and H. L. Graf, Lateral alveolar ridge augmentation using a synthetic nano-crystalline hydroxyapatite bone substitution material (Ostim®), Clin. Oral. Implants Res. 18, 743–751 (2007).
  • M. Sadat-Shojai, M. Atai, and A. Nodehi, Method for production of biocompatible nanoparticles containing dental adhesive, US Patent 8,357,732 (2013).
  • D. Blackwood and K. Seah, Electrochemical cathodic deposition of hydroxyapatite: improvements in adhesion and crystallinity, Mater. Sci. Eng. C 29, 1233–1238 (2009).
  • M. Itokazu, W. Yang, T. Aoki, A. Ohara, and N. Kato, Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing, Biomaterials 19, 817–819 (1998).
  • S. Sugiyama, T. Minami, H. Hayashi, M. Tanaka, N. Shigemoto, and J. B. Moffat, Partial oxidation of methane to carbon oxides and hydrogen on hydroxyapatite: enhanced selectivity to carbon monoxide with tetrachloromethane, Energ. Fuel. 10, 828–830 (1996).
  • M. Zahouily, Y. Abrouki, B. Bahlaouan, A. Rayadh, and S. Sebti, Hydroxyapatite: New efficient catalyst for the Michael addition, Catal. Commun. 4, 521–524 (2003).
  • L. D. DeLoach, S. A. Payne, L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications, IEEE J. Quantum Elect. 29, 1179–1191 (1993).
  • M. Mahabole, R. Aiyer, C. Ramakrishna, B. Sreedhar, and R. Khairnar, Synthesis, characterization and gas sensing property of hydroxyapatite ceramic, Bull. Mater. Sci. 28, 535–545 (2005).
  • A. Bouhaouss, A. Bensaoud, A. Laghzizil, and M. Ferhat, Effect of chemical treatments on the ionic conductivity of carbonate apatite, Int. J. Inorg. Mater. 3, 437–441 (2001).
  • L. Li, Y. Liu, J. Tao, M. Zhang, H. Pan, X. Xu, and R. Tang, Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe, J. Phys. Chem. C 112, 12219–12224 (2008).
  • K. Purdy, T. Embley, S. Takii, and D. Nedwell, Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method, Appl. Environ. Microbiol. 62, 3905–3907 (1996).
  • A. Jungbauer, R. Hahn, K. Deinhofer, and P. Luo, Performance and characterization of a nanophased porous hydroxyapatite for protein chromatography, Biotechnol. Bioeng. 87, 364–375 (2004).
  • K. Lin, J. Pan, Y. Chen, R. Cheng, and X. Xu, Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders, J. Hazard. Mater. 161, 231–240 (2009).
  • Y. Hashimoto, T. Taki, and T. Sato, Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions, J. Environ. Manage. 90, 1782–1789 (2009).
  • M. Vallet-Regí and J. M. Gonzalez-Calbet, Calcium phosphates as substitution of bone tissues, Prog. Solid State Chem. 32, 1–31 (2004).
  • Z. Dong, Y. Li, and Q. Zou, Degradation and biocompatibility of porous nanohydroxyapatite/polyurethane composite scaffold for bone tissue engineering, Appl. Surf. Sci. 255, 6087–6091 (2009).
  • Y. Wang, L. Liu, and S. Guo, Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro, Polym. Degrad. Stab. 95, 207–213 (2010).
  • Y. Cai, Y. Liu, W. Yan, Q. Hu, J. Tao, and M. Zhang, Role of hydroxyapatite nanoparticle size in bone cell proliferation, J. Mater. Chem. 17, 3780–3787 (2007).
  • S. V. Dorozhkin, Nanosized and nanocrystalline calcium orthophosphates, Acta Biomater. 6, 715–734 (2010).
  • S. Bose, A. Banerjee, S. Dasgupta, and A. Bandyopadhyay, Synthesis, processing, mechanical, and biological property, Characterization of hydroxyapatite whisker-reinforced hydroxyapatite composites, J. Am. Ceram. Soc. 92, 323–330 (2009).
  • M. Eriksson, Y. Liu, J. Hu, L. Gao, M. Nygren, and Z. Shen, Transparent hydroxyapatite ceramics with nanograin structure prepared by high pressure spark plasma sintering at the minimized sintering temperature, J. Eur. Ceram. Soc. 31, 1533–1540 (2011).
  • A. Bianco, I. Cacciotti, M. Lombardi, and L. Montanaro, Si-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sinterability, Mater. Res. Bull. 44, 345–354 (2009).
  • S. Bose, S. Dasgupta, S. Tarafder, and A. Bandyopadhyay, Microwave-processed nanocrystalline hydroxyapatite: simultaneous enhancement of mechanical and biological properties, Acta Biomater. 6, 3782–3790 (2010).
  • B. Li, B. Guo, H. Fan, and X. Zhang, Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro, Appl. Surf. Sci. 255, 357–360 (2008).
  • T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, Enhanced osteoclastlike cell functions on nanophase ceramics, Biomaterials 22, 1327–1333 (2001).
  • J. Song, E. Saiz, and C. R. Bertozzi, A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites, J. Am. Chem. Soc. 125, 1236–1243 (2003).
  • V. M. Rusu, C. H. Ng, M. Wilke, B. Tiersch, P. Fratzl, and M. G. Peter, Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials, Biomaterials 26, 5414–5426 (2005).
  • I. Cacciotti, Cationic and anionic substitutions in hydroxyapatite, In Handbook of Bioceramics and Biocomposites, I. V. Antoniac (ed.), Springer International Publishing Switzerland (2015). pp. 1–68.
  • T. J. Webster, E. A. Massa-Schlueter, J. L. Smith, and E. B. Slamovich, Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials 25, 2111–2121 (2004).
  • S. Dasgupta, S. S. Banerjee, A. Bandyopadhyay, and S. Bose, Zn- and Mg-doped hydroxyapatite nanoparticles for controlled release of protein, Langmuir 26, 4958–4964 (2010).
  • N. Kose, A. Otuzbir, C. Pekşen, A. Kiremitçi, and A. Doğan, A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance, Clin. Orthop. Relat. Res. 471, 2532–2539 (2013).
  • A. Fahami, B. Nasiri-Tabrizi, G. W. Beall, and W. J. Basirun, Structural insights of mechanically induced aluminum-doped hydroxyapatite nanoparticles by Rietveld refinement, Chin. J. Chem. Eng. (2016) Doi: 10.1016/j.cjche.2016.07.013.
  • H. ElFeki, A. Ben Salah, A. Daoud, A. Lamure, and C. Lacabanne, Studies by thermally stimulated current (TSC) of hydroxyland fluoro-carbonated apatites containing sodium ions, J. Phys. Condens. Matter 12, 8331–8343 (2000).
  • E.A.P. DeMaeyer, R.M.H. Verbeeck, and D. E. Naessens, Effect of heating on the constitution of Na+ and CO32− containing apatites obtained by hydrolysis of monetite, Inorg. Chem. 33, 5999–6006 (1993).
  • H. ElFeki, T. Naddari, J. M. Savariault, and A. Ben Salah, Localization of potassium in substituted lead hydroxyapatite: Pb9.30K0.60(PO4)6(OH)1.20 by X-ray diffraction, Solid State Sci. 2, 725–733 (2000).
  • H. ElFeki, J. M. Savariault, and A. BenSalah, Structure refinements by the Rietveld method of partially substituted hydroxyapatite: Ca9Na0.5(PO4)4.5(CO3)1.5(OH)2, J. Alloys Compd. 287, 114–20 (1999).
  • A. Nounah, J. Lacout, and J. M. Savariault, Localization of cadmiumin cadmium-containing hydroxy-and fluorapatites, J. Alloys Compd. 188, 141–146 (1992).
  • A. Bigi, E. Boanini, C. Capuccini, and M. Gazzano, Strontium-substituted hydroxyapatite nanocrystals, Inorg. Chim. Acta 360, 1009–1116 (2007).
  • M. Wakamura, K. Kandori, and T. Ishikawa, Surface structure and composition of calcium hydroxyapatites substituted with Al(III), La(III) and Fe (III) ions, Colloid Surf. A—Physicochem. Eng. Asp 164, 297–305 (2000).
  • R. Z. LeGeros, Calcium Phosphates in Oral Biology and Medicine, Karger, Basel (1991).
  • A. Bigi, B. Foresti, R. Gregoriani, A. Ripamonti, N. Roveri, and J. S. Shah, The role of magnesium on the structure of biological apatites, Calcif. Tissue Int. 50, 439–444 (1992).
  • M. Percival, Bone health & osteoporosis, Appl. Nutr. Sci. Rep. 5, 1–5 (1999).
  • R. K. Rude and H. E. Gruber, Magnesium deficiency and osteoporosis: animal and human observations, J. Nutr. Biochem. 15, 710–716 (2004).
  • L. Mayer, R. Schlam, and J.D.B. Featberstone, Magnesium-containing carbonate apatites, J. Inorg. Biochem. 66, 1–6 (1997).
  • E. Bertoni, A. Bigi, G. Cojazzi, M. Gandolfi, S. Panzavolta, and N. Roveri, Nanocrystals of magnesium and fluoride substituted hydroxyapatite, J. Inorg. Biochem. 72, 29–35 (1998).
  • D. Laurencin, N. Almora-Barrios, N. H. de Leeuw, C. Gervais, C. Bonhomme, F. Mauri, W. Chrzanowski, J. C. Knowle, R. J. Newport, A. Wong, Z. Gan, and M. E. Smith, Magnesium incorporation into hydroxyapatite, Biomaterials 32, 1826–1837 (2011).
  • I. Cacciotti, A. Bianco, M. Lombardi, and L. Montanaro, Mg-substituted hydroxyapatite nanopowders: synthesis, thermal stability and sintering behavior, J. Eur. Ceram. Soc. 29, 2969–2978 (2009).
  • F. Ren, Y. Leng, R. Xin, and X. Ge, Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite, Acta Biomater. 6, 2787–2796 (2010).
  • A. Farzadi, F. Bakhshi, M. Solati-Hashjin, M. Asadi-Eydivand, and N. Azuanabu Osman, Magnesium incorporated hydroxyapatite: synthesis and structural properties characterization, Ceram. Int. 40, 6021–6029 (2014).
  • Z. Zyman, M. Tkachenko, M. Epple, M. Polyakow, and M. Naboka, Magnesium-substituted hydroxyapatite ceramics, Mater. Werkst. 37, 474–477 (2006).
  • T. J. Webster, C. Ergun, R. H. Doremus, and R. Bizios, Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. II. Mechanisms of osteoblast adhesion, J. Biomed. Mater. Res. 59, 312–317 (2002).
  • W. L. Suchanek, K. Byrappa, P. Shuk, R. E. Riman, V. F. Janas, and K. S. Ten Huisen, Preparation of magnesium-substituted hydroxyapatite powders by the mechanochemical-hydrothermal method, Biomaterials 25, 4647–4657 (2004).
  • E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, and S. Sprio, Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour, J. Mater. Sci. Mater. Med. 19, 239–247 (2008).
  • S. G. Dahl, P. Allain, P. J. Marie, Y. Mauras, G. Boivin, P. Ammann, Y. Tsouderos, P. D. Delmas, and C. Christiansen, Incorporation and distribution of strontium in bone, Bone 28, 446–453 (2001).
  • R. G. Robinson, J. A. Spicer, D. F. Preston, A. V. Wegst, and N. L. Martin, Treatment of metastatic bone pain with strontium-89, Int. J. Rad. Appl. Instrum. 14, 219–222 (1987).
  • E. Canalis, M. Hott, P. Deloffre, Y. Tsouderos, and P. J. Marie, The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro, Bone 18, 517–523 (1996).
  • E. Bonnelye, A. Chabadel, F. Saltel, and P. Jurdic, Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro, Bone 42, 129–138 (2008).
  • J. Caverzasio, Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms, Bone 42, 1131–1136 (2008).
  • J. Y. Reginster, Strontium ranelate in osteoporosis, Curr. Pharm. Des. 8, 1907–1916 (2002).
  • S. L. Peng, G. Q. Zhou, K.D.K. Luk, K.M.C. Cheung, Z. Y. Li, W. M. Lam, Z. J. Zhou, and W. W. Lu, Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway, Cell Physiol. Biochem. 23, 165–174 (2009).
  • A. S. Hurtel-Lemaire, R. Mentaverri, A. Caudrillier, F. Cournarie, A. Wattel, S. Kamel, E. F. Terwilliger, E. M. Brown, and M. Brazier, The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis: New insights into the associated signaling pathways, J. Biol. Chem. 284, 575–584 (2009).
  • J. Buehler, P. Chappuis, J. L. Saffar, Y. Tsouderos, and A. Vignery, Strontium ranelate inhibits bone resorption while maintaining bone formation in alveolar bone in monkeys (Macaca fascicularis), Bone 29, 176–179 (2001).
  • E. Landi, A. Tampieri, G. Celotti, S. Sprio, M. Sandri, and G. Logroscino, Sr-substituted hydroxyapatites for osteoporotic bone replacement, Acta Biomater. 3, 961–9 (2007).
  • H. W. Kim, Y. H. Koh, Y. M. Kong, J. G. Kang, and H. E. Kim, Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method, J. Mater. Sci. Mater. Med. 15, 1129–1134 (2004).
  • J. Christoffersen, M. R. Christoffersen, N. Kolthoff, and O. Barenholdt, Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection, Bone 20, 47–57 (1997).
  • E. Boanini, P. Torricelli, M. Fini, and A. Bigi, Osteopenic bone cell response to strontium-substituted hydroxyapatite, J. Mater. Sci. Mater. Med. 22, 2079–2088 (2011).
  • H. B. Pan, Z. Y. Li, W. M. Lam, J. C. Wong, B. W. Darvell, K.D.K. Luk, and W. W. Lu, Solubility of strontium-substituted apatite by solid titration, Acta Biomater. 5, 1678–1685 (2009).
  • W. Zhang, Y. Shen, H. Pan, K. Lin, X. Liu, B. W. Darvell, W. W. Lu, J. Chang, L. Deng, D. Wang, and W. Huang, Effects of strontium in modified biomaterials, Acta Biomater. 7, 800–808 (2011).
  • S. C. Verberckmoes, G. J. Behets, L. Oste, A. R. Bervoets, L. V. Lamberts, M. Drakopoulos, A. Somogyi, P. Cool, W. Dorrine, M. E. De Broe, and P. C. D'Haese, Effects of strontium on the physicochemical characteristics of hydroxyapatite, Calcif. Tissue Int. 75, 405–415 (2004).
  • M. Yamaguchi and R. Yamaguchi, Action of zinc on bone metabolism in rats – increases in alkaline-phosphatase activity and DNA content, Biochem. Pharmacol. 35, 773–777 (1986).
  • F. Miyaji, Y. Kono, and Y. Suyama, Formation and structure of zinc-substituted calcium hydroxyapatite, Mater. Res. Bull. 40, 209–220 (2005).
  • A. Bigi, E. Foresti, M. Gandolfi, M. Gazzano, and N. Roveri, Inhibiting effect of zinc on hydroxylapatite crystallization, J. Inorg. Biochem. 58, 49–58 (1995).
  • N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, and A. Ito, Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0 0 0 1) face, J. Phys. Chem. B 104, 4189–4194 (2000).
  • J. Hardes, H. Ahrens, C. Gebert, A. Streitbuerger, H. Buerger, M. Erren, A. Gunsel, Wedemeyer, G. Saxler, W. Winkelmann, and G. Gosheger, Lack of toxicological sideeffects in silver-coated megaprostheses in humans, Biomaterials 28, 2869–2875 (2007).
  • G. Gosheger, J. Hardes, H. Ahrens, A. Streitburger, H. Buerger, M. Erren, A. Gunsel, F. h. Kemper, W. Winkelmann, and C. Von Eiff, Silver-coated megaendoprostheses in a rabbit model – an analysis of the infection rate and toxicological side effects, Biomaterials 25, 5547–5556 (2004).
  • N. Rameshbabu, T.S.S. Kumar, T. G. Prabhakar, V. S. Sastry, K. Murty, and K. P. Rao, Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization, J. Biomed. Mater. Res. A 80A, 581–591 (2007).
  • M. Sygnatowicz, K. Keyshar, and A. Tiwari, Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films, JOM 62, 65–70 (2010).
  • V. Stanic, D. Janackovic, S. Dimitrijevic, S. B. Tanaskovic, M. Mitric, M. S. Pavlovic, A. Krstic, D. Jovanovic, and S. Raicevic, Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering, Appl. Surf. Sci. 257, 4510–4518 (2011).
  • L. Badrour, A. Sadel, M. Zahir, L. Kimakh, and A. El Hajbi, Synthesis and physical and chemical characterization of Ca10-xAgx(PO4)(6)(OH)(2-x)square(x) apatites, Ann. Chim. Sci. Mater. 23, 61–64 (1998).
  • Y. Chen, X. Zheng, Y. Xie, H. Ji, C. Ding, H. Li, and K. Dai, Silver release from silvercontaining hydroxyapatite coatings, Surf. Coat. Technol. 205, 1892–6 (2010).
  • M. Roy, G. A. Fielding, H. Beyenal, A. Bandyopadhyay, and S. Bose, Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating, Appl. Mater. Interf. 4, 1341–1349 (2012).
  • G. A. Fielding, M. Roy, A. Bandyopadhyay, and S. Bose, Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings, Acta Biomater. 8, 3144–3152 (2012).
  • H. P. Wiesmann, U. Plate, K. Zierold, and H. J. Hohling, Potassium is involved in apatite biomineralization, J. Dent. Res. 77, 1654–1657 (1998).
  • H. J. Hohling, H. Mishima, Y. Kozawa, T. Daimon, R. H. Barckhaus, and K. D. Richte, Microprobe analyses of the potassium calcium distribution relationship in predentin, Scan Microsc. Int. 5, 247–253 (1991).
  • R. Itoh and Y. Suyama, Sodium excretion in relation to calcium and hydroxyproline excretion in a healthy Japanese population, Am. J. Clin. Nutr. 63, 735–740 (1996).
  • F. Ginty, A. Flynm, and K. D. Cashman, The effect of dietary sodium intake on biochemical markers of bone metabolism in young women, Br. J. Nutr. 79, 343–350 (1998).
  • E. G. Nordström and K. H. Karlsson, Chemical characterization of a potassium hydroxyapatite prepared by soaking in potassium chloride and carbonate solutions, Biomed. Mater. Eng. 2, 185–189 (1992).
  • S. Kannan, J.M.G. Ventura, and J.M.F. Ferreira, Synthesis and thermal stability of potassium substituted hydroxyapatites and hydroxyapatite/β-tricalciumphosphate mixtures, Ceram. Int. 33, 1489–1494 (2007).
  • S. Kannan, J.M.G. Ventura, A. F. Lemos, A. Barba, and J.M.F. Ferreira, Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics, Ceram. Int. 34, 7–13 (2008).
  • M. Wakamura, K. Hashimoto, and T. Watanabe, Photocatalysis by calcium hydroxyapatite modified with Ti(IV): Albumin decomposition and bactericidal effect, Langmuir 19, 3428–3431 (2003).
  • K. Kandori, M. Oketani, and M. Wakamura, Effects of Ti(IV) substitution on protein adsorption behaviors of calcium hydroxyapatite particles, Colloid Surf. B Biointerf. 101, 68–73 (2013).
  • Ľ. Medvecký, R. Štulajterová, Ľ. Parilák, J. Trpčevská, J. Ďurišin, and S. M. Barinov, Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid, Colloids Surf. A 281, 221–229 (2006).
  • A. Armulik, G. Svineng, K. Wennerberg, R. Fässler, and S. Johansson, Expression of integrin subunit beta1B in integrin beta1-deficient GD25 cells does not interfere with alphaVbeta3 functions, Exp. Cell. Res. 254, 55–63 (2000).
  • I. Mayer, O. Jacobsohn, T. Niazov, J. Werckmann, M. Iliescu, M. Richard-Plouet, O. Burghaus, and D. Reinen, Manganese in precipitated hydroxyapatites, Eur. J. Inorg. Chem. 7, 1445–1451 (2003).
  • Y. Li, C. T. Nam, and C. P. Ooi, Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: characterization and cytotoxicity analysis, J. Phys. Conf. Ser. 187, 012024 (2009).
  • H. C. Wu, T. W. Wang, J. S. Sun, W. H. Wang, and F. H. Lin, A novel biomagnetic nanoparticle based on hydroxyapatite, Nanotechnology 18, 165601 (2007).
  • A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, Medical application of functionalized magnetic nanoparticles, J. Biosci. Bioeng. 100, 1–11 (2005).
  • C. H. Hou, S. M. Hou, Y. S. Hsueh, J. Lin, H. C. Wu, and F. H. Lin, The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy, Biomaterials 30, 3956–3960 (2009).
  • J. Coelho, N. S. Hussain, P. S. Gomes, M. P. Garcia, M. A. Lopes, M. H. Fernandes, and J. D. Santos, Development and characterization of lanthanides doped hydroxyapatite composites for bone tissue application. In Current Trends on Glass and Ceramic Materials, S. H. Nandyala and J. D. Santos (eds.), Bentham Science Publishers, Sharjah, (2013). pp. 87–115.
  • C. S. Ciobanu, C. L. Popa, and D. Predoi, Sm:HAp nanopowders present antibacterial activity against Enterococcus faecalis, J. Nanomater. 780686 (2014).
  • L. R. Bernstein, Mechanisms of therapeutic activity for gallium, Pharmacol. Rev. 50, 665–682 (1998).
  • H. Dollwet and J. Sorenso, Historic uses of copper compounds in medicine, Trace. Elem. Med. 2, 80–87 (1985).
  • V. Stanic, S. Dimitrijevic, J. Antic-Stankovic, M. Mitric, B. Jokic, I. B. Plecas, and S. Raicevic, Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders, Appl. Surf. Sci. 256, 6083–6089.
  • S. Daou, A. El Chemaly, P. Christofilopoulos, L. Bernard, P. Hoffmeyer, and N. Demaurex, The potential role of cobalt ions released from metal prosthesis on the inhibition of Hv1 proton channels and the decrease in Staphyloccocus epidermidis killing by human neutrophils, Biomaterials 32, 1769–1777 (2011).
  • K. P. Tank, K. S. Chudasama, V. S. Thaker, and M. J. Joshi, Cobalt-doped nanohydroxyapatite: Synthesis, characterization, antimicrobial and hemolytic studies, J. Nanopart. Res. 15, 1644–1655 (2013).
  • K. Singh, Y. Kumar, P. Puri, C. Sharma, and K. R. Aneja, Thermal, spectral, fluorescence, and antimicrobial studies of cobalt, nickel, copper, and zinc complexes derived from 4-[(5-bromo-thiophen-2-ylmethylene)-amino]-3-mercapto-6-methyl-5-oxo-[1,2,4]triazine, Internat, J. Inorg. Chem. 2012, 873232 (2012).
  • G. Montel, G. Bonel, J. C. Heughebaert, J. C. Trombe, and C. Rey, New concepts in the composition, crystallization and growth of the mineral component of calcified tissues, J. Cryst. Growth 53, 74–99 (1981).
  • J. P. Lafon, E. Champion, and D. Bernache-Assollant, Processing of AB-type carbonated hydroxyapatite Ca10-x(PO4)(6-x)(CO3)(x)(OH)(2-x-2y)(CO3)(y) ceramics with controlled composition, J. Eur. Ceram. Soc. 28, 139–147 (2008).
  • Z. Amjad, Calcium Phosphates in Biological and Industrial Systems, Kluwer, Boston (1997).
  • C. Rey, B. Collins, T. Goehl, I. R. Dickson, and M. J. Glimcher, The carbonate environment in bone mineral: A resolution-enhanced Fourier Transform Infrared Spectroscopy study, Calcif. Tissue Int. 45, 157–164 (1989).
  • J. C. Elliott, Calcium phosphate biominerals. In Phosphates: Geochemical, Geobiological and Material Importance, Reviews in Mineralogy and Geochemistry, M. J. Kohn, J. Rakovan, and J. M. Hughes (eds.), Mineralogical Society of America, Washington, 48, 427–454 (2002).
  • R. Z. LeGeros, Effect of carbonate on the lattice parameters of apatite, Nature 206, 403–404 (1965).
  • E. Landi, G. Celotti, G. Logroscino, and A. Tampieri, Carbonated hydroxyapatite as bone substitute, J. Eur. Ceram. Soc. 23, 2931–2937 (2003).
  • C. Rey, V. Renugopalakrishnan, B. Collins, and M. Glimcher, Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging, Calcif. Tissue Int. 49, 251–258 (1991).
  • J. C. Merry, I. R. Gibson, S. M. Best, and W. Bonfield, Synthesis and characterization of carbonate hydroxyapatite, J. Mater. Sci. Mater. Med. 9, 779–783 (1998).
  • K. D. Rogers and P. Daniels, An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure, Biomaterials 23, 2577–2585 (2002).
  • A. Porter, N. Patel, R. Brooks, S. M. Best, N. Rushton, and W. Bonfield, Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants, J. Mater. Sci. Mater. Med. 16, 899–907 (2005).
  • N. Patel, S. M. Best, W. Bonfield, I. R. Gibson, K. A. Hing, E. Damien, and P. A. Revell, A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules, J. Mater. Sci. Mater. Med. 13, 1199–206 (2002).
  • Y. Doi, T. Shibutani, Y. Moriwake, T. Kajimoto, and Y. Iwayama, Sintered carbonate apatites as bioresorbable bone substitutes, J. Biomed. Mater. Res. 39, 603–610 (1997).
  • G. Spence, N. Patel, R. Brooks, and N. Rushton, Carbonate substituted hydroxyapatite: resorption by osteoclasts modifies the osteoblastic response, J. Biomed. Mater. Res. A 90A, 217–224 (2009).
  • W. Mertz, The essential trace-elements, Science 213, 1332–1338 (1981).
  • J. Harrison, A. J. Melville, J. S. Forsythe, B. C. Muddle, A. O. Trounson, and K. A. Gross, Sintered hydroxyfluorapatites – IV: The effect of fluoride substitutions upon colonisation of hydroxyapatites by mouse embryonic stem cells, Biomaterials 25, 4977–4986 (2004).
  • J. J. Freeman, B. Wopenka, M. J. Silva, and J. D. Pasteris, Raman spectroscopic detection of changes in bioapatite in mouse femora as a function of age and in vitro fluoride treatment, Calcif. Tissue Int. 68, 156–162 (2001).
  • J. M. Hughes, M. Cameron, and K. D. Crowle, Structural variations in natural F, OH, and Cl apatites, Am. Mineral 74, 870–876 (1989).
  • E. C. Moreno, M. Kresak, and R. T. Zahradni, Fluoridated hydroxyapatite solubility and caries formation, Nature 247, 64–65 (1974).
  • S. Kannan, A. Rebelo, and J.M.F. Ferreira, Novel synthesis and structural characterization of fluorine and chlorine co-substituted hydroxyapatites, J. Inorg. Biochem. 100, 1692–1697 (2006).
  • L. M. Rodriguez-Lorenzo, J. N. Hart, and K. A. Gross, Structural and chemical analysis of wellcrystallized hydroxyfluorapatites, J. Phys. Chem. B 107, 316–8320 (2003).
  • H. Eslami, M. Solati-Hashjin, and M. Tahriri, The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite, Mater. Sci. Eng. C 29, 1387–1398 (2009).
  • M. Okazaki, Y. Miake, H. Tohda, T. Yanagisawa, T. Matsumoto, and J. Takahashi, Functionally graded fluoridated apatites, Biomaterials 20, 1421–1426 (1999).
  • J. S. Cho, D. S. Yoo, Y. C. Chung, and S. H. Rhee, Enhanced bioactivity and osteoconductivity of hydroxyapatite through chloride substitution, J. Biomed. Mater. Res. A 102, 455–469 (2014).
  • D. Markovich, Physiological roles and regulation of mammalian sulfate transporters, Physiol. Rev. 81, 1499–1533 (2001).
  • R. A. Evans, P. J. Lawrence, G. Thanakrishnan, E. Hills, S. Y. Wong, and C. R. Dunstan, Immobilization hypercalcaemia due to low bone formation and responding to intravenous sodium sulphate, Postgrad. Med. J. 62, 395–398 (1986).
  • A. Z. Alshemary, Y. F. Goh, M. Akram, I. R. Razali, M.R.A. Kadir, and R. Hussain, Microwave assisted synthesis of nano sized sulfate doped hydroxyapatite, Mater. Res. Bull. 48, 2106–2110 (2013).
  • P. L. Tran, A. A. Hammond, T. Mosley, J. Cortez, T. Gray, J. A. Colmer-Hamood, M. Shashtri, J. E. Spallholz, A. N. Hamood, and T. W. Reid, Organoselenium coating on cellulose inhibits the formation of biofilms by Pseudomonas aeruginosa and Staphylococcus aureus, Appl. Environ. Microbiol. 75, 3586–3592 (2009).
  • C. Rodríguez-Valencia, M. López-Álvarez, B. Cochón-Cores, I. Pereiro, I. Serra, and P. González, Novel selenium doped hydroxyapatite coatings for biomedical applications, J. Biomed. Mater. Res. A 101, 853–861 (2013).
  • M. P. Rayman, The importance of selenium to human health, Lancet 356, 233–241 (2000).
  • Y. Wang, J. Ma, L. Zhou, J. Chen, Y. Liu, Z. Qiu, and S. Zhang, Dual functional seleniumsubstituted hydroxyapatite, Interf. Focus. 2, 378–386 (2012).
  • P. A. Tran and T. J. Webster, Selenium nanoparticles inhibit Staphylococcus aureus growth, Int. J. Nanomed. 6, 1553–1558 (2011).
  • R. K. Dutta, B. P. Nenavathu, and S. Talukdar, Anomalous antibacterial activity and dye degradation by selenium doped ZnO nanoparticles, Colloids Surf. B 114, 218–224 (2014).
  • P. A. Tran and T. J. Webster, Antimicrobial selenium nanoparticle coatings on polymeric medical devices, Nanotechnology 24, 155101 (2013).
  • Y. C. Chen, D. M. Sosnoski, U. H. Gandhi, L. J. Novinger, K. S. Prabhu, and A. M. Mastro, Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer, Carcinogenesis 30, 1941–1948 (2009).
  • J. Kolmas, E. Oledzka, M. Sobczak, and G. Nałęcz-Jawecki, Nanocrystalline hydroxyapatite doped with selenium oxyanions: A new material for potential biomedical applications, Mater. Sci. Eng. C 39, 134–142 (2014).
  • F. Monteil-Rivera, S. Masset, J. Dumonceau, M. Fedoroff, and J. Jeanjean, Sorption of selenite ions on hydroxyapatite, J. Mater. Sci. Mater. Med. 18, 1143–1145 (1999).
  • E. M. Carlisle, Silicon: A requirement in bone formation independent of vitamin D1, Calcif. Tissue Int. 33, 27–34 (1981).
  • K. Schwarz, Significance and function of silicon in warm blooded animals-review and outlook, In Biochemistry of Silicon and Related Problems, G. Bendz and I. Lindqvist (eds.), Plenum Press, New York (1978). pp. 207–230.
  • A. E. Porter, S. M. Best, and W. Bonfield, Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications, J. Biomed. Mater. Res. 68, 133–141 (2004).
  • A. Balamurugan, A.H.S. Rebelo, A. F. Lemos, J.H.G. Rocha, J.M.G. Ventura, and J.M.F. Ferreira, Suitability evaluation of sol–gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response, Dent. Mater. 24, 1374–1380 (2008).
  • A. Aminian, M. Solati-Hashjin, A. Samadikuchaksaraei, F. Bakhshi, F. Gorjipour, A. Farzadi, F. Moztarzadeh, and M. Schmücker, Synthesis of silicon-substituted hydroxyapatite by a hydrothermal method with two different phosphorous sources, Ceram. Int. 37, 1219–1229 (2011).
  • B. D. Hahn, J. M. Lee, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon, B. K. Lee, D. S. Shin, and H. E. Kim, Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications, Thin Solid Films 518, 2194–2199 (2010).
  • M. Bohner, Silicon-substituted calcium phosphates-a critical view, Biomaterials 30, 6403–6406 (2009).
  • I. R. Gibson, S. M. Best, and W. Bonfield, Chemical characterization of silicon substituted hydroxyapatite, J. Biomed. Mater. Res. 44, 422–428 (1999).
  • S. Kannan, J.H.G. Rocha, and J.M.F. Ferreira, Synthesis and thermal stability of sodium, magnesium co-substituted hydroxyapatites, J. Mater. Chem. 16, 286–291 (2006).
  • S. J. Kalita and H. A. Bhatt, Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization, Mater. Sci. Eng. C 27, 837–848 (2007).
  • D. Gopi, S. Nithiya, E. Shinyjoy, et al., Spectroscopic investigation on formation and growth of mineralized nanohydroxyapatite for bone tissue engineering applications, Spectrochim. Acta A 92, 194–200 (2012).
  • D. Gopi, S. Ramya, D. Rajeswari, P. Karthikeyan, and L. Kavitha, Strontium, cerium co-substituted hydroxyapatite nanoparticles: Synthesis, characterization, antibacterial activity towards prokaryoticstrains and in vitro studies, Coll. Surf. A: Physicochem. Eng. Aspects 451, 172–180 (2014).
  • D. Gopi, E. Shinyjoy, and L. Kavitha, Synthesis and spectral characterization of silver/magnesium co-substituted hydroxyapatite for biomedical applications, Spectrochim. Acta A 127, 286–291 (2014).
  • C. Hu, J. Guo, J. Qu, and X. Hu, Efficient destruction of bacteria with Ti(IV) and antibacterial ions in co-substituted hydroxyapatite films, Appl. Catal. B-Environ. 73, 345–353 (2007).
  • R. M. Wilson, J. C. Elliott, S.E.P. Dowker, and R. I. Smith, Rietveld structure refinement of precipitated carbonate apatite using neutron diffraction data, Biomaterials 25, 2205–2213 (2004).
  • H. El Feki, J. M. Savariault, A. B. Salah, and M. Jemal, Sodium and carbonate distribution in substituted calcium hydroxyapatite, Solid State Sci. 2, 577–586 (2000).
  • M. E. Fleet and X. Liu, Coupled substitution of type A and B carbonate in sodium-bearing apatite, Biomaterials 28, 916–926 (2007).
  • O. A. Shenderova, V. V. Zhirnov, and D. W. Brenner, Carbon Nanostructures, Crit. Rev. Solid State 27, 227–356 (2002).
  • M. Inagaki, New Carbons: Control of Structure and Functions, Elsevier, Amsterdam, (2000).
  • G. Benedek, P. Milani, and V. G. Ralchenko (eds.), Nanostructured Carbon for Advanced Applications, NATO Science Series vol. 24, Kluwer Academic Publishers, Sicily, Italy, (2001).
  • M. S. Dresselhaus and M. Endo, Relation of carbon nanotubes to other carbon materials, Top Appl. Phys. 80. 11–28 (2001).
  • S. Subramoney, Novel nanocarbons—structure, properties, and potential applications, Adv. Mater. 10, 1157–1171 (1998).
  • B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, and G. Yang, Carbyne with finite length: The one-dimensional sp carbon, Sci. Adv. 1, e1500857 (2015).
  • S. F. Kiew, L. V. Kiew, H. B. Lee, T. Imae, and L. Y. Chung, Assessing biocompatibility of graphene oxide-based nanocarriers: A review, J. Control Release. 226, 217–228 (2016).
  • H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes—Properties, Processing and Applications, William Andrew/Noyes, Norwich, NY (1993).
  • S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56–8 (1991).
  • H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318, 162–163 (1985).
  • C. Frondel and U. B. Marvin, Lonsdaleite, a hexagonal polymorph of diamond, Nature 214, 587–589 (1967).
  • P. Liu, H. Cui, and G. W. Yang, Synthesis of body-centered cubic carbon nanocrystals, Cryst. Growth Des. 8, 581–586 (2008).
  • C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, Biomedical applications of graphene and graphene oxide, Acc. Chem. Res. 46, 2211–2224 (2013).
  • S. S. Nanda, G. C. Papaefthymiou, and D. K. Yi, Functionalization of graphene oxide and its biomedical applications, Crit. Rev. Solid State 40, 291–315 (2015).
  • R. Raccichini, A. Varzi, S. Passerini, and B. Scrosati, The role of graphene for electrochemical energy storage, Nat. Mater. 14, 271–279 (2015).
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666–669 (2004).
  • A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6, 183–191 (2007).
  • M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano. 3, 3884–3890 (2009).
  • T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, Recent advances in graphene based polymer composites, Prog. Polym. Sci. 35, 1350–1375 (2010).
  • C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321, 385–388 (2008).
  • T. N. Lambert, C. A. Chavez, B. Hernandez-Sanchez, P. Lu, N. S. Bell, A. Ambrosini, T. Friedman, T. J. Boyle, D. R. Wheeler, and D. L. Huber, Synthesis and characterization of titania-graphene nanocomposites, J. Phys. Chem. C 113, 19812–19823 (2009).
  • Z. Pan, L. He, L. Qiu, A. Habibnejad Korayem, G. Li, J. W. Zhu, F. Collins, D. Li, W. H. Duan, and M. C. Wang, Mechanical properties and microstructure of a graphene oxide-cement composite, Cement Concrete Comp. 58, 140–147 (2015).
  • Y. Xu and G. Shi, Assembly of chemically modified graphene: methods and applications, J. Mater. Chem. 21, 3311 (2011).
  • “The many applications of graphene nanoplatelets.” Cambridge Network. Last modified Janaury 15, 2016. https://www.cambridgenetwork.co.uk/news/the-many-applications-of-graphene-nanoplatelets-from-strem-c1964/?
  • Y. Cao, J. Zhang, J. Feng, and P. Wu, Compatibilization of immiscible polymer blends using graphene oxide sheets, ACS Nano 5, 5920–5927 (2011).
  • J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull, and J. Huang, Graphene oxide sheets at interfaces, J. Am. Chem. Soc. 132, 8180–8186 (2010).
  • Z. Xu and C. Gao, Aqueous liquid crystals of graphene oxide, ACS Nano 5, 2908–2915 (2011).
  • Y. Pan, T. Wu, H. Bao, and L. Li, Green fabrication of chitosan films reinforced with parallel aligned graphene oxide, Carbohydr. Polym. 83, 1908–1915 (2011).
  • T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Herrera Alonso, R. D. Piner, et al., Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol. 3, 327–331 (2008).
  • J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, and Y. Chen, Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites, Adv. Funct. Mater. 19, 2297–2302 (2009).
  • M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt, Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites, J. Mater. Chem. 19, 7098–7105 (2009).
  • N. Shadjou and M. Hasanzadeh, Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances, J. Biomed. Mater. Res. A 104, 1250–1275 (2016).
  • S. Pei and H. M. Cheng, The reduction of graphene oxide, Carbon 50, 3210–3228 (2012).
  • V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, High-throughput solution processing of large-scale graphene, Nat. Nanotechnol. 4, 25–29 (2009).
  • S. Stankovich, D. A. Dikin, G.H.B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature 442, 282–286 (2006).
  • G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu, and J. Yao, Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C 112, 8192–8195 (2008).
  • Y. Si and E. T. Samulski, Synthesis of water soluble graphene, Nano Lett. 8, 1679–1682 (2008).
  • H. D. Pham, V. H. Pham, T. V. Cuong, T. D. Nguyen-Phan, J. S. Chung, E. W. Shin, and S. Kim, Synthesis of the chemically converted graphene xerogel with superior electrical conductivity, Chem. Commun. 47, 9672–9674 (2011).
  • W. Chen, L. Yan, and P. R. Bangal, Chemical reduction of graphene oxide to graphene by sulfur-containing compounds, J. Phys. Chem. C 114, 19885–19890 (2010).
  • J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, Reduction of graphene oxide via L-ascorbic acid, Chem. Commun. 46, 1112–1114 (2010).
  • J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, and X. Zhang, Environment-friendly method to produce graphene that employs vitamin C and amino acid, Chem. Mater. 22, 2213–2218 (2010).
  • T. T. Dang, V. H. Pham, S. H. Hur, E. J. Kim, B. S. Kong, and J. S. Chung, Superior dispersion of highly reduced graphene oxide in N, N-dimethylformamide, J. Colloid Interf. Sci. 376, 91–96 (2012).
  • H-J. Shin, K. K. Kim, A. Benayad, S-M. Yoon, H. K. Park, and I-S. Jung, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Adv. Funct. Mater. 19, 1987–1992 (2009).
  • M. J. Fernández-Merino, L. Guardia, J. I. Paredes, S. Villar-Rodil, P. Solís-Fernández, A. Martínez-Alonso, and J.M.D. Tascón, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, J. Phys. Chem. C 114, 6426–6432 (2010).
  • C. Z. Zhu, S. J. Guo, Y. X. Fang, and S. J. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets, ACS Nano 4, 2429–2437 (2010).
  • Y. Wang, Z. X. Shi, and J. Yin, Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites, Appl. Mater. Interf. 3, 1127–1133 (2011).
  • J. I. Paredes, S. Villar-Rodil, M. J. Fernández-Merino, L. Guardia, A. Martínez-Alonso, and J.M.D. Tascon, Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide, J. Mater. Chem. 21, 298–306 (2011).
  • “Graphene Nanoplatelets.” Strem. https://www.strem.com/catalog/v/06-0235/12/carbon_1034343-98-0.
  • A. Nieto, D. Lahiri, and A. Agarwal, Synthesis and properties of bulk graphene nanoplatelets consolidated by spark plasma sintering, Carbon, 50, 4068–4077 (2012).
  • M. Y. Shen, T. Y. Chang, T. H. Hsieh, Y. L. Li, C. L. Chiang, H. Yang, and M. C. Yip, Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites, J. Nanomater. 2013, 1–9 (2013).
  • B. Nasiri-Tabrizi, P. Honarmandi, and R. Ebrahimi-Kahrizsangi, Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method, Mater. Lett. 63, 543–546 (2009).
  • D. W. Kim, I. S. Cho, J. Y. Kim, H. L. Jang, G. S. Han, H. S. Ryu, H. Shin, H. Suk Jung, H. Kim, and K. Sun Hong, Simple large-scale synthesis of hydroxyapatite nanoparticles: in situ observation of crystallization process, Langmuir 26, 384–388 (2009).
  • S. K. Padmanabhan, A. Balakrishnan, M. C. Chu, Y. J. Lee, T. N. Kim, and S. J. Cho, Sol–gel synthesis and characterization of hydroxyapatite nanorods, Particuology 7, 466–470 (2009).
  • G. Zhang, J. Chen, S. Yang, Q. Yu, Z. Wang, and Q. Zhang, Preparation of amino-acidregulated hydroxyapatite particles by hydrothermal method, Mater. Lett. 65, 572–574 (2011).
  • T. Pradeesh, M. Sunny, H. Varma, and P. Ramesh, Preparation of microstructured hydroxyapatite microspheres using oil in water emulsions, Bull. Mater. Sci. 28, 383–390 (2005).
  • M. Jevtic, M. Mitric, S. Skapin, B. Jancar, N. Ignjatovic, and D. Uskokovic, Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation, Cryst. Growth. Des. 8, 2217–2222 (2008).
  • R. A. Ayers, D. E. Burkes, G. Gottoli, H. C. Yi, F. Zhim, L. H. Yahia, and J. J. Moore, Combustion synthesis of porous biomaterials, J. Biomed. Mater. Res. 81, 634–643 (2007).
  • S. Meski, S. Ziani, and H. Khireddine, Removal of lead ions by hydroxyapatite prepared from the egg shell, J. Chem. Eng. Data 55, 3923–3928 (2010).
  • J. S. Cho and Y. C. Kang, Nano-sized hydroxyapatite powders prepared by flame spray pyrolysis, J. Alloys Compd. 464, 282–287 (2008).
  • Z. Zyman, A. Goncharenko, D. Rokhmistrov, and M. Epple, Nanocrystalline calciumdeficient hydroxyapatite prepared by a microwave-assisted solvent-free reaction, Mat-wiss uWerkstofftech 42, 154–157 (2011).
  • S. Koutsopoulos, Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods, J. Biomed. Mater. Res. 62, 600–612 (2002).
  • C. Liu, Y. Huang, W. Shen, and J. Cui, Kinetics of hydroxyapatite precipitation at pH 10 to 11, Biomaterials 22, 301–306 (2001).
  • I. Mobasherpour, M. Soulati Heshajin, A. Kazemzadeh, and M. Zakeri, Synthesis of nanocrystalline hydroxyapatite by using precipitation method, J. Alloys Compd. 430, 330–333 (2007).
  • J. Liu, X. Ye, H. Wang, M. Zhu, B. Wang, and H. Yan, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method, Ceram. Int. 29, 629–633 (2003).
  • B. B. Chandanshive, P. Rai, A. L. Rossi, O. Ersen, and D. Khushalani, Synthesis of hydroxyapatite nanotubes for biomedical applications, Mater. Sci. Eng. C 33, 2981–2986 (2013).
  • D. K. Lee, J. Y. Park, M. R. Kim, and D-J. Jang, Facile hydrothermal fabrication of hollow hexagonal hydroxyapatite prisms, Cryst. Eng. Comm. 13, 5455–5459 (2011).
  • E. Lester, S.V.Y. Tang, A. Khlobystov, V. L. Rose, L. Buttery, and C. J. Roberts, Producing nanotubes of biocompatible hydroxyapatite by continuous hydrothermal synthesis, Cryst. Eng. Comm. 15, 3256–3260 (2013).
  • P. Rouhani, N. Taghavinia, and S. Rouhani, Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation, Ultrason. Sonochem. 17, 853–856 (2010).
  • M. A. Giardina and M. A. Fanovich, Synthesis of nanocrystalline hydroxyapatite from Ca(OH)2 and H3PO4 assisted by ultrasonic irradiation, Ceram. Int. 36, 1961–1969 (2010).
  • J. H. Warner, F. Schäffel, A. Bachmatiuk, and M. H. Rümmeli, Graphene: Fundamentals and Emergent Applications, Elsevier (2013). Ch. 4.
  • K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490, 192–200 (2012).
  • K. S. Sivudu and Y. R. Mahajan, Challenges and opportunities for the mass production of high quality graphene: An analysis of worldwide patents, Nanotech. Insights 3, 6–18 (2012).
  • J. R. Miller, R. A. Outlaw, and B. C. Holloway, Graphene double-layer capacitor with ac line-filtering performance, Science 329, 1637–1639 (2010).
  • Y. Yoon, K. Lee, S. Kwon, S. Seo, H. Yoo, S. Kim, Y. Shin, Y. Park, D. Kim, J. Y. Choi, and H. Lee, Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors, ACS Nano 8, 4580–4590 (2014).
  • D. Wei, L. Grande, V. Chundi, R. White, C. Bower, P. Andrew, and T. Ryhänena, Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices, Chem. Commun. 48, 1239–1241 (2012.
  • K. R. Paton et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids, Nat. Mater. 13, 624–630 (2014).
  • M. Cai, D. Thorpe, D. H. Adamson, and C. Schniepp, Methods of graphite exfoliation, J. Mater. Chem. 22, 24992–25002 (2012).
  • J. M. Tour, Layered materials: Scaling up exfoliation, Nat. Mater. 13, 545–546 (2014).
  • W. S. Hummers, Jr. and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80, 1339 (1957).
  • N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater. 11, 771–778 (1999).
  • D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotech. 3, 101–105 (2008).
  • D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39, 228–240 (2010).
  • S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotech. 4, 217–224 (2009).
  • Y. Wu, B. Wang, Y. Ma, Y. Huang, N. Li, F. Zhang, and Y. Chen, Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films, Nano Res. 3, 661–669 (2010).
  • D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. Katherine Price, and J. M. Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458, 872–876 (2009).
  • A. V. Melezhyk and A. G. Tkachev, Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds, Nanosyst.: Phys. Chem. Math. 5, 294–306 (2014).
  • E. D. Graifer, V. G. Makotchenko, A. S. Nazarov, S. G. Kim, and V. E. Fedorov, Graphene: chemical approaches to synthesis and modification, Usp. Khim. 80, 784–804 (2011).
  • J. H. Lee, D. W. Shin, V. G. Makotchenko, A. S. Nazarov, V. E. Fedorov, Y. H. Kim, J-Y. Choi, J. M. Kim, and J-B. Yoo, One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets, Adv. Mater. 21, 4383–4387 (2009).
  • L. M. Viculis, J. J. Mack, M. Oren, H. T. Hahn, and R. B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem. 15, 974–978 (2005).
  • K. Cholewa-Kowalska, J. Kokoszka, M. Łączka, Ł. Niedźwiedzki, W. Madej, and A. M. Osyczka, Gel-derived bioglass as a compound of hydroxyapatite composites, Biomed. Mater. 4, 055007 (2009).
  • D. J. Curran, T. J. Fleming, G. Kawachi, C. Ohtsuki, and M. R. Towler, Characterisation and mechanical testing of hydrothermally treated HA/ZrO2 composites, J. Mater. Sci. Mater. Med. 20, 2235–2241 (2009).
  • S. Kim, Y-M. Kong, I-S. Lee, and H-E. Kim, Effect of calcinations of starting powder on mechanical properties of hydroxyapatite–alumina bioceramic composite, J. Mater. Sci. Mater. Med. 13, 307–310 (2002).
  • Y. Isago, R. Suzuki, E. Isono, Y. Noguchi, and Y. Kuroyanagi, Development of a freeze-dried skin care product composed of hyaluronic acid and poly (γ-glutamic acid) containing bioactive components for application after chemical peels, OJRM 3, 45–53 (2014).
  • H. Muguruma, Plasma-polymerized films for biochip design, Plasma Process. Polym. 7, 151–162 (2010).
  • Takayama T., Todo M., Ito H. (2012) Mechanical Properties and Degradability of HA/PLLA Composites with Different Particle Size Distribution. In: Sasaki K., Suzuki O., Takahashi N. (eds) Interface Oral Health Science 2011. Springer, Tokyo, pp. 100–101.
  • X. Z. Zhou, V. Y. Leung, Q. R. Dong, K. M. Cheung, D. Chan, and W. W. Lu, Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold, Int. J. Artif. Organs 31, 480–489 (2008).
  • Z. Fan, J. Wang, Z. Wang, H. Ran, Y. Li, L. Niu, P. Gong, B. Liu, and S. Yang, One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering, Carbon 66, 407–416 (2014).
  • A. Safavi and M. Sorouri, Multiwalled carbon nanotube wrapped hydroxyapatite, convenient synthesis via microwave assisted solid state metathesis, Mater. Lett. 91, 287–290 (2013).
  • W. Wang, Y. Zhu, F. Watari, S. Liao, A. Yokoyama, M. Omori, H. Ai, and F. Cui, Carbon nanotubes/hydroxyapatite nanocomposites fabricated by spark plasma sintering for bonegraft applications, Appl. Surf. Sci. 262, 194–199 (2012).
  • S. Ligot, T. Godfroid, D. Music, E. Bousser, J. M. Schneider, and R. Snyders, Tantalum-doped hydroxyapatite thin films: Synthesis and characterization, Acta Mater. 60, 3435–3443 (2012).
  • E. Champion, S. Gautier, and D. Bernache-Assollant, Characterization of hot pressed Al2O3-platelet reinforced hydroxyapatite composites, J. Mater. Sci. Mater. Med. 7, 125–130 (1996).
  • P. Ducheyne, S. Radin, and L. King, The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution, J. Biomed. Mater. Res. 27, 25–34 (1993).
  • E. Schepers, M. Clercq, P. Ducheyne, and R. Kempeneers, Bioactive glass particulate material as a filler for bone lesions, J. Oral Rehabil. 18, 439–452 (1991).
  • A. J. Salgado, O. P. Coutinho, and R. L. Reis, Bone tissue engineering: state of the art and future trends, Macromol. Biosci. 4, 743–65 (2004).
  • A. Bandyopadhyay, S. Bernard, W. Xue, and S. Bose, Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants, J. Am. Ceram. Soc. 89, 2675–2688 (2006).
  • J-M. Nedelec, L. Courthéoux, E. Jallot, C. Kinowski, J. Lao, P. Laquerriere, C. Mansuy, G. Renaudin, and S. Turrell, Materials doping through sol–gel chemistry: a little something can make a big difference, J. Sol-Gel Sci. Technol. 46, 259–271 (2008).
  • B. Basar, A. Tezcaner, D. Keskin, and Z. Evis, Improvements in microstructural, mechanical, and biocompatibility properties of nano-sized hydroxyapatites doped with yttrium and fluoride, Ceram. Int. 36, 1633–1643 (2010).
  • E. Landi, A. Tampieri, G. Celotti, L. Vichi, and M. Sandri, Influence of synthesis and sintering parameters on the characteristics of carbonate apatite, Biomaterials 25, 1763–1770 (2004).
  • C. M. Mardziah, I. Sopyan, and S. Ramesh, Strontium-doped hydroxyapatite nanopowder via sol-gel method: effect of strontium concentration and calcination temperature on phase behavior, Trends Biomater. Artif. Organs 23, 105–113 (2009).
  • C. Paluszkiewicz, A. Ślósarczyk, D. Pijocha, M. Sitarz, M. Bućko, A. Zima, A. Chróścicka, and M. Lewandowska-Szumieł, Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite, J. Mol. Struct. 976, 301–309 (2010).
  • J. L. Xu and K. A. Khor, Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method, J. Inorg. Biochem. 101, 187–195 (2007).
  • K. Cheng, S. Zhang, and W. Weng, The F content in sol–gel derived FHA coatings: an XPS study, Surf. Coat. Technol. 198, 237–241 (2005).
  • A. J. Nathanael, D. Mangalaraj, S. I. Hong, and Y. Masuda, Synthesis and in-depth analysis of highly ordered yttrium doped hydroxyapatite nanorods prepared by hydrothermal method and its mechanical analysis, Mater. Charact. 62, 1109–1115 (2011).
  • M. Li, Y. Wang, Q. Liu, Q. Li, Y. Cheng, Y. Zheng, T. Xia, and S. Weiad, In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide, J. Mater. Chem. B 1, 475–484 (2013).
  • Y. Liu, Z. Dang, Y. Wang, J. Huang, and H. Li, Hydroxyapatite/graphene-nanosheet composite coatings deposited by vacuum cold spraying for biomedical applications: Inherited nanostructures and enhanced properties, Carbon 67, 250–259 (2014).
  • G. M. Neelgund, A. Oki, and Z. Luo, In situ deposition of hydroxyapatite on graphene nanosheets, Mater. Res. Bull. 48, 175–179 (2013).
  • J. D. Núñez, A. M. Benito, R. González, J. Aragón, R. Arenal, and W. K. Maser, Integration and bioactivity of hydroxyapatite grown on carbon nanotubes and graphene oxide, Carbon 79, 590–604 (2014).
  • A. Oyefusi, O. Olanipekun, G. M. Neelgund, D. Peterson, J. M. Stone, E. Williams, L. Carson, G. Regisford, and A. Oki, Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: Promising bone implant materials, Spectrochim. Acta A 132, 410–416 (2014).
  • C. Qi, Y-J. Zhu, G-J. Ding, J. Wu, and F. Chen, Solvothermal synthesis of hydroxyapatite nanostructures with various morphologies using adenosine 5′-monophosphate sodium salt as an organic phosphorus source, RSC Adv. 5, 3792–3798 (2015).
  • S. Baradaran, E. Moghaddam, B. Nasiri-Tabrizi, W. J. Basirun, M. Mehrali, M. Sookhakian, M. Hamdi, and Y. Alias, Characterization of nickel-doped biphasic calcium phosphate/graphene nanoplatelet composites for biomedical application, Mater. Sci. Eng. C 49, 656–668 (2015).
  • K. N. Sun, A. M. Li, Y. S. Yin, and Z. Y. Yu, Study on the fabrication of hydroxyapatite and carbon nanotube composites, Chin. J. Biomed. Eng. 6, 573–578 (2004).
  • M. Li, Q. Liu, Z. Jia, X. Xu, Y. Cheng, Y. Zheng, T. Xi, and S. Wei, Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications, Carbon 67, 185–197 (2014).
  • Y. Zhao, K-N. Sun, W-L. Wang, Y-X. Wang, X-L. Sun, Y-J. Liang, X. N. Sun, and P-F. Chui, Microstructure and anisotropic mechanical properties of graphene nanoplatelet toughened biphasic calcium phosphate composite, Ceram. Int. 39, 7627–7634 (2013).
  • L. S. Walker, V. R. Marotto, M. A. Rafiee, N. Koratkar, and E. L. Corral, Toughening in graphene ceramic composites, ACS Nano 5, 3182–3190 (2011).
  • J. H. Lee, Y. C. Shin, O. S. Jin, S. H. Kang, Y. S. Hwang, J. C. Park, S. W. Hong, and D. W. Han, Reduced graphene oxide-coated hydroxyapatite composites stimulate spontaneous osteogenic differentiation of human mesenchymal stem cells, Nanoscale 7, 11642–11651 (2015).
  • H. Zanin, E. Saito, F. R. Marciano, H. J. Ceragioli, A.E.C. Granato, M. Porcionattod, and A. O. Lobo, Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications, J. Mater. Chem. B 1, 4947–4955 (2013).
  • T. K. Mahto, S. C. Pandey, S. Chandra, A. Kumar, and S. K. Sahu, Hydroxyapatite conjugated graphene oxide nanocomposite: A new sight for significant applications in adsorption, RSC Adv. 5, 96313–96322 (2015).
  • M. G. Raucci, D. Giugliano, A. Longo, S. Zeppetelli, G. Carotenuto, and L. Ambrosio, Comparative facile methods for preparing graphene oxide–hydroxyapatite for bone tissue engineering, J. Tissue Eng. Regen. Med. (2016) doi: 10.1002/term.2119.
  • H. Y. Juang and M. H. Hon, Effect of calcination on sintering of hydroxyapatite, Biomaterials 17, 2059–2064 (1996).
  • J. Zhu, H. M. Wong, K.W.K. Yeung, and S. C. Tjong, Spark plasma sintered hydroxyapatite/graphite nanosheet and hydroxyapatite/multiwalled carbon nanotube composites: mechanical and in vitro cellular properties, Adv. Eng. Mater. 13, 336–341 (2011).
  • A. J. Ruys, M. Wei, C. C. Sorrell, M. R. Dickson, A. Brandwood, and B. K. Milthorpe, Sintering effects on the strength of hydroxyapatite, Biomaterials 16, 409–415 (1995).
  • P. E. Wang, T. K. Chaki, Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate, J. Mater. Sci.: Mater. Med. 4, 150–158 (1993).
  • J. Zhou, X. Zhang, J. Chen, S. Zeng, and K. De Groot, High temperature characteristics of synthetic hydroxyapatite, J. Mater. Sci.: Mater. Med. 4, 83–85 (1993).
  • A. A. White, S. M. Best, and I. A. Kinloch, Hydroxyapatite–carbon nanotube composites for biomedical applications: a review, Int. J. Appl. Ceram. Technol. 4, 1–13 (2007).
  • M. Jarcho, C. Bolen, M. B. Thomas, J. Bobick, J. F. Kay, and R. H. Doremus, Hydroxylapatite synthesis and characterization in dense polycrystalline form, J. Mater. Sci. 11, 2027–2035 (1976).
  • S. R. Radin and P. Ducheyne, Plasma spraying induced changes of calcium phosphate ceramic characteristics and the effect onin vitro stability, J. Mater. Sci.: Mater. Med. 3, 33–42 (1992).
  • A. Kadir, M. Rafiq, and N. H. Mahmood, Characterization, antibacterial and in vitro compatibility of zinc-silver doped hydroxyapatite nanoparticles prepared through microwave synthesis, Ceram. Int. 40, 4507–4513 (2013).
  • Z. Xia, L. Riester, W. A. Curtin, H. Li, B. W. Sheldon, J. Liang, B. Chang, and J. M. Xu, Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites, Acta. Mater. 52, 931–944 (2004).
  • K. Balani, D. Lahiri, A. K. Keshri, S. R. Bakshi, J. E. Tercero, and A. Agarwal, The nano-scratch behavior of biocompatible hydroxyapatite reinforced with aluminum oxide and carbon nanotubes, JOM 61, 63–66 (2009).
  • Y. Liu, J. Huang, and H. Li, Synthesis of hydroxyapatite–reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite, J. Mater. Chem. B 1, 1826–1834 (2013).
  • M. Mehrali, E. Moghaddam, S.F.S. Shirazi, S. Baradaran, M. Mehrali, S. T. Latibari, H.S.C. Metselaar, N. A. Kadri, K. Zandi, and N.A.A. Osman, Mechanical and in vitro biological performance of graphene nanoplatelets reinforced calcium silicate composite, PloS One 9, e106802 (2014).
  • M. Mehrali, E. Moghaddam, S.F.S. Shirazi, S. Baradaran, M. Mehrali, S. T. Latibari, H.S.C. Metselaar, N. A. Kadri, K. Zandi, and N.A.A. Osman, Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate–reduced graphene oxide composites, ACS Appl. Mater. Interf. 6, 3947–3962 (2014).
  • J. Y. Rho, T. Y. Tsui, G. M. Pharr, Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials 18, 1325–1330 (1997).
  • A. Ravaglioli and A. Krajewski, Bioceramics, 1st ed., Springer, Netherlands, (1992).
  • C. Yatongchai, A. W. Wren, D. J. Curran, J. C. Hornez, and R. T. Mark, Comparison of the Weibull characteristics of hydroxyapatite and strontium doped hydroxyapatite, J. Mech. Behav. Biomed. Mater. 21, 95–108 (2013).
  • Y. Chen, Y. Q. Zhang, T. H. Zhang, C. H. Gan, C. Y. Zheng, and G. Yu, Carbon nanotube reinforced hydroxyapatite composite coatings produced through laser surface alloying, Carbon 44, 37–45 (2006).
  • A. Centeno, V. G. Rocha, B. Alonso, A. Fernández, C. F. Gutierrez-Gonzalez, R. Torrecillas, and A. Zurutuza, Graphene for tough and electroconductive alumina ceramics, J. Eur. Ceram. Soc. 33, 3201–3210 (2013).
  • M.I.A. Joshy, K. Elayaraja, R. V. Suganthi, S. C. Veerla, and S. N. Kalkura, In vitro sustained release of amoxicillin from lanthanum hydroxyapatite nano rods, Curr. Appl. Phys. 11, 1100–1106 (2011).
  • H. Pan, X. Zhao, B. W. Darvell, and W. W. Lu, Apatite-formation ability–Predictor of “bioactivity”?, Acta Biomater. 6, 4181–4188 (2010).
  • Z. Changhong, C. Z. Xiuzhen, and L. Johan, The promising application of graphene oxide as coating materials in orthopedic implants: Preparation, characterization and cell behavior, Biomed. Mater. 10, 015019 (2015).
  • F. Mohandes and M. Salavati-Niasari, Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite, RSC Adv. 4, 25993–6001 (2014).
  • A. Janković, S. Eraković, M. Vukašinović-Sekulić, V. Mišković-Stanković, S. J. Park, and K. Y. Rhee, Graphene-based antibacterial composite coatings electrodeposited ontitanium for biomedical applications, Prog. Org. Coat. 83, 1–10 (2015).
  • S. C. Cox, P. Jamshidi, L. M. Grover, and K. K. Mallick, Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation, Mater. Sci. Eng. C 35, 106–114 (2014).
  • I. Noda, F. Miyaji, Y. Ando, H. Miyamoto, T. Shimazaki, Y. Yonekura, M. Miyazaki, M. Mawatari, and T. Hotokebuchi, Development of novel thermal sprayed antibacterial coating and evaluation of release properties of silver ions, J. Biomed. Mater. Res. Part B: Appl. Biomater. 89, 456–465 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.