1,753
Views
28
CrossRef citations to date
0
Altmetric
Reviews

Physicomechanical Properties of Porous Materials by Spark Plasma Sintering

, , , , , , , , , , , , & show all

References

  • P. Liu and G.-F. Chen, Porous materials: processing and applications, Elsevier (2014).
  • W.-Y. Jang, et al., Microstructure and mechanical properties of ALPORAS closed-cell aluminium foam, Mater. Character. 107, 228–238 (2015).
  • N. Jha, et al., Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route, Mater. Des. 47, 810–819 (2013).
  • L. Zhao, et al., Honeycomb porous MnO 2 nanofibers assembled from radially grown nanosheets for aqueous supercapacitors with high working voltage and energy density, Nano Energy. 4, 39–48 (2014).
  • M. Tane, S. Hyun, and H. Nakajima, Anisotropic electrical conductivity of lotus-type porous nickel, J Appl. Phys. 97(10), 103701 (2005).
  • Y. Wang, et al., A novel ultra-light reticulated SiC foam with hollow skeleton, J. Eur. Ceram. Soc. 37(1), 53–59 (2017).
  • C. Chuanuwatanakul, et al., Controlling the microstructure of ceramic particle stabilized foams: influence of contact angle and particle aggregation, Soft Matter. 7(24), 11464–11474 (2011).
  • J. Yu, et al., Preparation of Si3N4 foam ceramics with nest‐like cell structure by particle‐stabilized foams, J. Am. Ceram. Soc. 95(4), 1229–1233 (2012).
  • J. Hu, et al., Coating of ZnO nanoparticles onto the inner pore channel surface of SiC foam to fabricate a novel antibacterial air filter material, Ceram. Int. 41(5), 7080–7090 (2015).
  • Y. Qiu, H. Yu, and M. L. Young, Mechanical properties of NiTi-based foam with high porosity for implant applications, Shape Memory Superelasticity 1(4), 479–485 (2015).
  • Z. Wan, et al., A study of the heat transfer characteristics of novel Ni‐foam structured catalysts, Can. J. Chem. Eng. 94(11), 2225–2234 (2016).
  • D. Ghosal, S. Sengupta, and J. Kumar Basu, Characterization of alumina and H-ZSM-5 zeolite and comparison of their performance by toluene methylation reaction with ceramic foam as catalyst support, Curr. Catal., 4(2), 111–124 (2015).
  • Z. Zhang, et al., Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cement Concrete Compos. 62, 97–105 (2015).
  • R. Ahmad, J.-H. Ha, and I.-H. Song, Enhancement of the compressive strength of highly porous Al 2 O 3 foam through crack healing and improvement of the surface condition by dip-coating, Ceram. Int. 40(2), 3679–3685 (2014).
  • A. Chumpia and K. Hooman, Performance evaluation of single tubular aluminium foam heat exchangers, Appl. Therm. Eng. 66(1), 266–273 (2014).
  • P. F. Lee, et al., Synthesis of bimodal porous structured TiO 2 microsphere with high photocatalytic activity for water treatment, Colloids Surf. A: Physicochem. Eng. Aspects 324(1), 202–207 (2008).
  • C.-J. Ren, et al., Degradation of benzene on Zr-doped TiO2 photocatalysts with a bimodal pore size distribution, Rare Metals 33(6), 714–722 (2014).
  • K. Ishizaki, S. Komarneni, and M. Nanko, Porous Materials: Process technology and applications, Vol.4. Springer Science & Business Media (2013).
  • J. Banhart, Manufacturing routes for metallic foams, JOM 52(12), 22–27 (2000).
  • Y. Quan, et al., Ti 6 Al 4 V foams fabricated by spark plasma sintering with post-heat treatment, Mater. Sci. Eng. A 565, 118–125 (2013).
  • Z.-G. Cui, et al., Aqueous foams stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of anionic surfactant, Langmuir 26(15), 12567–12574 (2010).
  • A. R. Cox, et al., Surface properties of class II hydrophobins from Trichoderma reesei and influence on bubble stability, Langmuir 23(15), 7995–8002 (2007).
  • S. Ip, S. Wang, and J. Toguri, Aluminum foam stabilization by solid particles, Can. Metall. Q. 38(1), 81–92 (1999).
  • Y. Torres, et al., Development of porous titanium for biomedical applications: a comparison between loose sintering and space-holder techniques, Mater. Sci. Eng. C 37, 148–155 (2014).
  • S. Zou, et al., Experimental study on tensile properties of a novel porous metal fiber/powder sintered composite sheet, Materials 9(9), 712 (2016).
  • D. Elzey and H. Wadley, The limits of solid state foaming, Acta Mater. 49(5), 849–859 (2001).
  • J. Locs, et al., Ammonium hydrogen carbonate provided viscous slurry foaming—a novel technology for the preparation of porous ceramics, J. Eur. Ceram. Soc. 33(15), 3437–3443 (2013).
  • A. Parvanian, et al., The effects of manufacturing parameters on geometrical and mechanical properties of copper foams produced by space holder technique, Mater. Des. 53, 681–690 (2014).
  • M. H. Shahzeydi, A. M. Parvanian, and M. Panjepour, The distribution and mechanism of pore formation in copper foams fabricated by Lost Carbonate Sintering method, Mater. Character. 111, 21–30 (2016).
  • J. Ru, et al., Microstructure and sound absorption of porous copper prepared by resin curing and foaming method, Mater. Lett. 139, 318–321 (2015).
  • R. M. Matsuda, et al., Effect of sintering temperature on the characteristics of ceramic hollow spheres produced by sacrificial template technique, Ceram. Int. 42(7), 8409–8412 (2016).
  • F. Xie, et al., Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering, J. Mater. Process. Technol. 213(6), 838–843 (2013).
  • C. Tang, et al., In situ formation of Ti alloy/TiC porous composites by rapid microwave sintering of Ti6Al4V/MWCNTs powder, J. Alloys Compd. 557, 67–72 (2013).
  • Z. Wu, et al., In situ foam-gelcasting fabrication and properties of highly porous γ-Y 2 Si 2 O 7 ceramic with multiple pore structures, Scripta Mater. 103, 6–9 (2015).
  • G. Jean, et al., Macroporous ceramics: novel route using partial sintering of alumina-powder agglomerates obtained by spray-drying, Ceram. Int. 40(7), 10197–10203 (2014).
  • G. Cui, et al., The manufacturing of high porosity iron with an ultra-fine microstructure via free pressureless spark plasma sintering, Materials 9(6), 495 (2016).
  • B. Román-Manso, et al., Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds, Boletín Sociedad Española Cerámica Vidrio 53, 93–100 (2014).
  • L. Murr, et al., Characterization of Ti–6Al–4V open cellular foams fabricated by additive manufacturing using electron beam melting, Mater. Sci. Eng. A. 527(7), 1861–1868 (2010).
  • B. G. Compton and J. A. Lewis, 3D‐printing of lightweight cellular composites, Adv. Mater. 26(34), 5930–5935 (2014).
  • Y. Zhou, Y. Li, and J. Yuan, The stability of aluminum foams at accumulation and condensation stages in gas injection foaming process. Colloids Surf. A: Physicochem. Eng. Aspects 482, 468–476 (2015).
  • V. Shapovalov and L. Boyko, Gasar—a new class of porous materials, Adv. Eng. Mater. 6(6), 407–410 (2004).
  • I. Duarte and J. Banhart, A study of aluminium foam formation—kinetics and microstructure, Acta Mater. 48(9), 2349–2362 (2000).
  • J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci. 46(6), 559–632 (2001).
  • Q. Wu, J. Huang, and H. Li, Deposition of porous nano-WO 3 coatings with tunable grain shapes by liquid plasma spraying for gas-sensing applications, Mater. Lett. 141, 100–103 (2015).
  • Y. Yamada, et al., Processing of cellular magnesium materials, Adv. Eng. Mater. 2(4), 184–187 (2000).
  • M. Nazari, et al., Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam, Int. J. Therm. Sci. 88, 33–39 (2015).
  • M. F. Ashby, et al., Metal foams: a design guide: Butterworth-Heinemann, Oxford, UK, ISBN 0-7506-7219-6, Published 2000, Hardback, 251 pp., $75.00, Elsevier (2002).
  • G. Engin, B. Aydemir, and H. Ö. Gülsoy, Injection molding of micro-porous titanium alloy with space holder technique, Rare Metals 30(6), 565–571 (2011).
  • B. Arifvianto, and J. Zhou, Fabrication of metallic biomedical scaffolds with the space holder method: a review, Materials 7(5), 3588–3622 (2014).
  • S. G. Tabrizi, et al., Analytical and experimental investigation of the effect of SPS and hot rolling on the microstructure and flexural behavior of Ti6Al4V matrix reinforced with in-situ TiB and TiC, J. Alloys Compd. 692, 734–744 (2017).
  • S. Dolati, et al., Toughening mechanisms of SiC-bonded CNT bulk nanocomposites prepared by spark plasma sintering, Int. J. Refractory Metals Hard Mater. 71, 61–69 (2018).
  • A. Azarniya, et al., Physicomechanical properties of spark plasma sintered carbon nanotube-reinforced metal matrix nanocomposites, Prog. Mater. Sci. 90, 276–324 (2017).
  • A. Azarniya, et al., Physicomechanical properties of spark plasma sintered carbon nanotube-containing ceramic matrix nanocomposites, Nanoscale 9(35), 12779–12820 (2017).
  • A. Azarniya, et al., Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites, Metals 7(10), 384 (2017).
  • M. Suárez, et al., Challenges and opportunities for spark plasma sintering: a key technology for a new generation of materials. INTECH Open Access Publisher (2013).
  • O. Guillon, et al., Field‐assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments, Adv. Eng. Mater. 16(7), 830–849 (2014).
  • M. Shongwe, et al., Effect of starting powder particle size and heating rate on spark plasma sintering of Fe Ni alloys, J. Alloys Compd. 678, 241–248 (2016).
  • D. Schwesig, et al., From nanoparticles to nanocrystalline bulk: percolation effects in field assisted sintering of silicon nanoparticles, Nanotechnology 22(13), 135601 (2011).
  • A. Becker, et al., The effect of Peltier heat during current activated densification, Appl. Phys. Lett. 101(1), 013113 (2012).
  • Z. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci. 41(3), 763–777 (2006).
  • M. Beekman, et al., Preparation and crystal growth of Na24Si136, J. Am. Chem. Soc. 131(28), 9642–9643 (2009).
  • M. Tokita, Mechanism of spark plasma sintering. In Proceeding of NEDO International Symposium on Functionally Graded Materials, Japan (1999).
  • Kim, D., et al., Fabrication and biocompatibility evaluation of porous Ti-Nb-based biomaterials with space holder by rapid sintering, Mater. Res. Innovations 19(supp1), S1-301–S1-304 (2015).
  • M. Hakamada, et al., Monotonic and cyclic compressive properties of porous aluminum fabricated by spacer method, Mater. Sci. Eng. A 459(1), 286–293 (2007).
  • Z. Zan, M. G. Wang, and Z. K. Zhao. Effects of SPS Pulse Current on Interface of Al90Mn9Ce1/ZrO2 Micro-Cellular Structure Composites. In Materials Science Forum, Trans Tech Publ. (2013).
  • A. B. Kousaalya, R. Kumar, and B. Sridhar, Thermal conductivity of precursor derived Si–B–C–N ceramic foams using Metroxylon sagu as sacrificial template, Ceram. Int. 41(1), 1163–1170 (2015).
  • K. Khor, et al., Effect of spark plasma sintering (SPS) on the microstructure and mechanical properties of randomly packed hollow sphere (RHS) cell wall, Mater. Sci. Eng. A 356(1), 130–135 (2003).
  • A. Babakhani, E. Zahabi, and H. Y. Mehrabani, Fabrication of Fe/Al 2 O 3 composite foam via combination of combustion synthesis and spark plasma sintering techniques, J. Alloys Compd. 514, 20–24 (2012).
  • E. G. de Moraes, et al., Silicon nitride foams from emulsions sintered by rapid intense thermal radiation, J. Eur. Ceram. Soc. 35(12), 3263–3272 (2015).
  • A. Parvanian and M. Panjepour, Mechanical behavior improvement of open-pore copper foams synthesized through space holder technique, Mater. Des. 49, 834–841 (2013).
  • D. C. Dunand, Processing of titanium foams, Adv. Eng. Mater. 6(6), 369–376 (2004).
  • J. Banhart, Light‐metal foams—History of innovation and technological challenges, Adv. Eng. Mater. 15(3), 82–111 (2013).
  • G. Xie, et al., Corrosion behaviour of porous Ni-free Ti-based bulk metallic glass produced by spark plasma sintering in Hanks' solution, Intermetallics 44, 55–59 (2014).
  • N. Aoyagi, S. Kamado, and Y. Kojima. Microstructure and Compression Properties of Al-Si Alloy Foams by Spark Plasma Sintering Technique. In Materials Science Forum, Trans Tech Publ (2010).
  • L. Zhang, et al., Mechanical behaviors of porous Ti with high porosity and large pore size prepared by one-step spark plasma sintering technique, Vacuum 122, 187–194 (2015).
  • L. Zhang, et al., Designing a multifunctional Ti-2Cu-4Ca porous biomaterial with favorable mechanical properties and high bioactivity, J. Alloys Compd. 727, 338–345 (2017).
  • Ibrahim, A., et al., Processing of porous Ti and Ti5Mn foams by spark plasma sintering, Mater. Des. 32(1), 146–153 (2011).
  • H. Du, et al., Use of spark plasma sintering for fabrication of porous titanium aluminide alloys from elemental powders, Mater. Manuf. Processes 31(6), 725–732 (2016).
  • F. Zhang, E. Otterstein, and E. Burkel, Spark plasma sintering, microstructures, and mechanical properties of macroporous titanium foams, Adv. Eng. Mater. 12(9), 863–872 (2010).
  • E. Miura-Fujiwara, et al. Fabrication of Ti-based biodegradable material composites prepared by spark plasma sintering method. In Materials Science Forum, Trans Tech Publ (2010).
  • L. Zhang, et al., Rapidly sintering of interconnected porous Ti-HA biocomposite with high strength and enhanced bioactivity, Mater. Sci. Eng. C 67, 104–114 (2016).
  • M. Hakamada, et al., Fabrication of porous aluminum by spacer method consisting of spark plasma sintering and sodium chloride dissolution, Mater. Trans. 46(12), 2624–2628 (2005).
  • K. Morsi, M. Krommenhoek, and M. Shamma, Novel aluminum (Al)-carbon nanotube (CNT) open-cell foams, Metall. Mater. Trans. A 47(6), 2574–2578 (2016).
  • C. E. Wen, et al., Processing and characterization of porous aluminum, In Materials Science Forum, Trans Tech Publ 426, 417–422 (2003).
  • C. Wen, et al., Processing of fine-grained aluminum foam by spark plasma sintering, J. Mater. Sci. Lett. 22(20), 1407–1409 (2003).
  • Q. Z. Li, D. M. Zhang, and L. M. Zhang, Fabrication of porous Al with controlled pore size by spark plasma sintering, In Key Engineering Materials, Trans Tech Publ (2014).
  • Y. Zhao and M. Taya. Processing of porous NiTi by spark plasma sintering method, In Smart Structures and Materials: Active Materials: Behavior and Mechanics. 2006. International Society for Optics and Photonics (2006).
  • L. Zhang, et al., Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering, J. Alloys Compd. 644, 513–522 (2015).
  • L. Zhang, et al., Enhanced in vitro bioactivity of porous NiTi–HA composites with interconnected pore characteristics prepared by spark plasma sintering, Mater. Des. 101, 170–180 (2016).
  • L. Zhang, et al., Rapid fabrication of function-structure-integrated NiTi alloys: towards a combination of excellent superelasticity and favorable bioactivity, Intermetallics 82, 1–13 (2017).
  • L. Zhang, et al., Designing a novel functional-structural NiTi/hydroxyapatite composite with enhanced mechanical properties and high bioactivity, Intermetallics 84, 35–41 (2017).
  • Q. Chen and G. A. Thouas, Metallic implant biomaterials, Mater. Sci. Eng.: R: Rep. 87, 1–57 (2015).
  • M. Tokita, Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering, In Materials Science Forum Trans Tech Publ (1999).
  • G. Xie, et al., Microstructure and mechanical properties of porous Zr55Cu30Al10Ni5 bulk metallic glass fabricated by spark plasma sintering process, Mater. Trans. 48(7), 1589–1594 (2007).
  • G. Xie, et al., Fabrication of porous Zr–Cu–Al–Ni bulk metallic glass by spark plasma sintering process, Scripta Mater. 55(8), 687–690 (2006).
  • L. Zhang, et al., Low elastic modulus Ti-Ag/Ti radial gradient porous composite with high strength and large plasticity prepared by spark plasma sintering, Mater. Sci. Eng. A 688, 330–337 (2017).
  • M. Kon, L. M. Hirakata, and K. Asaoka, Porous Ti‐6Al‐4V alloy fabricated by spark plasma sintering for biomimetic surface modification, J. Biomed. Mater. Res. Part B: Appl. Biomater. 68(1), 88–93 (2004).
  • I. H. Oh, et al. Mechanical properties and biocompatibility of porous titanium prepared by powder sintering, In Materials science forum, Trans Tech Publ (2007).
  • Y. Sakamoto, et al. Mechanical property of porous titanium produced by spark plasma sintering, In Key Engineering Materials, Trans Tech Publ (2008).
  • Z. G. Liu, et al. Porous Ti/HA Biocomposites for biomaterial applications, In Materials Science Forum, Trans Tech Publ (2009).
  • N. Jiang, et al., Development of a novel biomimetic micro/nano-hierarchical interface for enhancement of osseointegration, RSC Adv. 6(55), 49954–49965 (2016).
  • F. Zhang, et al., Preparation of nano to submicro‐porous TiMo foams by spark plasma sintering, Adv. Eng. Mater. 19(2), 1600600 (2017).
  • M. Mandal, et al., Porous copper template from partially spark plasma-sintered Cu-Zn aggregate via dezincification, Bull. Mater. Sci. 37(4), 743–752 (2014).
  • D. Dudina, et al. Fast synthesis and consolidation of porous FeAl by pressureless Spark Plasma Sintering, In IOP Conference Series: Materials Science and Engineering, IOP Publishing (2017).
  • D. V. Dudina, et al., Structural and mechanical characterization of porous iron aluminide FeAl obtained by pressureless Spark Plasma Sintering, Mater. Sci. Eng. A 695, 309–314 (2017).
  • E. Tõldsepp, et al., Spark plasma sintering of ultra-porous γ-Al 2 O 3, Ceram. Int. 42(10), 11709–11715 (2016).
  • W. L. Bradbury and E. A. Olevsky, Production of SiC–C composites by free-pressureless spark plasma sintering (FPSPS), Scripta Mater. 63(1), 77–80 (2010).
  • R. Yamanoglu, et al., Production of porous Ti5Al2. 5Fe alloy via pressureless spark plasma sintering, J. Alloys Compd. 680, 654–658 (2016).
  • Y.-W. Kim, Martensitic transformation behaviors of rapidly solidified Ti–Ni–Mo powders, Mater. Res. Bull. 47(10), 2956–2960 (2012).
  • Tõldsepp, E., et al., Spark plasma sintering of ultra-porous γ-Al 2 O 3, Ceram. Int. (2016).
  • J. Mentz, et al., Powder metallurgical processing of NiTi shape memory alloys with elevated transformation temperatures, Mater. Sci. Eng. A 491(1), 270–278 (2008).
  • J.-P. Ahn, J.-K. Park, and H.-W. Lee, Effect of compact structures on the phase transition, subsequent densification and microstructure evolution during sintering of ultrafine gamma alumina powder, Nanostructured Mater. 11(1), 133–140 (1999).
  • F. W. Dynys, and J. W. Halloran, Alpha alumina formation in alum‐derived gamma alumina, J. Am. Ceram. Soc. 65(9), 442–448 (1982).
  • R. Nicula, et al., Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications, Biomol. Eng. 24(5), 564–567 (2007).
  • P. Vasiliev, et al., Strong hierarchically porous monoliths by pulsed current processing of zeolite powder assemblies, ACS Appl. Mater. Interfaces 2(3), 732–737 (2010).
  • A. E. Gheribi, et al., Thermal transport properties of multiphase sintered metals microstructures. The copper-tungsten system: experiments and modeling, J. Appl. Phys. 119(14), 145104, (2016).
  • Z. Shen, et al., Spark plasma sintering of alumina, J. Am. Ceram. Soc. 85(8), 1921–1927 (2002).
  • D. V. Dudina and A. K. Mukherjee, Reactive spark plasma sintering: successes and challenges of nanomaterial synthesis, J. Nanomater. 2013, 5 (2013).
  • H. Yuan, et al., In situ synthesis and sintering of ZrB 2 porous ceramics by the spark plasma sintering–reactive synthesis (SPS–RS) method, Int. J. Refractory Metals Hard Mater. 34, 3–7 (2012).
  • A. V. Ukhina, et al., Porous electrically conductive materials produced by Spark Plasma Sintering and hot pressing of nanodiamonds, Ceram. Int. 41(9), 12459–12463 (2015).
  • B. B. Bokhonov, et al., Formation of self-supporting porous graphite structures by Spark Plasma Sintering of nickel–amorphous carbon mixtures, J. Phys. Chem. Solids 76, 192–202 (2015).
  • C. Lin, C. Xiao, and Z. Shen, Nano pores evolution in hydroxyapatite microsphere during spark plasma sintering, Sci. Sintering 43(1), 39–46 (2011).
  • D. Chakravarty, H. Ramesh, and T. N. Rao, High strength porous alumina by spark plasma sintering, J. Eur. Ceram. Soc. 29(8), 1361–1369 (2009).
  • S. De la Torre, et al., Nickel-molybdenum catalysts fabricated by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A 276(1), 226–235 (2000).
  • A. Merzhanov, Combustion processes that synthesize materials, J. Mater. Process. Technol. 56(1), 222–241 (1996).
  • H. Li, The numerical simulation of the heterogeneous composition effect on the combustion synthesis of TiB 2 compound, Acta Mater. 51(11), 3213–3224 (2003).
  • Y. V. Butenko, et al., Kinetics of the graphitization of dispersed diamonds at “low” temperatures, J. Appl. Phys. 88(7), 4380–4388 (2000).
  • C. Portet, G. Yushin, and Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon 45(13), 2511–2518 (2007).
  • M. Zeiger, et al., Understanding structure and porosity of nanodiamond-derived carbon onions, Carbon 84, 584–598 (2015).
  • N. Sakamoto and S. Shida, Diamond-like carbon sintered compacts formed by spark plasma sintering, Diamond Relat. Mater. 50, 97–102 (2014).
  • Q. Zou, et al., Fabrication of onion-like carbon using nanodiamond by annealing at lower temperature and vacuum, J. Wuhan Univ. Technol.-Mater. Sci. Ed. 24(6), 935 (2009).
  • Zhang, W., et al., Mechanochemical preparation of surface-acetylated cellulose powder to enhance mechanical properties of cellulose-filler-reinforced NR vulcanizates. Compos. Sci. Technol. 68(12), 2479–2484 (2008).
  • Zhang, Q., et al., Reactive mechanism and mechanical properties of in situ composites fabricated from an Al–TiO 2 system by friction stir processing. Acta Mater. 60(20), 7090–7103 (2012).
  • Gras, C., et al., Mechanical activation effect on the self-sustaining combustion reaction in the Mo–Si system. J Alloys Compd. 314(1), 240–250 (2001)
  • Gilissen, R., et al., Gelcasting, a near net shape technique. Mater. & Des. 21(4), 251–257 (2000).
  • Sepulveda, P. and J. Binner, Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers. J Eur Ceram Soc. 19(12), 2059–2066 (1999).
  • Dhara, S. and P. Bhargava, Egg white as an environmentally friendly low‐cost binder for gelcasting of ceramics. J Am Ceram Soc. 84(12), 3048–3050 (2001).
  • Li, D., et al., Preparation of nasal cavity-like SiC–Si 3 N 4 foams with a hierarchical pore architecture, RSC Adv. 5(35), 27891–27900 (2015).
  • Yushin, D. I., et al., Modeling process of spark plasma sintering of powder materials by finite element method. In Materials Science Forum, Trans Tech Publ (2015).
  • Lemos, A. and J.M.F. Ferreira. The valences of egg white for designing smart porous bioceramics: as Foaming and Consolidation Agent. In Key Engineering Materials. Trans Tech Publ (2004).
  • Santacruz, I., R. Moreno, and J.B. Rodrigues Neto, Preparation of cordierite materials with tailored porosity by gelcasting with polysaccharides, Int J Appl Ceram Technol. 5(1), 74–83 (2008).
  • Mouazer, R., et al., SiC foams produced by gel casting: synthesis and characterization, Adv Eng Mater. 6(5), 340–343 (2004).
  • Potoczek, M., Gelcasting of alumina foams using agarose solutions, Ceram Int. 34(3), 661–667 (2008).
  • Potoczek, M., E.G. de Moraes, and P. Colombo, Ti 2 AlC foams produced by gel-casting, J Eur Ceram Soc. 35(9), 2445–2452 (2015).
  • Shbeh, M.M. and R. Goodall, Open celled porous titanium, Adv Eng Mater. 19(11), 1600664 (2017).
  • Chen, W., et al., Preparation of AlN ceramic bonded carbon by gelcasting and spark plasma sintering, Carbon. 48(12), 3399–3404 (2010).
  • Simonenko, E.P., et al., Preparation of porous SiC-ceramics by sol–gel and spark plasma sintering, J Sol-Gel Sci Technol. 82(3), 748–759 (2017).
  • Hoffmann, M.J. and G. Petzow, Tailoring of mechanical properties of Si3N4 Ceramics. 276, Dordrecht: Springer Science & Business Media (2012).
  • Bučevac, D., S. Bošković, and B. Matović, Kinetics of the α-β phase transformation in seeded Si3N4 ceramics, Sci Sintering. 40(3), 263–270 (2008).
  • Li, D. and Z. Shen, Sintering by intense thermal radiation (SITR): a study of temperature distribution by simulation and experiments, J Eur Ceram Soc. 35(12), 3303–3309 (2015).
  • Barg, S., et al., Cellular ceramics by direct foaming of emulsified ceramic powder suspensions, J Am Ceram Soc. 91(9), 2823–2829 (2008).
  • Schmitt, V., F. Leal-Calderon, and J. Bibette, Preparation of monodisperse particles and emulsions by controlled shear, in Colloid Chemistry II, Springer, 195–215 (2003).
  • Barg, S., et al., New cellular ceramics from high alkane phase emulsified suspensions (HAPES), J Eur Ceram Soc. 29(12), 2439–2446 (2009).
  • Sarkar, N., et al., Al 2 TiO 5–mullite porous ceramics from particle stabilized wet foam, Ceram Int. 41(5), 6306–6311 (2015).
  • Chattopadhyay, J., et al., Metal hollow sphere electrocatalysts, Korean J Chem Eng. 33(5), 1514–1529 (2016).
  • Xia, X., et al., 25th Anniversary Article: Galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well‐controlled properties, Adv Mater. 25(44), 6313–6333 (2013)
  • Chen, G., et al., Facile synthesis of Co-Pt hollow sphere electrocatalyst, Chem Mater. 19(7), 1840–1844 (2007).
  • Kim, K.K., K.Y. Jang, and R.S. Upadhye, Hollow silica spheres of controlled size and porosity by sol—gel processing, J Am Ceram Soc. 74(8), 1987–1992 (1991)
  • Tripathy, N., et al., Rapid methyl orange degradation using porous ZnO spheres photocatalyst, J Photochem Photobiol B: Biol. 161, 312–317 (2016).
  • Sypeck, D.J., P.A. Parrish, and H.N. Wadley. Novel hollow powder porous structures. In MRS Proceedings, Cambridge: Cambridge University Press (1998).
  • Pan, J.H., et al., Large‐scale Synthesis of Urchin‐like Mesoporous TiO2 Hollow Spheres by Targeted Etching and Their Photoelectrochemical Properties, Adv Functional Mater. 24(1), 95–104 (2014)
  • He, F., et al., Effect of calcination temperature on the structural properties and photocatalytic activities of solvothermal synthesized TiO 2 hollow nanoparticles, Ceram Int. 40(5), 6441–6446 (2014)
  • Zhang, X. and D. Li, Metal‐compound‐induced vesicles as efficient directors for rapid synthesis of hollow alloy spheres, Angewandte Chemie Int Ed. 45(36), 5971–5974 (2006).
  • Buchold, D.H. and C. Feldmann, Nanoscale gamma-AlO(OH) hollow spheres: synthesis and container-type functionality , Nano Lett. 7(11), 3489–3492 (2007).
  • Behnam, M., A.S. Golezani, and M.M. Lima, Optimization of surface quality and shell porosity in low carbon steel hollow spheres produced by powder metallurgy, Powder Technol. 235, 1025–1029 (2013)
  • Zhong, Z., et al., Preparation of mesoscale hollow spheres of TiO 2 and SnO 2 by templating against crystalline arrays of polystyrene beads, Adv Mater. 12(3), 206–209 (2000)
  • Kumar, R., et al., Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders, Acta Mater. 53(8), 2327–2335 (2005)
  • Jiang, B., et al., Processing of open cell aluminum foams with tailored porous morphology, Scripta Mater. 53(6), 781–785 (2005)
  • Jiang, B., Z. Wang, and N. Zhao, Effect of pore size and relative density on the mechanical properties of open cell aluminum foams, Scripta Mater. 56(2), 169–172 (2007)
  • Surace, R., et al., Influence of processing parameters on aluminium foam produced by space holder technique, Mater Design. 30(6), 1878–1885 (2009)
  • San Marchi, C. and A. Mortensen, Deformation of open-cell aluminum foam, Acta Mater. 49(19), 3959–3969 (2001)
  • Hangai, Y., et al., Functionally graded aluminum foam fabricated by friction powder sintering process with traversing tool, J Mater Eng Perform. 25(9), 3691–3696 (2016)
  • Hassani, A., A. Habibolahzadeh, and H. Bafti, Production of graded aluminum foams via powder space holder technique, Mater Design. 40, 510–515 (2012)
  • Miyoshi, T., et al., ALPORAS aluminum foam: production process, properties, and applications, Adv Eng Mater. 2(4), 179–183 (2000)
  • Lee, M.H., et al., High strength porous Ti–6Al–4V foams synthesized by solid state powder processing, J Phys D: Appl Phys. 41(10), 105404 (2008)
  • Gu, Y., et al., Synthesis and bioactivity of porous Ti alloy prepared by foaming with TiH 2, Mater Sci Eng: C. 29(5), 1515–1520 (2009)
  • Güden, M., et al., Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation, J Biomed Mater Res Part B: Appl Biomater. 85(2), 547–555 (2008)
  • Bram, M., et al., High‐porosity titanium, stainless steel, and superalloy parts, Adv Eng Mater. 2(4), 196–199 (2000)
  • Imwinkelried, T., Mechanical properties of open‐pore titanium foam, J Biomed Mater Res Part A, 81(4), 964–970 (2007)
  • Sharma, M., et al., PM processed titanium foam: influence of morphology and content of space holder on microstructure and mechanical properties, Powder Metallurgy. 56(1), 55–60 (2013)
  • Yook, S.-W., et al., Porous titanium (Ti) scaffolds by freezing TiH 2/camphene slurries, Mater Lett. 62(30), 4506–4508 (2008)
  • Li, J.C. and D.C. Dunand, Mechanical properties of directionally freeze-cast titanium foams, Acta Mater. 59(1), 146–158 (2011)
  • Mansourighasri, A., N. Muhamad, and A.B. Sulong, Processing titanium foams using tapioca starch as a space holder, J Mater Process Technol. 212(1), 83–89 (2012)
  • Sharma, M., et al., Titanium foam through powder metallurgy route using acicular urea particles as space holder, Mater Lett. 65(21), 3199–3201 (2011)
  • Wen, C., et al., Processing and mechanical properties of autogenous titanium implant materials, J Mater Sci: Mater Med. 13(4), 397–401 (2002).
  • Chino, Y. and D.C. Dunand, Directionally freeze-cast titanium foam with aligned, elongated pores, Acta Mater. 56(1), 105–113 (2008)
  • Esen, Z. and Ş. Bor, Processing of titanium foams using magnesium spacer particles, Scripta Mater. 56(5), 341–344 (2007)
  • Torres, Y., J. Pavón, and J. Rodríguez, Processing and characterization of porous titanium for implants by using NaCl as space holder, J Mater Process Technol. 212(5), 1061–1069 (2012)
  • Erk, K. A., D. C. Dunand, and K. R. Shull, Titanium with controllable pore fractions by thermoreversible gelcasting of TiH 2, Acta Mater. 56(18), 5147–5157 (2008).
  • Murray, N. and D. Dunand, Effect of initial preform porosity on solid-state foaming of titanium, J Mater Res. 21(5), 1175–1188 (2006).
  • Oh, I.-H., et al., Mechanical properties of porous titanium compacts prepared by powder sintering, Scripta Mater. 49(12), 1197–1202 (2003)
  • Davis, N., et al., Solid-state foaming of titanium by superplastic expansion of argon-filled pores, J Mater Res. 16(5), 1508–1519 (2001).
  • Gauthier, M. and L. Lefebvre, Structure and properties of open-cell 316L stainless steel foams produced by a powder metallurgy-based process, in Proceeding of the Fifth International Conference on Porous Metals and Metallic Foams USA: DEStech Publications (2008).
  • Kato, K., et al., Cytocompatibility and mechanical properties of novel porous 316L stainless steel, Mater Sci Eng: C. 33(5), 2736–2743 (2013).
  • Mirzaei, M. and M. Paydar, A novel process for manufacturing porous 316L stainless steel with uniform pore distribution, Mater Design. 121, 442–449 (2017)
  • Wada, T., et al., Preparation of open-cell porous Zr-based bulk glassy alloy, Mater Transac. 48(9), 2381–2384 (2007)
  • Schroers, J. and W. L. Johnson, Ductile bulk metallic glass, Phys Rev Lett. 93(25), 255506 (2004)
  • Brothers, A. and D. Dunand, Plasticity and damage in cellular amorphous metals, Acta Mater. 53(16), 4427–4440 (2005).
  • Cox, M.E., et al., Amorphous Zr-Based Foams with Aligned, Elongated Pores, Metallurg Mater Transac A. 41(7), 1706–1713 (2010)
  • Cox, M.E. and D.C. Dunand, Anisotropic mechanical properties of amorphous Zr-based foams with aligned, elongated pores, Acta Mater. 61(16), 5937–5948 (2013)
  • Chen, X., et al., A porous bulk metallic glass with unidirectional opening pores, Electrochem Solid-State Lett. 10(12), E21–E23 (2007)
  • Li, J., et al., Novel open-cell bulk metallic glass foams with promising characteristics, Mater Lett. 105, 140–143 (2013)
  • Wada, T., et al., Preparation of a Zr-based bulk glassy alloy foam, Scripta Mater. 59(10), 1071–1074 (2008)
  • Eom, J.-H., Y.-W. Kim, and S. Raju, Processing and properties of macroporous silicon carbide ceramics: a review, J Asian Ceram Soc. 1(3), 220–242 (2013)
  • Eom, J.-H., et al., Processing and properties of polysiloxane-derived porous silicon carbide ceramics using hollow microspheres as templates, J Eur Ceram Soc. 28(5), 1029–1035 (2008)
  • Yao, X., et al., Low-temperature sintering of SiC reticulated porous ceramics with MgO–Al2O3–SiO2 additives as sintering aids, J Mater Sci. 42(13), 4960–4966 (2007)
  • Chen, F., et al., Macro/micro structure dependence of mechanical strength of low temperature sintered silicon carbide ceramic foams, Ceram Int. 38(6), 5223–5229 (2008)
  • Fukushima, M., Y. Zhou, and Y.-I. Yoshizawa, Fabrication and microstructural characterization of porous silicon carbide with nano-sized powders, Mater Sci Eng: B. 148(1), 211–214 (2008)
  • Eom, J.-H., et al., Microstructure and properties of porous silicon carbide ceramics fabricated by carbothermal reduction and subsequent sintering process, Mater Sci Eng. A. 464(1), 129–134 (2007)
  • Yao, X., et al., Effect of recoating slurry viscosity on the properties of reticulated porous silicon carbide ceramics, Ceram Int. 32(2), 137–142 (2006).
  • Greil, P., T. Lifka, and A. Kaindl, Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure, J Eur Ceram Soc. 18(14), 1961–1973 (1998)
  • Eom, J.-H. and Y.-W. Kim, Effect of template size on microstructure and strength of porous silicon carbide ceramics, J Ceram Soc Japan. 116(1358), 1159–1163 (2008).
  • Yoon, B.H., et al., In situ synthesis of porous silicon carbide (SiC) ceramics decorated with SiC nanowires, J Am Ceram Soc. 90(12), 3759–3766 (2007).
  • Kim, Y.W., et al., Processing of open‐cell silicon carbide foams by steam chest molding and carbothermal reduction, J Am Ceram Soc. 94(2), 344–347 (2011).
  • Chun, Y.-S. and Y.-W. Kim, Processing and mechanical properties of porous silica-bonded silicon carbide ceramics, Metals Mater Int. 11(5), 351–355 (2005).
  • Medri, V. and A. Ruffini, Alkali-bonded SiC based foams, J Eur Ceram Soc. 32(9), 1907–1913 (2012)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.