1,084
Views
30
CrossRef citations to date
0
Altmetric
Reviews

A review on thermo-mechanical properties of bi-crystalline and polycrystalline 2D nanomaterials

ORCID Icon & ORCID Icon

References

  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science. 306(5696), 666–669 (2004).
  • A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007).
  • M. E. Dávila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys. 16(9), 095002 (2014).
  • S. Mojumder, A. A. Amin, and M. M. Islam, Mechanical properties of stanene under uniaxial and biaxial loading: a molecular dynamics study, J. Appl. Phys. 118(12), 124305 (2015).
  • R. Gusmão, Z. Sofer, and M. Pumera, Black phosphorus rediscovered: from bulk material to monolayers, Angew. Chemie - Int. Ed. 56(28), 8052–8072 (2017).
  • B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147–150 (2011).
  • Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699–712 (2012).
  • J. Wu, P. Cao, Z. Zhang, F. Ning, S. Zheng, J. He, and Z. Zhang, Grain-size-controlled mechanical properties of polycrystalline monolayer MoS2, Nano Lett. 18(2), 1543–1552 (2018).
  • J. Wang, F. Ma, and M. Sun, Graphene, hexagonal boron nitride, and their heterostructures: properties and applications, RSC Adv. 7(27), 16801–16822 (2017).
  • A. Verma, and A. Parashar, and M. Packirisamy, Atomistic modeling of graphene/hexagonal boron nitride polymer nanocomposites: a review, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, 1–50 (2017).
  • Y. Gao, Y. Zhou, X. Zhang, and M. Hu, Extremely low thermal conductivity of polycrystalline silicene, J. Phys. Chem. C. 122(16), 9220–9228 (2018).
  • E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. Dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and A. H. C. Neto, Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett. 99, 8–11 (2007).
  • H. Xie, T. Ouyang, É. Germaneau, G. Qin, M. Hu, and H. Bao, Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain, Phys. Rev. B. 93, 4–13 (2016).
  • Y. Zhang, T. T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene, Nature. 459(7248), 820–823 (2009).
  • D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, and C. Zhi, Boron nitride nanotubes and nanosheets, ACS Nano. 4(6), 2979–2993 (2010).
  • C. Jin, F. Lin, K. Suenaga, and S. Iijima, Fabrication of a freestanding boron nitride single layer and its defect assignments, Phys. Rev. Lett. 102, 3–6 (2009).
  • M. Hu, X. Zhang, and D. Poulikakos, Anomalous thermal response of silicene to uniaxial stretching, Phys. Rev. B - Condens. Matter Mater. Phys. 87, 1–11 (2013).
  • J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: a competitive 2D material, Prog. Mater. Sci. 83, 24–151 (2016).
  • I.-L. Chang and J.-A. Chen, The molecular mechanics study on mechanical properties of graphene and graphite, Appl. Phys. A. 119(1), 265–274 (2015).
  • M. Degefe and A. Parashar, Effect of non-bonded interactions on failure morphology of a defective graphene sheet, Mater. Res. Express 3(4), 045009 (2016).
  • V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: past, present and future, Prog. Mater. Sci. 56(8), 1178–1271 (2011).
  • A. Verma, and A. Parashar, Structural and chemical insights into thermal transport for strained functionalised graphene: a molecular dynamics study, Mater. Res. Express 5(11), 115605 (2018).
  • D. Berman, A. Erdemir, and A. V. Sumant, Graphene: a new emerging lubricant, Mater. Today. 17(1), 31–42 (2014).
  • W. Gwizdała, K. Górny, and Z. Gburski, The dynamics of 4-cyano-4-n-pentylbiphenyl (5CB) mesogen molecules located between graphene layers - MD study, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 79(4), 701–704 (2011).
  • G. Huang, S. Chen, S. Tang, and J. Gao, A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties, Mater. Chem. Phys. 135(2-3), 938–947 (2012).
  • F. L. Guan, C. X. Gui, H. Zhang, Z. G. Jiang, Y. Jiang, and Z. Z. Yu. Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide, Compos. Part B Eng. 98, 134–140 (2016).
  • G. Huang, J. Gao, X. Wang, H. Liang, and C. Ge, How can graphene reduce the flammability of polymer nanocomposites?, Mater. Lett. 66(1), 187–189 (2012).
  • K. M. F. Shahil and A. A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett. 12(2), 861–867 (2012).
  • N. Parveen, N. Mahato, M. O. Ansari, and M. H. Cho, Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@graphene nanocomposite synthesized at elevated temperature, Compos. Part B Eng. 87, 281–290 (2016).
  • V. Tozzini and V. Pellegrini, Prospects for hydrogen storage in graphene, Phys. Chem. Chem. Phys. 15(1), 80–89 (2013).
  • A. Verma, and A. Parashar, The effect of STW defects on the mechanical properties and fracture toughness of pristine and hydrogenated graphene, Phys. Chem. Chem. Phys. 19(24), 16023–16037 (2017).
  • B. L. Allen, P. D. Kichambare, and A. Star, Carbon nanotube field-effect-transistor-based biosensors, Adv. Mater. 19(11), 1439–1451 (2007).
  • A. M. Fennimore, T. D. Yuzvinsky, W.-Q. Han, M. S. Fuhrer, J. Cumings, and A. Zettl, Rotational actuators based on carbon nanotubes, Nature. 424(6947), 408–410 (2003).
  • Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Adv. Mater. Weinheim. 22(35), 3906–3924 (2010).
  • M. R. Banwaskar, and S. N. Dachawar, Graphene basics and applications, Adv. Mater. Res. 622–623, 259–262 (2012).
  • P. Avouris, and C. Dimitrakopoulos, Graphene: synthesis and applications, Mater. Today 15(3), 86–97 (2012).
  • X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications, Small 7(14), 1876–1902 (2011).
  • J. Cumings and A. Zettl, Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science 289, 602–603 (2000).
  • A. Bianco, K. Kostarelos, and M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol. 9(6), 674–679 (2005).
  • G. Rajasekaran, P. Narayanan, and A. Parashar, Effect of point and line defects on mechanical and thermal properties of graphene: a review, Crit. Rev. Solid State Mater. Sci. 41(1), 47–71 (2016).
  • A. Sakhaee-Pour, M. T. Ahmadian, and A. Vafai, Potential application of single-layered graphene sheet as strain sensor, Solid State Commun. 147(7-8), 336–340 (2008).
  • W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, Synthesis of graphene and its applications: a review, Crit. Rev. Solid State Mater. Sci. 35(1), 52–71 (2010).
  • T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, Recent advances in graphene-based biosensors, Biosens. Bioelectron. 26(12), 4637–4648 (2011).
  • M. S. Artiles, C. S. Rout, and T. S. Fisher, Graphene-based hybrid materials and devices for biosensing, Adv. Drug Deliv. Rev. 63(14-15), 1352–1360 (2011).
  • M. Pumera, Graphene in biosensing, Mater. Today 14(7-8), 308–315 (2011).
  • S. Ebrahimi, A. Montazeri, and H. Rafii-Tabar, Molecular dynamics study of the interfacial mechanical properties of the graphene-collagen biological nanocomposite, Comput. Mater. Sci. 69, 29–39 (2013).
  • Y. Sun, Q. Wu, and G. Shi, Graphene based new energy materials, Energy Environ. Sci. 4(4), 1113 (2011). [Database].
  • M. Li, Y. Y. Feng, E. Z. Liu, C. Q. Qin, and W. Feng, Azobenzene/graphene hybrid for high-density solar thermal storage by optimizing molecular structure, Sci. China Technol. Sci. 59(9), 1383–1390 (2016).
  • M. Pumera, Graphene-based nanomaterials for energy storage, Energy Environ. Sci. 4(3), 668–674 (2011).
  • D. A. C. Brownson, D. K. Kampouris, and C. E. Banks, An overview of graphene in energy production and storage applications, J. Power Sources 196(11), 4873–4885 (2011).
  • J. Wang, Y. Chen, R. Li, H. Dong, Y. Ju, J. He, J. Fan, K. Wang, K. S. Liao, L. Zhang, S. A. Curran, and W. J. Blau, Graphene and carbon nanotube polymer composites for laser protection, J. Inorg. Organomet. Polym. Mater. 21(4), 736–746 (2011).
  • Q. Chen, and X. Yang, Pyridinic nitrogen doped nanoporous graphene as desalination membrane: Molecular simulation study, J. Membr. Sci. 496, 108–117 (2015).
  • H. Liu, P. Bandyopadhyay, T. Kshetri, N. H. Kim, B. C. Ku, B. Moon, and J. H. Lee, Layer-by-layer assembled polyelectrolyte-decorated graphene multilayer film for hydrogen gas barrier application, Compos. Part B Eng. 114, 339–347 (2017).
  • Q. Huang, D. Zeng, S. Tian, and C. Xie, Synthesis of defect graphene and its application for room temperature humidity sensing, Mater. Lett. 83, 76–79 (2012).
  • A. Verma, A. Parashar, and M. Packirisamy, Effect of grain boundaries on the interfacial behaviour of graphene-polyethylene nanocomposite, Appl. Surf. Sci. 470, 1085–1092 (2019).
  • T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, Recent advances in graphene based polymer composites, Prog. Polym. Sci. 35(11), 1350–1375 (2010).
  • A. Parashar, and P. Mertiny, Multiscale model to study of fracture toughening in graphene/polymer nanocomposite, Int. J. Fract. 179(1-2), 221–228 (2013).
  • R. Verdejo, M. M. Bernal, L. J. Romasanta, and M. A. Lopez-Manchado, Graphene filled polymer nanocomposites, J. Mater. Chem. 21(10), 3301–3310 (2011).
  • A. Parashar and P. Mertiny, Effect of van der Waals forces on the buckling strength of graphene, J Comput. Theor. Nanosci. 10(11), 2626–2630 (2013).
  • R. Kumar and A. Parashar, Atomistic modeling of BN nanofillers for mechanical and thermal properties: a review, Nanoscale. 8(1), 22–49 (2016).
  • T. Sato, Studies on hexagonal and rhomobohedral layered boron nitrides: synthesis, crystal growth, and transformation under high pressure. Dissertation (1987).
  • J. J. Pouch and S. A. Alterovitz, A review of: “SYNTHESIS AND PROPERTIES OF BORON NITRIDE, Mater. Manuf. Process. 6(2), 373–374 (1991).
  • A. Rubio, J. L. Corkill, and M. L. Cohen, Theory of graphitic boron nitride nanotubes, Phys. Rev. B. 49(7), 5081–5084 (1994).
  • N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Boron nitride nanotubes, Science 269(5226), 966–967 (1995).
  • X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Stability and band-gap constancy of boron-nitride nanotubes, Europhys. Lett. 28(5), 335 (1994).
  • K. Watanabe, T. Taniguchi, and H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3(6), 404 (2004).
  • K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, Two-dimensional atomic crystals, Proc. Natl. Acad. Sci. USA 102(30), 10451–10453 (2005).
  • Y. Chen, J. Zou, S. J. Campbell, and G. L. Caer, Boron nitride nanotubes: pronounced resistance to oxidation, Appl. Phys. Lett. 84(13), 2430 (2004).
  • Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science. 317(5840), 932–934 (2007).
  • M. Noor-A-Alam, H. J. Kim, and Y.-H. Shin, Dipolar polarization and piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine, Phys. Chem. Chem. Phys. 16(14), 6575 (2014).
  • K. H. Michel and B. Verberck, Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride, Phys. Rev. B - Condens. Matter Mater. Phys. 80, 224301 (2009).
  • J. Qi, X. Qian, L. Qi, J. Feng, D. Shi, and J. Li, Strain-engineering of band gaps in piezoelectric boron nitride nanoribbons, Nano Lett. 12(3), 1224–1228 (2012).
  • X. Li and X. Wu, Low-dimensional boron nitride nanomaterials, J. Univ. Sci. Technol. China 44, 389–402 (2014).
  • M. C. Wang, C. Yan, L. Ma, N. Hu, and M. W. Chen, Effect of defects on fracture strength of graphene sheets, Comput. Mater. Sci. 54, 236–239 (2012).
  • X. Liu, T. H. Metcalf, J. T. Robinson, B. H. Houston, and F. Scarpa, Shear modulus of monolayer graphene prepared by chemical vapor deposition, Nano Lett. 12(2), 1013–1017 (2012).
  • L. Boldrin, F. Scarpa, R. Chowdhury, and S. Adhikari, Effective mechanical properties of hexagonal boron nitride nanosheets, Nanotechnology 22(50), 505702 (2011).
  • T. Zhang, X. Li, and H. Gao, Fracture of graphene: a review, Int. J. Fract. 196(1-2), 1–31 (2015).
  • A. Tabarraei and X. Wang, A molecular dynamics study of nanofracture in monolayer boron nitride, Mater. Sci. Eng. A 641, 225–230 (2015).
  • A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902–907 (2008).
  • X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, Boron nitride nanosheets: Novel syntheses and applications in polymeric composites, J. Phys: Conf. Ser. 471, 012003 (2013).
  • H. Y. Nan, Z. H. Ni, J. Wang, Z. Zafar, Z. X. Shi, and Y. Y. Wang, The thermal stability of graphene in air investigated by Raman spectroscopy, J. Raman Spectrosc. 44(7), 1018–1021 (2013).
  • N. Kostoglou, K. Polychronopoulou, and C. Rebholz, Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets, Vaccum 112, 42–45 (2015).
  • K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature. 490(7419), 192–200 (2012).
  • K. Zhang, Y. Feng, F. Wang, Z. Yang, and J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications, J. Mater. Chem. C. 5(46), 11992–12022 (2017).
  • Z. Lin, Y. Liu, S. Raghavan, K. S. Moon, S. K. Sitaraman, and C. Wong, P Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: Toward high performance anisotropic polymer composites for electronic encapsulation, ACS Appl. Mater. Interfaces 5(15), 7633–7640 (2013).
  • A. T. Nasrabadi and M. Foroutan, Interactions between polymers and single-walled boron nitride nanotubes: a molecular dynamics simulation approach, J. Phys. Chem. B 114(47), 15429–15436 (2010).
  • S. K. Jang, J. Youn, Y. J. Song, and S. Lee, Synthesis and characterization of hexagonal boron nitride as a gate dielectric, Sci. Rep. 6, 30449 (2016).
  • K. B. Shelimov and M. Moskovits, Composite nanostructures based on template-grown boron nitride nanotubules, Chem. Mater. 12(1), 250–254 (2000).
  • C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara, and D. Golberg, Characteristics of boron nitride nanotube-polyaniline composites, Angew. Chemie - Int. Ed. 44(48), 7929–7932 (2005).
  • W. Zhou, S. Qi, Q. An, Z. Hongzhen, and N. Liu, Thermal conductivity of boron nitride reinforced polyethylene composites, Mater. Res. Bull. 42(10), 1863–1873 (2007).
  • H. Ishida, and S. Rimdusit, Very high thermal conductivity obtained by boron nitride filled polybenzoxaxine, Thermochim. Acta 320, 177–186 (1998).
  • M. Yi, Z. Shen, L. Liu, and S. Liang, Size-selected boron nitride nanosheets as oxygen-atom corrosion resistant fillers, RSC Adv. 5(4), 2983–2987 (2015).
  • X. B. Wang, A. Pakdel, J. Zhang, Q. H. Weng, T. Y. Zhai, C. Y. Zhi, D. Golberg, and Y. Bando, Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties, Nanoscale Res. Lett. 7, 662 (2012).
  • Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T. Lim, and K. P. Loh, Graphene-polymer nanofiber membrane for ultrafast photonics, Adv. Funct. Mater. 20(5), 782–791 (2010).
  • M. Ghorbanzadeh Ahangari, Modeling of the interaction between polypropylene and monolayer sheets: a quantum mechanical study, RSC Adv. 5(98), 80779–80785 (2015).
  • Y.-X. Yu, A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN, J. Mater. Chem. A. 2(23), 8910–8917 (2014).
  • Q. Huang, Y. Bando, L. P. Zhao, C. Y. Zhi, and D. Golberg, pH sensor based on boron nitride nanotubes, Nanotechnology 20(41), 415501 (2009).
  • M. B. Panchal and S. H. Upadhyay, Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling-based simulation approach, IET Nanobiotechnol. 8(3), 143–148 (2014).
  • R. Chowdhury and S. Adhikari, Boron-nitride nanotubes as zeptogram-scale bionanosensors: theoretical investigations, IEEE Trans. Nanotechnol. 10(4), 659–667 (2011).
  • M. B. Panchal and S. H. Upadhyay, Boron nitride nanotube-based biosensor for acetone detection: molecular structural mechanics-based simulation, Mol. Simul. 40(13), 1035–1042 (2014).
  • M. B. Panchal, and S. H. Upadhyay, Single walled boron nitride nanotube-based biosensor: an atomistic finite element modelling approach, IET Nanobiotechnol. 8(3), 149–156 (2014).
  • M. B. Panchal, S. H. Upadhyay, and S. P. Harsha, Mass detection using single walled boron nitride nanotube as a nanomechanical resonator, Nano. 07(04), 1250029 (2012).
  • M. TabkhPaz, S. Shajari, M. Mahmoodi, D. Y. Park, H. Suresh, and S. S. Park, Thermal conductivity of carbon nanotube and hexagonal boron nitride polymer composites, Compos. Part B Eng. 100, 19–30 (2016).
  • C. Wang, P. Jagirdar, S. Naserifar, and M. Sahimi, Molecular simulation study of gas solubility and diffusion in a polymer-boron nitride nanotube composite, J. Phys. Chem. B. 120(7), 1273–1284 (2016).
  • S. Roosta, S. J. Nikkhah, M. Sabzali, and S. M. Hashemianzadeh, Molecular dynamics simulation study of boron-nitride nanotubes as a drug carrier: from encapsulation to releasing, RSC Adv. 6(11), 9344–9351 (2016).
  • G. Ciofani, Potential applications of boron nitride nanotubes as drug delivery systems, Expert Opin Drug Deliv. 7(8), 889–893 (2010).
  • G. Ciofani, V. Raffa, A. Menciassi, and A. Cuschieri, Folate functionalized boron nitride nanotubes and their selective uptake by glioblastoma multiforme cells: implications for their use as boron carriers in clinical boron neutron capture therapy, Nanoscale Res. Lett. 4(2), 113–121 (2009).
  • G. Ciofani, S. Danti, L. Ricotti, D. D'Alessandro, S. Moscato, S. Berrettini, V. Mattoli, and A. Menciassi, Boron nitride nanotubes: production, properties, biological interactions and potential applications as therapeutic agents in brain diseases, Curr. Nanosci. 7(1), 94–109 (2011).
  • T. H. Ferreira, L. M. Hollanda, M. Lancellotti, and E. M. De Sousa, Boron nitride nanotubes chemically functionalized with glycol chitosan for gene transfection in eukaryotic cell lines, J. Biomed. Mater. Res. - Part A. 103(6), 2176–2185 (2015).
  • W. Lei, D. Portehault, D. Liu, S. Qin, and Y. Chen, Porous boron nitride nanosheets for effective water cleaning, Nat. Commun. 4, 1777 (2013).
  • S. H. Jhi and Y. K. Kwon, Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage, Phys. Rev. B - Condens. Matter Mater. Phys. 69, 245407 (2004).
  • G. Mpourmpakis and G. E. Froudakis, Why boron nitride nanotubes are preferable to carbon nanotubes for hydrogen storage? An ab initio theoretical study, Catal. Today 120(3-4), 341–345 (2007).
  • J. H. Warner, F. Schaffel, and A. Bachmatiuk, and M. Rummeli, Graphene: Fundamentals and Emergent Applications, Elsevier, New York (2012).
  • C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, Graphene: the new two-dimensional nanomaterial, Angew. Chemie - Int. Ed. 48(42), 7752–7777 (2009).
  • R. S. Edwards and K. S. Coleman, Graphene synthesis: relationship to applications, Nanoscale 5(1), 38–51 (2013).
  • F. Kazemizadeh and R. Malekfar, One step synthesis of porous graphene by laser ablation: a new and facile approach, Phys. B Condens. Matter. 530, 236–241 (2018).
  • D. G. Papageorgiou, I. A. Kinloch, and R. J. Young, Mechanical properties of graphene and graphene-based nanocomposites, Prog. Mater. Sci. 90, 75–127 (2017).
  • S. Kalay, Z. Yilmaz, O. Sen, M. Emanet, E. Kazanc, and M. Culha, Synthesis of boron nitride nanotubes and their applications, Beilstein J. Nanotechnol. 6, 84–102 (2015).
  • H. Park, T. K. Kim, S. W. Cho, H. S. Jang, S. I. Lee, and S. Y. Choi, Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition, Sci. Rep. 7, 40091 (2017).
  • L. C. Nistor, G. Epurescu, M. Dinescu, and G. Dinescu, Boron nitride nano-structures produced by pulsed laser ablation in acetone, IOP Conf. Ser. Mater. Sci. Eng. 15, 012067 (2010).
  • D. Pacile, J. C. Meyer, C. O. Girit, and A. Zettl, The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes, Appl. Phys. Lett. 92, 133107 (2008).
  • C. Y. Zhi, Y. Bando, C. C. Tang, H. Kuwahara, and D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Adv. Mater. 21(28), 2889 (2009).
  • Y. Yao, Z. Lin, Z. Li, X. Song, K.-S. Moon, and C. Wong, Large-scale production of two-dimensional nanosheets, J. Mater. Chem. 22(27), 13494 (2012).
  • L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett. 10(8), 3209–3215 (2010).
  • L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater. 9(5), 430–435 (2010).
  • Y. Shi, C. Hamsen, X. Jia, K. K. Kim, A. Reina, M. Hofmann, A. L. Hsu, K. Zhang, H. Li, Z. Y. Juang, M. S. Dresselhaus, L. J. Li, and J. Kong, Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition, Nano Lett. 10(10), 4134–4139 (2010).
  • K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong, Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition, Nano Lett. 12(1), 161–166 (2012).
  • Y. Stehle, H. M. Meyer, R. R. Unocic, M. Kidder, G. Polizos, P. G. Datskos, R. Jackson, S. N. Smirnov, and I. V. Vlassiouk, Synthesis of hexagonal boron nitride monolayer: control of nucleation and crystal morphology, Chem. Mater. 27(23), 8041–8047 (2015).
  • W. Q. Han, L. J. Wu, Y. M. Zhu, K. Watanabe, and T. Taniguchi, Structure of chemically derived mono- and few-atomic-layer boron nitride sheets, Appl. Phys. Lett. 93(22), 223103 (2008).
  • L. H. Li, Y. Chen, G. Behan, H. Zhang, M. Petravic, and A. M. Glushenkov, Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling, J. Mater. Chem. 21(32), 11862 (2011).
  • J. Duan, R. Xue, Y. Xu, and C. Sun, Low temperature synthesis of h-BN nanoflakes, Mater. Lett. 62(19), 3355–3357 (2008).
  • X. Wang, C. Zhi, L. Li, H. Zeng, C. Li, M. Mitome, D. Golberg, and Y. Bando, “Chemical blowing” of thin-walled bubbles: high-throughput fabrication of large-area, few-layered BN and C x-BN nanosheets, Adv. Mater. 23(35), 4072–4076 (2011).
  • X. Wang, A. Pakdel, C. Zhi, K. Watanabe, T. Sekiguchi, D. Golberg, and Y. Bando, High-yield boron nitride nanosheets from “chemical blowing”: Towards practical applications in polymer composites, J. Phys: Condens. Matter. 24(31), 314205 (2012).
  • A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, and C. N. R. Rao, Graphene analogues of BN: novel synthesis and properties, ACS Nano 4(3), 1539 (2010).
  • H. Yurdakul, Y. Göncü, O. Durukan, A. Akay, A. T. Seyhan, N. Ay, and S. Turan, Nanoscopic characterization of two-dimensional (2D) boron nitride nanosheets (BNNSs) produced by microfluidization, Ceram. Int. 38(3), 2187–2193 (2012).
  • R. Kumar and A. Parashar, Dislocation assisted crack healing in h-BN nanosheets, Phys. Chem. Chem. Phys. 19(32), 21739–21747 (2017).
  • G. Rajasekaran and A. Parashar, Enhancement of fracture toughness of graphene via crack bridging with stone-thrower-wales defects, Diam. Relat. Mater. 74, 90–99 (2017).
  • R. Kumar and A. Parashar, Fracture toughness enhancement of h-BN monolayers via hydrogen passivation of a crack edge, Nanotechnology 28(16), 165702 (2017).
  • R. Kumar, A. Parashar, and P. Mertiny, Displacement thresholds and knock-on cross sections for hydrogenated h-BN monolayers, Comput. Mater. Sci. 142, 82–88 (2018).
  • A. Verma and A. Parashar, Molecular dynamics based simulations to study failure morphology of hydroxyl and epoxide functionalised graphene, Comput. Mater. Sci. 143, 15–26 (2018).
  • G. Rajasekaran and A. Parashar, Molecular dynamics study on the mechanical response and failure behaviour of graphene: performance enhancement via 5–7–7–5 defects, RSC Adv. 6(31), 26361–26373 (2016).
  • G. Rajasekaran and A. Parashar, Anisotropic compressive response of Stone-Thrower-Wales defects in graphene: A molecular dynamics study, Mater. Res. Express 3, 095051 (2016).
  • A. Verma and A. Parashar, Molecular dynamics based simulations to study the fracture strength of monolayer graphene oxide, Nanotechnology 29(11), 115706 (2018).
  • R. Kumar and A. Parashar, Effect of geometrical defects and functionalization on the interfacial strength of h-BN/polyethylene based nanocomposite, Polymer (United Kingdom) 146, 82–90 (2018).
  • F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, Structural defects in graphene, ACS Nano 5(1), 26–41 (2011).
  • Y. I. Jhon, S. E. Zhu, J. H. Ahn, and M. S. Jhon, The mechanical responses of tilted and non-tilted grain boundaries in graphene, Carbon 50(10), 3708–3716 (2012).
  • Y. Liu, X. Zou, and B. I. Yakobson, Dislocations and grain boundaries in two-dimensional boron nitride, ACS Nano 6(8), 7053–7058 (2012).
  • O. V. Yazyev, and S. G. Louie, Topological defects in graphene: dislocations and grain boundaries, Phys. Rev. B - Condens. Matter Mater. Phys. 81, 1–7 (2010).
  • A. Isacsson, A. W. Cummings, L. Colombo, L. Colombo, J. M. Kinaret, and S. Roche, Scaling properties of polycrystalline graphene: a review, 2D Mater. 4(1), 012002 (2016).
  • S. Amelinckx, and P. Delavignette, Dislocation loops due to quenched in point defects in graphite, Phys. Rev. Lett. 5(2), 50 (1960).
  • P. Delavignette and S. Amelinckx, Dislocation patterns in graphite, J. Nucl. Mater. 5(1), 17–66 (1962).
  • A. Hashimoto, K. Suenaga, A. Gloter, and K. Urita, Direct evidence for atomic defects in graphene layers, Nature 430, 17–20 (2004).
  • P. Y. Huang, C. S. Ruiz-Vargas, A. M. Van Der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. S. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, and D. A. Muller, Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature. 469(7330), 389–392 (2011).
  • K. Kim, Z. Lee, W. Regan, C. Kisielowski, M. F. Crommie, and A. Zettl, Grain boundary mapping in polycrystalline graphene, ACS Nano 5(3), 2142–2146 (2011).
  • J. An, E. Voelkl, J. W. Suk, X. Li, C. W. Magnuson, L. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, and R. S. Ruoff, Domain (Grain) boundaries and evidence of “twinlike” structures in chemically vapor deposited grown graphene, ACS Nano 5(4), 2433–2439 (2011).
  • A. L. Gibb, N. Alem, J. Chen, K. J. Erickson, J. Ciston, A. Gautam, M. Linck, and A. Zettl, Atomic resolution imaging of grain boundary defects in monolayer chemical vapor deposition-grown hexagonal boron nitride, J. Am. Chem. Soc. 135(18), 6758–6761 (2013).
  • Q. Wu, J. Lee, S. Park, H. J. Woo, S. Lee, and Y. J. Song, Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains, Nanotechnology 29(12), 125704 (2018).
  • C. Ophus, A. Shekhawat, H. Rasool, and A. Zettl, Large-scale experimental and theoretical study of graphene grain boundary structures, Phys. Rev. B - Condens. Matter Mater. Phys. 92, 205402 (2015).
  • A. W. Robertson and J. H. Warner, Atomic resolution imaging of graphene by transmission electron microscopy, Nanoscale 5(10), 4079 (2013).
  • G.-H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, High-strength chemical-vapor-deposited graphene and grain boundaries, Science. 340(6136), 1073–1076 (2013).
  • H. I. Rasool, C. Ophus, W. S. Klug, A. Zettl, and J. K. Gimzewski, Measurement of the intrinsic strength of crystalline and polycrystalline graphene, Nat. Commun. 4, 2811 (2013).
  • L. Hawelek, A. Kolano-Burian, J. Szade, W. Maziarz, N. Woznica, and A. Burian, The atomic scale structure of nanographene platelets studied by X-ray diffraction, high-resolution transmission electron microscopy and molecular dynamics, Diam. Relat. Mater. 35, 40–46 (2013).
  • Albrecht, T. R. Mizes, H. A. Nogami, J. Park, S. Il, and Quate C. F. Observation of tilt boundaries in graphite by scanning tunneling microscopy and associated multiple tip effects, Appl. Phys. Lett. 52(5), 362–364 (1988).
  • P. Simonis, C. Goffaux, P. Thiry, L. Biro, P. Lambin, and V. Meunier, STM study of a grain boundary in graphite, Surf. Sci. 511(1-3), 319–322 (2002).
  • J. Červenka and C. F. J. Flipse, Structural and electronic properties of grain boundaries in graphite: planes of periodically distributed point defects, Phys. Rev. B - Condens. Matter Mater. Phys. 79, 195429 (2009).
  • Q. Li, X. Zou, M. Liu, J. Sun, Y. Gao, Y. Qi, X. Zhou, B. I. Yakobson, Y. Zhang, and Z. Liu, Grain boundary structures and electronic properties of hexagonal boron nitride on Cu(111), Nano Lett. 15(9), 5804–5810 (2015).
  • H. Yao, L. Liu, W. Fu, H. Yang, and Y. Shi, Fe2O3 nanothorns sensitized two-dimensional TiO2 nanosheets for highly efficient solar energy conversion, FlatChem. 3, 1–7 (2017).
  • C. S. Ruiz-Vargas, H. L. Zhuang, P. Y. Huang, A. M. Van Der Zande, S. Garg, P. L. McEuen, D. A. Muller, R. G. Hennig, and J. Park, Softened elastic response and unzipping in chemical vapor deposition graphene membranes, Nano Lett. 11(6), 2259–2263 (2011).
  • A. Zandiatashbar, G. H. Lee, S. J. An, S. Lee, N. Mathew, M. Terrones, T. Hayashi, C. R. Picu, J. Hone, and N. Koratkar, Effect of defects on the intrinsic strength and stiffness of graphene, Nat. Commun. 5, 3186 (2014).
  • Y. Sun, S. Gao, F. Lei, C. Xiao, and Y. Xie, Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry, Acc. Chem. Res. 48(1), 3–12 (2015).
  • A. Parashar and P. Mertiny, Study of mode i fracture of graphene sheets using atomistic based finite element modeling and virtual crack closure technique, Int. J. Fract. 176(1), 119–126 (2012).
  • C. Li, and T. W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40(10), 2487–2499 (2003).
  • A. Parashar and P. Mertiny, Finite element analysis to study the effect of dimensional and geometrical parameters on the stability of graphene sheets, J. Comput. Theor. Nanosci. 10(2), 292–296 (2013).
  • A. Parashar and P. Mertiny, Effect of van der Waals interaction on the mode i fracture characteristics of graphene sheet, Solid State Commun. 173, 56–60 (2013).
  • K. I. Tserpes and P. Papanikos, Finite element modeling of single-walled carbon nanotubes, Compos. Part B Eng. 36(5), 468–477 (2005).
  • C. Baykasoglu and A. Mugan, Dynamic analysis of single-layer graphene sheets, Comput. Mater. Sci. 55, 228–236 (2012).
  • F. Scarpa, S. Adhikari, and A. Srikantha Phani, Effective elastic mechanical properties of single layer graphene sheets, Nanotechnology 20(6), 065709 (2009).
  • F. Scarpa, S. Adhikari, and R. Chowdhury, The transverse elasticity of bilayer graphene, Phys. Lett. A 374, 2053–2057 (2010).
  • A. Parashar and P. Mertiny, Multiscale model to investigate the effect of graphene on the fracture characteristics of graphene/polymer nanocomposites, Nanoscale Res. Lett. 7(1), 595 (2012).
  • A. Parashar and P. Mertiny, Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite, Nanoscale Res. Lett. 7(1), 515 (2012).
  • N. Xu, J. G. Guo, and Z. Cui, The influence of tilt grain boundaries on the mechanical properties of bicrystalline graphene nanoribbons, Physica E 84, 168–174 (2016).
  • W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A. 140, 1133–1138 (1965).
  • J. G. Lee, Computational Materials Science an Introduction, CRC Press, New York (2012).
  • P. Hirvonen, M. M. Ervasti, Z. Fan, M. Jalalvand, M. Seymour, S. M. Vaez Allaei, N. Provatas, A. Harju, K. R. Elder, and T. Ala-Nissila, Multiscale modeling of polycrystalline graphene: A comparison of structure and defect energies of realistic samples from phase field crystal models, Phys. Rev. B. 94, 035414 (2016).
  • A. Omeltchenko, J. Yu, R. K. Kalia, and P. Vashishta, Crack front propagation and fracture in a graphite sheet: a molecular-dynamics study on parallel computers, Phys. Rev. Lett. 78(11), 2148–2151 (1997).
  • R. W. Hockney, and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York (1981).
  • J. M. Wang, R. M. Wolf, J. W. Caldwell, P. a. Kollman, and D. a. Case, Development and testing of a general amber force field, J. Comput. Chem. 25(9), 1157–1174 (2004).
  • A. D. MacKerell, J. Wiórkiewicz-Kuczera, M. Karplus, and A. D. MacKerell, An All-Atom Empirical Energy Function for the Simulation of Nucleic Acids, J. Am. Chem. Soc. 117(48), 11946–11975 (1995).
  • J. E. Jones, On the determination of molecular fields. II. From the equation of state of a gas, Proc. R. Soc. Lond. 106(738), 463–477 (1924).
  • B. W. Jeong, J. K. Lim, and S. B. Sinnott, Tensile mechanical behavior of hollow and filled carbon nanotubes under tension or combined tension-torsion, Appl. Phys. Lett. 90(2), 023102 (2007).
  • S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys. 112(14), 6472–6486 (2000).
  • A. C. T. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard, ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A. 105(41), 9396–9409 (2001).
  • A. C. T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu, and W. A. Goddard, ReaxFFSiO reactive force field for silicon and silicon oxide systems, J. Phys. Chem. A. 107(19), 3803–3811 (2003).
  • M. R. Weismiller, A. C. T. v. Duin, J. Lee, and R. A. Yetter, ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion, J. Phys. Chem. A. 114(17), 5485–5492 (2010).
  • J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev., B Condens. Matter. 37(12), 6991–7000 (1988).
  • J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett. 61(25), 2879–2882 (1988).
  • J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multicomponent systems, Phys. Rev. B. 39(8), 5566–5568 (1989).
  • G. Rajasekaran, R. Kumar, and A. Parashar, Molecular dynamics based simulations to study the effect of modified cut-off function for Tersoff potential on estimating mechanical properties of graphene, Mater. Res. Express 3(3), 035011 (2016).
  • R. Kumar, G. Rajasekaran, and A. Parashar, Optimised cut-off function for Tersoff-like potentials for a BN nanosheet: a molecular dynamics study, Nanotechnology 27(8), 085706 (2016).
  • R. Kumar, P. Mertiny, and A. Parashar, Effects of different hydrogenation regimes on mechanical properties of h-BN: a reactive force field study, J. Phys. Chem. C 120(38), 21932–21938 (2016).
  • R. Grantab, V. B. Shenoy, and R. S. Ruoff, Anomalous strength characteristics of tilt grain boundaries in graphene, Science 330(6006), 946–949 (2010).
  • Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene, Nat. Mater. 11(9), 759–763 (2012).
  • T. H. Liu, C. W. Pao, and C. C. Chang, Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations, Carbon 50(10), 3465 (2012).
  • J. Zhang, J. Zhao, and J. Lu, Intrinsic strength and failure behaviors of graphene grain boundaries, ACS Nano 6(3), 2704–2711 (2012).
  • F. Hao and D. Fang, Mechanical deformation and fracture mode of polycrystalline graphene: Atomistic simulations, Phys. Lett. A 376, 1942–1947 (2012).
  • A. Cao and Y. Yuan, Atomistic study on the strength of symmetric tilt grain boundaries in graphene, Appl. Phys. Lett. 100, 946–949 (2012).
  • L. Yi, Z. Yin, Y. Zhang, and T. Chang, A theoretical evaluation of the temperature and strain-rate dependent fracture strength of tilt grain boundaries in graphene, Carbon 51, 373 (2013).
  • Y. I. Jhon, P. S. Chung, R. Smith, K. S. Min, G. Y. Yeom, and M. S. Jhon, Grain boundaries orientation effects on tensile mechanics of polycrystalline graphene, RSC Adv. 3(25), 9897 (2013).
  • H. Zhang, Z. Duan, X. Zhang, C. Liu, J. Zhang, and J. Zhao, Strength and fracture behavior of graphene grain boundaries: effects of temperature, inflection, and symmetry from molecular dynamics, Phys. Chem. Chem. Phys. 15(28), 11794 (2013).
  • I. A. Ovid’Ko and A. G. Sheinerman, Cracks at disclinated grain boundaries in graphene, J. Phys. D: Appl. Phys. 46, 345305 (2013).
  • J. Wu and Y. Wei, Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene, J. Mech. Phys. Solids 61(6), 1421–1432 (2013).
  • J. Han, S. Ryu, D. Sohn, and S. Im, Mechanical strength characteristics of asymmetric tilt grain boundaries in graphene, Carbon 68, 250–257 (2014).
  • B. Yang, S. Wang, Y. Guo, J. Yuan, Y. Si, S. Zhang, and H. Chen, Strength and failure behavior of a graphene sheet containing bi-grain-boundaries, RSC Adv. 4(97), 54677–54683 (2014).
  • H. I. Rasool, C. Ophus, Z. Zhang, M. F. Crommie, B. I. Yakobson, and A. Zettl, Conserved atomic bonding sequences and strain organization of graphene grain boundaries, Nano Lett. 14(12), 7057–7063 (2014).
  • T. H. Liu, C. W. Pao, and C. C. Chang, Mechanical mutability of polycrystalline graphene from atomistic simulations, Comput. Mater. Sci. 91, 56–61 (2014).
  • Y. Li, D. Datta, and Z. Li, Anomalous mechanical characteristics of graphene with tilt grain boundaries tuned by hydrogenation, Carbon 90, 234 (2015).
  • A. Verma, A. Parashar, and M. Packirisamy, Tailoring the failure morphology of 2D bicrystalline graphene oxide, J. Appl. Phys. 124(1), 015102 (2018).
  • T. Zhang, X. Li, S. Kadkhodaei, and H. Gao, Flaw insensitive fracture in nanocrystalline graphene, Nano Lett. 12(9), 4605–4610 (2012).
  • J. Kotakoski and J. C. Meyer, Mechanical properties of polycrystalline graphene based on a realistic atomistic model, Phys. Rev. B - Condens. Matter Mater. Phys. 85, 195447 (2012).
  • Z. Song, V. I. Artyukhov, B. I. Yakobson, and Z. Xu, Pseudo Hall-Petch strength reduction in polycrystalline graphene, Nano Lett. 13(4), 1829–1833 (2013).
  • A. Cao and J. Qu, Atomistic simulation study of brittle failure in nanocrystalline graphene under uniaxial tension, Appl. Phys. Lett. 102(7), 071902 (2013).
  • Z. D. Sha, S. S. Quek, Q. X. Pei, Z. S. Liu, T. J. Wang, V. B. Shenoy, and Y. W. Zhang, Inverse pseudo Hall-Petch relation in polycrystalline graphene, Sci. Rep. 4, 5991 (2014).
  • B. Mortazavi and G. Cuniberti, Atomistic modeling of mechanical properties of polycrystalline graphene, Nanotechnology 25(21), 215704 (2014).
  • Z. D. Sha, Q. Wan, Q. X. Pei, S. S. Quek, Z. S. Liu, Y. W. Zhang, and V. B. Shenoy, On the failure load and mechanism of polycrystalline graphene by nanoindentation, Sci. Rep. 4, 3437 (2014).
  • Z. D. Sha, Q. X. Pei, Z. S. Liu, V. B. Shenoy, and Y. W. Zhang, Is the failure of large-area polycrystalline graphene notch sensitive or insensitive?, Carbon 72, 200 (2014).
  • N. N. Li, Z. D. Sha, Q. X. Pei, and Y. W. Zhang, Hydrogenated grain boundaries control the strength and ductility of polycrystalline graphene, J. Phys. Chem. C. 118(25), 13769–13774 (2014).
  • J. W. Suk, V. Mancevski, Y. Hao, K. M. Liechti, and R. S. Ruoff, Fracture of polycrystalline graphene membranes by in situ nanoindentation in a scanning electron microscope, Phys. Status Solidi - Rapid Res. Lett. 9(10), 564–569 (2015).
  • M. Q. Chen, S. S. Quek, Z. D. Sha, C. H. Chiu, Q. X. Pei, and Y. W. Zhang, Effects of grain size, temperature and strain rate on the mechanical properties of polycrystalline graphene - A molecular dynamics study, Carbon 85, 135–146 (2015).
  • Z. Yang, Y. Huang, F. Ma, Y. Sun, K. Xu, and P. K. Chu, Size-dependent deformation behavior of nanocrystalline graphene sheets, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 198, 95–101 (2015).
  • A. Shekhawat, and R. O. Ritchie, Toughness and strength of nanocrystalline graphene, Nat. Commun. 7, 10546 (2016).
  • M. Izadifar, R. Abadi, A. N. Jam, and T. Rabczuk, Investigation into the effect of doping of boron and nitrogen atoms in the mechanical properties of single-layer polycrystalline graphene, Comput. Mater. Sci. 138, 435–447 (2017).
  • N. Ding, C.-M. L. Wu, and H. Li, The effect of grain boundaries on the mechanical properties and failure behavior of hexagonal boron nitride sheets, Phys. Chem. Chem. Phys. 16(43), 23716–23722 (2014).
  • R. Abadi, R. P. Uma, M. Izadifar, and T. Rabczuk, The effect of temperature and topological defects on fracture strength of grain boundaries in single-layer polycrystalline boron-nitride nanosheet, Comput. Mater. Sci. 123, 277–286 (2016).
  • B. Mortazavi and G. Cuniberti, Mechanical properties of polycrystalline boron-nitride nanosheets, RSC Adv. 4(37), 19137–19143 (2014).
  • M. Becton and X. Wang, Grain-size dependence of mechanical properties in polycrystalline boron-nitride: a computational study, Phys. Chem. Chem. Phys. 17(34), 21894–21901 (2015).
  • Y. Li, A. Wei, H. Ye, and H. Yao, Mechanical and thermal properties of grain boundary in a planar heterostructure of graphene and hexagonal boron nitride, Nanoscale. 10(7), 3497–3508 (2018).
  • N. Ding, X. Chen, and C. M. L. Wu, Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets, Sci. Rep. 6, 31499 (2016).
  • L. Lindsay and D. A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Phys. Rev. B - Condens. Matter Mater. Phys. 81, 205441 (2010).
  • P. Zhang, L. Ma, F. Fan, Z. Zeng, C. Peng, P. E. Loya, Z. Liu, Y. Gong, J. Zhang, X. Zhang, P. M. Ajayan, T. Zhu, and J. Lou, Fracture toughness of graphene, Nat. Commun. 5, 3782 (2014).
  • G. S. Jung, Z. Qin, and M. J. Buehler, Molecular mechanics of polycrystalline graphene with enhanced fracture toughness, Extrem. Mech. Lett. 2, 52–59 (2015).
  • J. Han, D. Sohn, W. Woo, and D. K. Kim, Molecular dynamics study of fracture toughness and trans-intergranular transition in bi-crystalline graphene, Comput. Mater. Sci. 129, 323–331 (2017).
  • A. Bagri, S. P. Kim, R. S. Ruoff, and V. B. Shenoy, Thermal transport across twin grain boundaries in polycrystalline graphene from nonequilibrium molecular dynamics simulations, Nano Lett. 11(9), 3917–3921 (2011).
  • A. Cao and J. Qu, Kapitza conductance of symmetric tilt grain boundaries in graphene, J. Appl. Phys. 111(5), 053529 (2012).
  • T. H. Liu, C. W. Pao, and C. C. Chang, Thermal response of grain boundaries in graphene sheets under shear strain from atomistic simulations, Comput. Mater. Sci. 70, 163–170 (2013).
  • P. Yasaei, A. Fathizadeh, R. Hantehzadeh, A. K. Majee, A. El-Ghandour, D. Estrada, C. Foster, Z. Aksamija, F. Khalili-Araghi, and A. Salehi-Khojin, Bimodal phonon scattering in graphene grain boundaries, Nano Lett. 15(7), 4532–4540 (2015).
  • K. Azizi, P. Hirvonen, Z. Fan, A. Harju, K. R. Elder, T. Ala-Nissila, and S. M. V. Allaei, Kapitza thermal resistance across individual grain boundaries in graphene, Carbon N. Y. 125, 384–390 (2017).
  • D. V. Kolesnikov and V. A. Osipov, Low-temperature thermal conductivity in polycrystalline graphene, EPL 100(2), 26004 (2012).
  • Y. Wang, Z. Song, and Z. Xu, Characterizing phonon thermal conduction in polycrystalline graphene, J. Mater. Res. 29(03), 362–372 (2014).
  • B. Mortazavi, M. Pötschke, and G. Cuniberti, Multiscale modeling of thermal conductivity of polycrystalline graphene sheets, Nanoscale 6(6), 3344–3352 (2014).
  • P. H. Wu, S. S. Quek, Z. D. Sha, Z. L. Dong, X. J. Liu, G. Zhang, Q. X. Pei, and Y. W. Zhang, Thermal transport behavior of polycrystalline graphene: a molecular dynamics study, J. Appl. Phys. 116(20), 204303 (2014).
  • K. R. Hahn, C. Melis, and L. Colombo, Structural, vibrational, and thermal properties of nanocrystalline graphene in atomistic simulations, J. Phys. Chem. C 120(5), 3026–3035 (2016).
  • K. R. Hahn, C. Melis, and L. Colombo, Thermal transport in nanocrystalline graphene investigated by approach-to-equilibrium molecular dynamics simulations, Carbon 96, 429–438 (2016).
  • X. Mu, Z. Song, Y. Wang, Z. Xu, D. B. Go, and T. Luo, Thermal transport in oxidized polycrystalline graphene, Carbon 108, 318–326 (2016).
  • T. B. Limbu, K. R. Hahn, F. Mendoza, S. Sahoo, J. J. Razink, R. S. Katiyar, B. R. Weiner, and G. Morell, Grain size-dependent thermal conductivity of polycrystalline twisted bilayer graphene, Carbon 117, 367–375 (2017).
  • B. Mortazavi, L. F. C. Pereira, J. W. Jiang, and T. Rabczuk, Modelling heat conduction in polycrystalline hexagonal boron-nitride films, Sci. Rep. 5, 13228 (2015).
  • M. S. R. Elapolu and A. Tabarraei, Kapitza conductance of symmetric tilt grain boundaries of monolayer boron nitride, Comput. Mater. Sci. 144, 161–169 (2018).
  • Y. Hong, J. Zhang, and X. C. Zeng, Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet, Phys. Chem. Chem. Phys. 18(35), 24164–24170 (2016).
  • S. Bazrafshan and A. Rajabpour, Engineering of thermal transport in graphene using grain size, strain, nitrogen and boron doping; a multiscale modelling, Int. J. Heat Mass Transf. 123, 534–543 (2018).
  • A. Vahedi and M. H. S. Lahidjani, Tunable thermal conductivity along graphene/hexagonal boron-nitride polycrystalline heterostructures, Eur. Phys. J. Plus 132, 420 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.