2,252
Views
53
CrossRef citations to date
0
Altmetric
Reviews

Aluminum Matrix Composites Reinforced with Graphene: A Review on Production, Microstructure, and Properties

&

References

  • ASM Handbook, Volume 02-Properties and Selection Nonferrous Alloys and Special Purpose Materials, USA, ASM International, (1990).
  • D. B. Miracle, Metal matrix composites – from science to technological significance, Compos. Sci. Technol. 65, 2526 (2005).
  • A. Dorri Moghadam, E. Omrani, P. L. Menezes, and P. K. Rohatgi, Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – a review, Compos. Part B: Eng. 77, 402 (2015).
  • M. Tabandeh-Khorshid, E. Omrani, P. L. Menezes, and P. K. Rohatgi, Tribological performance of self-lubricating aluminum matrix nanocomposites: role of graphene nanoplatelets, Eng. Sci. Technol. 19, 463 (2016).
  • E. Ganz, A. B. Ganz, L.-M. Yang, and M. Dornfeld, The initial stages of melting of graphene between 4000 K and 6000 K, Phys. Chem. Chem. Phys. 19, 3756 (2017).
  • L. Yang, W. A. Yee, S. L. Phua, J. Kong, H. Ding, J. W. Cheah, and X. Lu, A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites, RSC Adv. 2, 2208 (2012).
  • A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7, 4598 (2015).
  • A. Nieto, A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal, Graphene reinforced metal and ceramic matrix composites: a review, Int. Mater. Rev. 62, 241 (2017).
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004).
  • S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45, 1558 (2007).
  • H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, Evaluation of solution-processed reduced graphene oxide films as transparent conductors, ACS Nano 2, 463 (2008).
  • S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5, 574 (2010).
  • C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Electronic transport properties of individual chemically reduced graphene oxide sheets, Nano Lett. 7, 3499 (2007).
  • H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville, and I. A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, J. Phys. Chem. B. 110, 8535 (2006).
  • S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Graphene-based composite materials, Nature 442, 282 (2006).
  • W. S. Hummers, Jr, and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80, 1339 (1958).
  • B. Brodie, Sur le poids atomique du graphite, Ann. Chim. Phys. 59, e472 (1860).
  • L. Staudenmaier, Verfahren zur darstellung der graphitsäure, Ber. Dtsch. Chem. Ges. 31, 1481 (1898).
  • A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, and I. Dékány, Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids, Langmuir 19, 6050 (2003).
  • S. Abdolhosseinzadeh, H. Asgharzadeh, and H. S. Kim, Fast and fully-scalable synthesis of reduced graphene oxide, Sci. Rep. 5, 10160 (2015).
  • G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3, 270 (2008).
  • Y. Si, and E. T. Samulski, Synthesis of water soluble graphene, Nano Lett. 86, 1679 (2008).
  • C.-G. Lee, S. Park, R. S. Ruoff, and A. Dodabalapur, Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer, Appl. Phys. Lett. 95, 188 (2009).
  • B. L. Dasari, J. M. Nouri, D. Brabazon, and S. Naher, Graphene and derivatives – synthesis techniques, properties and their energy applications, Energy 140, 766 (2017).
  • M. Michálková, M. Kašiarová, P. Tatarko, J. Dusza, and P. Šajgalík, Effect of homogenization treatment on the fracture behaviour of silicon nitride/graphene nanoplatelets composites, J. Eur. Ceram. Soc. 34, 3291 (2014).
  • M. Bastwros, G.-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, and X. Wang, Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering, Compos. Part B: Eng. 60, 111 (2014).
  • K. Chu, and C. Jia, Enhanced strength in bulk graphene–copper composites, Phys. Status Solidi A ). 211, 184 (2014).
  • R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez, Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying, J. Alloys Compd. 615, S578 (2014).
  • A. F. Boostani, S. Tahamtan, Z. Jiang, D. Wei, S. Yazdani, R. A. Khosroshahi, R. T. Mousavian, J. Xu, X. Zhang, and D. Gong, Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles, Compos. Part A: Appl. Sci. Manufact. 68, 155 (2015).
  • S. Shin, H. Choi, J. Shin, and D. Bae, Strengthening behavior of few-layered graphene/aluminum composites, Carbon 82, 143 (2015).
  • S. F. Bartolucci, J. Paras, M. A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, and N. Koratkar, Graphene–aluminum nanocomposites, Mater. Sci. Eng. A. 528, 7933 (2011).
  • W. Kim, T. Lee, and S. Han, Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties, Carbon 69, 55 (2014).
  • J. Li, Y. Xiong, X. Wang, S. Yan, C. Yang, W. He, J. Chen, S. Wang, X. Zhang, and S. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Mater. Sci. Eng. A. 626, 400 (2015).
  • J. Dutkiewicz, P. Ozga, W. Maziarz, J. Pstruś, B. Kania, P. Bobrowski, and J. Stolarska, Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets, Mater. Sci. Eng. A. 628, 124 (2015).
  • K. S. Munir, M. Qian, Y. Li, D. T. Oldfield, P. Kingshott, D. M. Zhu, and C. Wen, Quantitative analyses of MWCNT‐Ti powder mixtures using Raman Spectroscopy: The influence of milling parameters on nanostructural evolution, Adv. Eng. Mater. 17, 1660 (2015).
  • D. Woo, B. Sneed, F. Peerally, F. Heer, L. Brewer, J. Hooper, and S. Osswald, Synthesis of nanodiamond-reinforced aluminum metal composite powders and coatings using high-energy ball milling and cold spray, Carbon 63, 404 (2013).
  • J.-M. Ju, G. Wang, and K.-H. Sim, Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties, J. Alloys Compd. 704, 585 (2017).
  • R. M. Sanchez, Microstructural and Hardness Behavior of Graphene-Nanoplatelets/Aluminum Composites Synthesized by Mechanical Alloying, J. Alloys Compd. 615, S578 (2014).
  • H. Asgharzadeh, and M. Sedigh, Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide, J. Alloys Compd. 728, 47 (2017).
  • Z. Baig, O. Mamat, M. Mustapha, A. Mumtaz, M. Sarfraz, and S. Haider, An efficient approach to address issues of graphene nanoplatelets (GNPs) incorporation in aluminium powders and their compaction behaviour, Metals 8, 90 (2018).
  • A. Ghazaly, B. Seif, and H. Salem, Mechanical and tribological properties of AA2124-graphene self lubricating nanocomposite. In: Light Metals 2013, B.A. Sadler (eds.), Springer, Switzerland, 411, (2016).
  • M. Tabandeh Khorshid, J.B. Ferguson, B.F. Schultz, C.-S. Kim, K. Cho, and P.K. Rohatgi, Strengthening mechanisms of graphene- and Al2O3-reinforced aluminum nanocomposites synthesized by room temperature milling, Mater. Des. 92, 79 (2016).
  • B. Huang, R. Perez, and E. Lavernia, Grain growth of nanocrystalline Fe–Al alloys produced by cryomilling in liquid argon and nitrogen, Mater. Sci. Eng. A. 255, 124 (1998).
  • M. Luton, C. Jayanth, M. Disko, S. Matras, and J. Vallone, Cryomilling of nano-phase dispersion strengthened aluminum, MRS Online Proc. Library Arch. 132, 79 (1988).
  • D. Witkin, and E. J. Lavernia, Synthesis and mechanical behavior of nanostructured materials via cryomilling, Prog. Mater Sci. 51, 1 (2006).
  • X. Liang, Z. Fu, and S. Y. Chou, Graphene transistors fabricated via transfer-printing in device active-areas on large wafer, Nano Lett. 7, 3840 (2007).
  • J. Chen, M. Duan, and G. Chen, Continuous mechanical exfoliation of graphene sheets via three-roll mill, J. Mater. Chem. 22, 19625 (2012).
  • A. Martinez, K. Fuse, and S. Yamashita, Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers, Appl. Phys. Lett. 99, 121107 (2011).
  • M. Yi, and Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, J. Mater. Chem. A 3, 11700 (2015).
  • S. Stankovich, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets, Carbon 44, 3342 (2006).
  • A. O’Neill, U. Khan, P. N. Nirmalraj, J. Boland, and J. N. Coleman, Graphene dispersion and exfoliation in low boiling point solvents, J. Phys. Chem. C. 115, 5422 (2011).
  • M. Yi, Z. Shen, X. Zhang, and S. Ma, Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters, J. Phys. D: Appl. Phys. 46, 025301 (2013).
  • D. Wei, L. Grande, V. Chundi, R. White, C. Bower, P. Andrew, and T. Ryhänen, Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices, Chem. Commun. 48, 1239 (2012).
  • G. Fan, R. Xu, Z. Tan, D. Zhang, and Z. Li, Development of flake powder metallurgy in fabricating metal matrix composites: a review, Acta Metall. Sin. (Engl. Lett.). 27, 806 (2014).
  • B. Das, K. E. Prasad, U. Ramamurty, and C. Rao, Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene, Nanotechnology 20, 125705 (2009).
  • A. Esawi, and K. Morsi, Dispersion of carbon nanotubes (CNTs) in aluminum powder, Compos. Part A: Appl. Sci. Manufact. 38, 646 (2007).
  • L. Zhang, J. Liang, Y. Huang, Y. Ma, Y. Wang, and Y. Chen, Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation, Carbon 47, 3365 (2009).
  • J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, and D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites, Scr. Mater. 66, 594 (2012).
  • S. J. Yan, S. L. Dai, X. Y. Zhang, C. Yang, Q. H. Hong, J. Z. Chen, and Z. M. Lin, Investigating aluminum alloy reinforced by graphene nanoflakes, Mater. Sci. Eng. A. 612, 440 (2014).
  • T. Czeppe, G. Korznikova, P. Ozga, L. Lityńska-Dobrzyńska, and R. Socha, Application of the high pressure torsion supported by mechanical alloying for the metal-graphene composites preparation, Mechanik 88, 147 (2015).
  • S. E. Shin, Y. J. Ko, and D. H. Bae, Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures, Compos. Part B: Eng. 106, 66 (2016).
  • G. Liu, N. Zhao, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, and C. He, In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites, Mater. Sci. Eng. A. 699, 185 (2017).
  • H. G. Prashantha Kumar, and A. M. Xavier. Tribological aspects of graphene-aluminum nanocomposites. In Graphene Materials – Structure, Properties and Modifications, G.Z. Kyzas and A.C. Mitropoulos (eds.), InTech: Rijeka, Ch. 07, (2017).
  • L. K. Pillari, A. Shukla, S. N. Murty, and V. Umasankar, On the comparison of graphene and multi-wall carbon nanotubes as reinforcements in aluminum alloy AA2219 processed by ball milling and spark plasma sintering, Trans. Indian Inst. Met. 71, 1099 (2018).
  • G. Li, and B. Xiong, Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites, J. Alloys Compd. 697, 31 (2017).
  • H. Kwon, J. Mondal, K. A. AlOgab, V. Sammelselg, M. Takamichi, A. Kawaski, and M. Leparoux, Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy, J. Alloys Compd. 698, 807 (2017).
  • Z. Hu, F. Chen, J. Xu, Q. Nian, D. Lin, C. Chen, X. Zhu, Y. Chen, and M. Zhang, 3D printing graphene-aluminum nanocomposites, J. Alloys Compd. 746, 269 (2018).
  • E. Ghasali, P. Sangpour, A. Jam, H. Rajaei, K. Shirvanimoghaddam, and T. Ebadzadeh, Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite, Arch. Civil Mech. Eng. 18, 1042 (2018).
  • A. C. Ferrari, and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B. 61, 14095 (2000).
  • D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, Spatially resolved Raman spectroscopy of single-and few-layer graphene, Nano Lett. 7, 238 (2007).
  • T. He, J. Li, L. Wang, J. Zhu, and W. Jiang, Preparation and consolidation of alumina/graphene composite powders, Mater. Trans. 50, 749 (2009).
  • J. Liu, H. Yan, M. J. Reece, and K. Jiang, Toughening of zirconia/alumina composites by the addition of graphene platelets, J. Eur. Ceram. Soc. 32, 4185 (2012).
  • A. Nieto, L. Huang, Y.-H. Han, and J. M. Schoenung, Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement, Ceram. Int. 41, 5926 (2015).
  • H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I. Dlouhý, and M. J. Reece, Graphene reinforced alumina nano-composites, Carbon 64, 359 (2013).
  • C. Ramirez, F. M. Figueiredo, P. Miranzo, P. Poza, and M. I. Osendi, Graphene nanoplatelet/silicon nitride composites with high electrical conductivity, Carbon 50, 3607 (2012).
  • Y. Yang, B. Li, C. Zhang, S. Wang, K. Liu, and B. Yang, Fabrication and properties of graphene reinforced silicon nitride composite materials, Mater. Sci. Eng. A. 644, 90 (2015).
  • L. Zan, F. Genlian, T. Zhanqiu, G. Qiang, X. Dingbang, S. Yishi, L. Zhiqiang, and Z. Di, Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites, Nanotechnology 25, 325601 (2014).
  • D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3, 101 (2008).
  • F. H. Latief, E.-S. M. Sherif, A. A. Almajid, and H. Junaedi, Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior, J. Anal. Appl. Pyrol. 92, 485 (2011).
  • F. H. Latief, and E.-S. M. Sherif, Effects of sintering temperature and graphite addition on the mechanical properties of aluminum, J. Ind. Eng. Chem. 18, 2129 (2012).
  • M. Rashad, F. Pan, A. Tang, and M. Asif, Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method, Prog. Nat. Sci. 24, 101 (2014).
  • K. S. Reddy, D. Sreedhar, K. D. Kumar, and G. P. Kumar, Role of reduced graphene oxide on mechanical-thermal properties of aluminum metal matrix nano composites, Mater. Today: Proc. 2, 1270 (2015).
  • A. Bisht, M. Srivastava, R. M. Kumar, I. Lahiri, and D. Lahiri, Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering, Mater. Sci. Eng: A. 695, 20 (2017).
  • J. Wozniak, M. Kostecki, T. Cygan, M. Buczek, and A. Olszyna, Self-lubricating aluminium matrix composites reinforced with 2D crystals, Compos. Part B: Eng. 111, 1 (2017).
  • D. Kim, S. Nam, A. Roh, S. Yoo, M. Quevedo-Lopez, and H. Choi, Effect of interfacial features on the mechanical and electrical properties of rGO/Al composites, J. Mater. Sci. 52, 12001 (2017).
  • A. Saboori, M. Pavese, C. Badini, and P. Fino, Microstructure and thermal conductivity of Al–Graphene composites fabricated by powder metallurgy and hot rolling techniques, Acta Metall. Sin. (Engl. Lett). 30, 675 (2017).
  • W. Zhou, Y. Fan, X. Feng, K. Kikuchi, N. Nomura, and A. Kawasaki, Creation of individual few-layer graphene incorporated in an aluminum matrix, Compos. Part A: Appl. Sci. Manufact. 112, 168 (2018).
  • B. L. Dasari, M. Morshed, J. M. Nouri, D. Brabazon, and S. Naher, Mechanical properties of graphene oxide reinforced aluminium matrix composites, Compos. Part B: Eng. 145, 136 (2018).
  • L. Zhang, G. Hou, W. Zhai, Q. Ai, J. Feng, L. Zhang, P. Si, and L. Ci, Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles, J. Alloys Compd. 748, 854 (2018).
  • M. Cai, D. Thorpe, D. H. Adamson, and H. C. Schniepp, Methods of graphite exfoliation, J. Mater. Chem. 22, 24992 (2012).
  • T. Szabó, E. Tombácz, E. Illés, and I. Dékány, Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides, Carbon 44, 537 (2006).
  • V. Viswanathan, T. Laha, K. Balani, A. Agarwal, and S. Seal, Challenges and advances in nanocomposite processing techniques, Mater. Sci. Eng. R: Rep. 54, 121 (2006).
  • C. Suryanarayana, E. Ivanov, and V. Boldyrev, The science and technology of mechanical alloying, Mat. Sci. Eng. A. 304, 151 (2001).
  • R. German, Sintering: From Empirical Observations to Scientific Principles, Oxford, UK: Butterworth-Heinemann.
  • O. Guillon, J. Gonzalez‐Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann, Field‐assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments, Adv. Eng. Mater. 16, 830 (2014).
  • J. Hashim, L. Looney, and M. S. J. Hashmi, Metal matrix composites: production by the stir casting method, J. Mater. Process. Technol. 92–93, 1 (1999).
  • M. D. Skibo, and D. M. Schuster, Process for Preparation of Composite Materials Containing Nonmetallic Particles in a Metallic Matrix, and Composite Materials Made Thereby. 1988, Google Patents.
  • M. Surappa, Microstructure evolution during solidification of DRMMCs (Discontinuously reinforced metal matrix composites): state of art, J. Mater. Process. Technol. 63, 325 (1997).
  • H. Abdizadeh, R. Ebrahimifard, and M. A. Baghchesara, Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study, Compos. Part B: Eng. 56, 217 (2014).
  • F. Girot, L. Albingre, J. Quenisset, and R. Naslain, Rheocasting Al matrix composites, JOM. 39, 18 (1987).
  • S. Venkatesan, and M. A. Xavior, Mechanical Behaviour of Aluminium Metal Matrix Composite Reinforced with Graphene Particulate by Stir Casting Method, J. Chem. Pharm. Sci. 10, 55 (2000).
  • S. Venkatesan, and M. A. Xavior, Investigation of aluminum (Al7050) metal matrix composites reinforced with graphene nanoparticles using stir casting process, Int. J. Appl. Eng. Res. 10, 35778 (2015).
  • A. Praveen Kumar, S. Aadithya, K. Dhilepan, and N. Nikhil, Influence of nano reinforced particles on the mechanical properties of aluminium hybrid metal matrix composite fabricated by ultrasonic assisted stir casting, ARPN J. Eng. Appl. Sci. 11, 1204 (2016).
  • L. Yolshina, R. Muradymov, I. Korsun, G. Yakovlev, and S. Smirnov, Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties, J. Alloys Compd. 663, 449 (2016).
  • F. A. Chyada, A. R. Jabur, and H. A. Alwan, Effect addition of graphene on electrical conductivity and tensile strength for Recycled electric power transmission wires, Energy Procedia. 119, 121 (2017).
  • J. C. Del Real Romero, J. Jimenez, R. Manoharan, R. Shankar, and R. Joseph, Hariharasakthisudan, Characterisation of mechanical properties of aluminium composites fabricated by stir-casting and powder metallurgy, Int. J. Mech. Eng. Technol. 8, 176 (2017).
  • P. B. Prakash, K. B. Raju, K. VenkataSubbaiah, and N. ManiKandan, Microstructure analysis and evaluation of mechanical properties of Al 7075 GNP’s composites, Mater. Today: Proc. 5, 14281 (2018).
  • M. Li, H. Gao, J. Liang, S. Gu, W. You, D. Shu, J. Wang, and B. Sun, Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites, Mater. Character. 140, 172 (2018).
  • M. Alipour, R. E. Farsani, and Y. A. Abuzin, Influence of graphene nanoplatelet reinforcements on microstructural development and wear behavior of an aluminum alloy nanocomposite, In: Minerals, The Metals and Materials Series, Springer, Cham, 233, (2018).
  • M. Baró, Y. R. Kolobov, I. Ovid'ko, H. Schaefer, B. Straumal, R. Valiev, I. Alexandrov, M. Ivanov, K. Reimann, and A. Reizis, Diffusion and related phenomena in bulk nanostructured materials, Rev. Adv. Mater. Sci. (Russia). 2, 1 (2001).
  • G. Langford, and M. Cohen, Microstructure of Armco-iron subjected to severe plastic drawing, Trans. ASM 82, 623 (1969).
  • J. G. Sevillano, P. Van Houtte, and E. Aernoudt, Large strain work hardening and textures, Prog. Mater. Sci. 25, 69 (1980).
  • R. Valiev, A. Korznikov, and R. Mulyukov, Structure and properties of ultrafine-grained materials produced by severe plastic deformation, Mater. Sci. Eng. A. 168, 141 (1993).
  • R. Birringer, H. Gleiter, H.-P. Klein, and P. Marquardt, Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?, Phys. Lett. A. 102, 365 (1984).
  • F. Froes, and C. Suryanarayana, Nanocrystalline metals for structural applications, JOM 41, 12 (1989).
  • C. M. Lieber, One-dimensional nanostructures: chemistry, physics & applications, Solid State Commun. 107, 607 (1998).
  • R. Valiev, Materials science: nanomaterial advantage, Nature 419, 887 (2002).
  • S. Ferrasse, V. M. Segal, K. T. Hartwig, and R. E. Goforth, Development of a submicrometer-grained microstructure in aluminum 6061 using equal channel angular extrusion, J. Mater. Res. 12, 1253 (1997).
  • M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, The use of severe plastic deformation for microstructural control, Mater. Sci. Eng. A. 324, 82 (2002).
  • R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45, 103 (2000).
  • A. Gholinia, F. Humphreys, and P. Prangnell, Production of ultra-fine grain microstructures in Al–Mg alloys by coventional rolling, Acta Mater. 50, 4461 (2002).
  • I. Saunders, and J. Nutting, Deformation of metals to high strains using combination of torsion and compression, Metal Sci. 18, 571 (1984).
  • C.-H. Jeon, Y.-H. Jeong, J.-J. Seo, H. N. Tien, S.-T. Hong, Y.-J. Yum, S.-H. Hur, and K.-J. Lee, Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing, Int. J. Precis. Eng. Manuf. 15, 1235 (2014).
  • L. Zhao, H. Lu, and Z. Gao, Microstructure and mechanical properties of Al/graphene composite produced by high‐pressure torsion, Adv. Eng. Mater. 17, 976 (2015).
  • R. Maurya, B. Kumar, S. Ariharan, J. Ramkumar, and K. Balani, Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy, Mater. Des. 98, 155 (2016).
  • S. Dixit, A. Mahata, D. R. Mahapatra, S. V. Kailas, and K. Chattopadhyay, Multi-layer graphene reinforced aluminum – manufacturing of high strength composite by friction stir alloying, Compos. Part B: Eng. 136, 63 (2018).
  • Z. W. Zhang, Z. Y. Liu, B. L. Xiao, D. R. Ni, and Z. Y. Ma, High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing, Carbon 135, 215 (2018).
  • R. S. Mishra, and Z. Ma, Friction stir welding and processing, Mater. Sci. Eng. R: Rep. 5, 1 (2005).
  • V. Sharma, U. Prakash, and B. M. Kumar, Surface composites by friction stir processing: a review, J. Mater. Proc. Technol. 224, 117 (2015).
  • M. S. Węglowski, Friction stir processing – state of the art, Arch. Civil Mech. Eng. 18, 114 (2018).
  • S. Bayazid, H. Farhangi, H. Asgharzadeh, L. Radan, A. Ghahramani, and A. Mirhaji, Effect of cyclic solution treatment on microstructure and mechanical properties of friction stir welded 7075 Al alloy, Mater. Sci. Eng. A. 649, 293 (2016).
  • H. Asgharzadeh, H. Faraghi, and H. S. Kim, Fabrication of fullerene-reinforced aluminum matrix nanocomposites, Acta Metall. Sin. (Engl. Lett.). 30, 973 (2017).
  • H. Asgharzadeh, S.-H. Joo, and H. S. Kim, Consolidation of carbon nanotube reinforced aluminum matrix composites by high-pressure torsion, Metall. Mater. Trans. A. 45, 4129 (2014).
  • A. P. Zhilyaev, and T. G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater Sci. 53, 893 (2008).
  • W. E. Frazier, Metal additive manufacturing: a review, J. Mater. Eng. Perform. 23, 1917 (2014).
  • C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, and S. L. Sing, Review of selective laser melting: materials and applications, Appl. Phys. Rev. 2, 041101 (2015).
  • Q.-H. Zhang, J.-H. Han, G.-Y. Feng, Q.-X. Xu, L.-Z. Ding, and X.-X. Lu, Raman Spectrum Research on Graphene Modification Under High Intensity Laser, Acta Phys. Sin. 61, 214209 (2012).
  • Y. Tang, X. Yang, R. Wang, and M. Li, Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids, Mater. Sci. Eng. A. 599, 247 (2014).
  • B. Krishnan, M. Surappa, and P. Rohatgi, The UPAL process: a direct method of preparing cast aluminium alloy-graphite particle composites, J. Mater. Sci. 16, 1209 (1981).
  • D. Li, Z. Yang, D. Jia, X. Duan, P. He, and Y. Zhou, Ablation behavior of graphene reinforced SiBCN ceramics in an oxyacetylene combustion flame, Corros. Sci. 100, 85 (2015).
  • A. Mortensen, Mechanical and physical behaviour of metals and ceramic compounds, Riso Natl. Lab. Roskilde, Denmark. 141, (1988).
  • K. Parvez, S. Yang, X. Feng, and K. Müllen, Exfoliation of graphene via wet chemical routes, Synth. Met. 210, 123 (2015).
  • P. Rohatgi, R. Asthana, and S. Das, Solidification, structures, and properties of cast metal-ceramic particle composites, Int. Met. Rev. 31, 115 (1986).
  • H. Su, W. Gao, Z. Feng, and Z. Lu, Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites, Mater. Des. (1980–2015). 36, 590 (2012).
  • Q. Zhang, X. Ma, and G. Wu, Interfacial microstructure of SiCp/Al composite produced by the pressureless infiltration technique, Ceram. Int. 3, 4893 (2013).
  • Z. Liyuan, L. Huimin, and G. Zhijiang, Microstructure and mechanical properties of Al/graphene composite produced by high‐pressure torsion, Adv. Eng. Mater. 17, 976 (2015).
  • H. Asgharzadeh, M. R. Niazi, and A. Simchi, a processing map for hot deformation of an ultrafine-grained aluminum-magnesium-silicon alloy prepared by mechanical milling and hot extrusion, Metall. Mater. Trans. A. 46, 5900 (2015).
  • H. Asgharzadeh, A. Simchi, and H. Kim, In situ synthesis of nanocrystalline Al6063 matrix nanocomposite powder via reactive mechanical alloying, Mater. Sci. Eng. A. 527, 4897 (2010).
  • D. Li, Z. Yang, D. Jia, X. Duan, P. He, J. Yu, and Y. Zhou, Spark plasma sintering and toughening of graphene platelets reinforced SiBCN nanocomposites, Ceram. Int. 41, 10755 (2015).
  • H. Asgharzadeh, H. Kim, and A. Simchi, Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy, Mater. Charact. 75, 108 (2013).
  • H. Asgharzadeh, and H. McQueen, Grain growth and stabilisation of nanostructured aluminium at high temperatures, Mater. Sci. Technol. 31, 1016 (2015).
  • W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, Synthesis of graphene and its applications: a review, Crit. Rev. Solid State Mater. Sci. 35, 52 (2010).
  • H. Asgharzadeh, A. Simchi, and H. Kim, Microstructure and mechanical properties of oxide-dispersion strengthened Al6063 alloy with ultra-fine grain structure, Metall. Mater. Trans. A. 42, 816 (2011).
  • J.-L. Tsai, and T.-C. Lu, Investigating the load transfer efficiency in carbon nanotubes reinforced nanocomposites, Compos. Struct. 90, 172 (2009).
  • A. Kelly, and A. W. Tyson, Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum, J. Mech. Phys. Solids. 13, 329 (1965).
  • M. Li, H. Che, X. Liu, S. Liang, and H. Xie, Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles, J. Mater. Sci. 49, 3725 (2014).
  • H. Luo, Y. Sui, J. Qi, Q. Meng, F. Wei, and Y. He, Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles, J. Alloys Compounds. 729, 293 (2017).
  • Y.-C. Kang, and S. L.-I. Chan, Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites, Mater. Chem. Phys. 85, 438 (2004).
  • A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8, 902 (2008).
  • C. F. Deng, Y. X. Ma, P. Zhang, X. X. Zhang, and D. Z. Wang, Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes, Mater. Lett. 62, 2301 (2008).
  • R. George, K. T. Kashyap, R. Rahul, and S. Yamdagni, Strengthening in carbon nanotube/aluminium (CNT/Al) composites, Scr. Mater. 53, 1159 (2005).
  • H. Jiang, B. Liu, Y. Huang, and K. Hwang, Thermal expansion of single wall carbon nanotubes, J. Eng. Mater. Technol. 126, 265 (2004).
  • Y.-K. Kwon, S. Berber, and D. Tománek, Thermal contraction of carbon fullerenes and nanotubes, Phys. Rev. Lett. 92, 015901 (2004).
  • J. B. Nelson, and D. P. Riley, The thermal expansion of graphite from 15 °C to 800 °C: part I. Experimental, Proc. Phys. Soc. 57, 477 (1945).
  • S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and D. Dean, Thermal expansion of graphene composites, Macromolecules 42, 5251 (2009).
  • M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D. K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, and W. A. De Heer, Approaching the Dirac point in high-mobility multilayer epitaxial graphene, Phys. Rev. Lett. 101, 267601 (2008).
  • A. Li, C. Zhang, and Y.-F. Zhang, Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications, Polymers 9, 437 (2017).
  • E. Pop, V. Varshney, and A. K. Roy, Thermal properties of graphene: Fundamentals and applications, MRS Bull. 37, 1273 (2012).
  • S. Sharma, Effect of albite particles on the coefficient of thermal expansion behavior of the Al6061 alloy composites, Metall. Mater. Trans. A 31, 773 (2000).
  • Q. Zhang, G. Wu, G. Chen, L. Jiang, and B. Luan, The thermal expansion and mechanical properties of high reinforcement content SiCp/Al composites fabricated by squeeze casting technology, Compos. Part A: Appl. Sci. Manufact. 34, 1023 (2003).
  • Y. Takao, and M. Taya, The effect of variable fiber aspect ratio on the stiffness and thermal expansion coefficients of a short fiber composite, J. Compos. Mater. 21, 140 (1987).
  • B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, and G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technol. 221, 351 (2012).
  • A. Mavlyutov, A. Bondarenko, M. Y. Murashkin, E. Boltynjuk, R. Valiev, and T. Orlova, Effect of annealing on microhardness and electrical resistivity of nanostructured SPD aluminium, J. Alloys Compd. 698, 539 (2017).
  • S. I. Hong, and M. A. Hill, Mechanical stability and electrical conductivity of Cu–Ag filamentary microcomposites, Mater. Sci. Eng. A. 264, 151 (1999).
  • S. Pei, and H.-M. Cheng, The reduction of graphene oxide, Carbon 50, 3210 (2012).
  • Z. Xu, and M. J. Buehler, Interface structure and mechanics between graphene and metal substrates: a first-principles study, J. Phys.: Condens. Matter. 22, 485301 (2010).
  • H. Zhang, C. Xu, W. Xiao, K. Ameyama, and C. Ma, Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion, Mater. Sci. Eng. A 658, 8 (2016).
  • L. G. De Arco, Y. Zhang, A. Kumar, and C. Zhou, Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition, IEEE Trans. Nanotechnol. 8, 135 (2009).
  • A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9, 3087 (2009).
  • W. Yang, G. Chen, J. Qiao, S. Liu, R. Xiao, R. Dong, M. Hussain, and G. Wu, Graphene nanoflakes reinforced Al-20Si matrix composites prepared by pressure infiltration method, Mater. Sci. Eng. A 700, 351 (2017).
  • L.-Y. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J.-Q. Xu, H. Choi, H.-F. Xu, F. E. Pfefferkorn, and X.-C. Li, Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites, Scr. Mater. 67, 29 (2012).
  • J. Hwang, T. Yoon, S. H. Jin, J. Lee, T. S. Kim, S. H. Hong, and S. Jeon, Enhanced mechanical properties of graphene/copper nanocomposites using a molecular‐level mixing process, Adv. Mater. 25, 6724 (2013).
  • P. V. Kamat, Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support, J. Phys. Chem. Lett. 1, 520 (2010).
  • C. Xu, X. Wang, and J. Zhu, Graphene − metal particle nanocomposites, J. Phys. Chem. C 112, 19841 (2008).
  • J. Zhang, Z. Chen, J. Zhao, and Z. Jiang, Microstructure and Mechanical Properties of Aluminium-Graphene Composite Powders Produced by Mechanical Milling, Mech. Adv. Mater. Mod. Process. 4, 4 (2018).
  • S. R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites-a review, Int. Mater. Rev. 55, 41 (2010).
  • G. Cole, and A. Sherman, Light weight materials for automotive applications, Mater. Charact. 35, 3 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.