1,747
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Understanding and Tuning the Electrical Conductivity of Activated Carbon: A State-of-the-Art Review

ORCID Icon

References

  • R. C. Bansal, J. B. Donnet, and F. Stoeckli, Active Carbon, Marcel Dekker, New York (1988).
  • F. Rodríguez-Reinoso, Production and applications of activated carbons. In Handbook of Porous Solids, F. Schüth, K. S. W. Sing, and J. Weitkamp (eds.), Wiley, Weinheim, 1766–1827 (2002).
  • H. Marsh and F. Rodríguez-Reinoso, Activated Carbon, Elsevier, Amsterdam (2006).
  • M. Olivares-Marín, J. A. Fernández, M. J. Lázaro, C. Fernández-González, A. Macías-García, V. Gómez-Serrano, F. Stoeckli, and T. A. Centeno, Cherry stones as precursor of activated carbons for supercapacitors, Mater. Chem. Phys. 114(1), 323–327 (2009).
  • A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernández-González, A. Macías-García, and V. Gómez-Serrano, Temperature dependence of the electrical conductivity of activated carbons prepared from vine shoots by physical and chemical activation methods, Microporous Mesoporous Mater. 209, 90–98 (2015).
  • H. Jankowska, A. Świątkowski, and J. Choma, Active Carbon, Ellis Horwood, Chichester (1991).
  • T. J. Bandosz, ed., Activated Carbon Surfaces in Environmental Remediation, 1st ed., Elsevier, Amsterdam (2006).
  • J. M. Dias, M. C. M. Alvim-Ferraz, M. F. Almeida, J. Rivera-Utrilla, and M. Sánchez-Polo, Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review, J. Environ. Manage. 85(4), 833–846 (2007).
  • M. A. Yahya, Z. Al-Qodah, and C. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev. 46, 218–235 (2015).
  • P. González-García, Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications, Renew. Sustain. Energy Rev. 82, 1393–1414 (2018).
  • M. Ruiz-Fernández, M. Alexandre-Franco, C. Fernández-González, and V. Gómez-Serrano, Development of activated carbon from vine shoots by physical and chemical activation methods. Some insight into activation mechanisms, Adsorption. 17(3), 621–629 (2011).
  • P. Serp and J. L. Figueiredo, Carbon Materials for Catalysis, John Wiley & Sons, Hoboken (2009).
  • E. Frackowiak and F. Béguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon N. Y. 39(6), 937–950 (2001).
  • J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque, and M. Chesneau, Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors, J. Power Sources. 101(1), 109–116 (2001).
  • A. González, E. Goikolea, J. A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energy Rev. 58, 1189–1206 (2016).
  • A. G. Pandolfo and A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources. 157(1), 11–27 (2006).
  • A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochim. Acta. 53, 1083–1091 (2007).
  • F. Béguin, E. Raymundo-Piñero, and E. Frackowiak, Electrical double-layer capacitors and pseudocapacitors. In Carbons for Electrochemical Energy Storage and Conversion Systems, F. Béguin and E. Frąckowiak (eds.), CRC Press, Boca Raton, 329–375 (2010).
  • A. Davies and A. Yu, Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene, Can. J. Chem. Eng. 89(6), 1342–1357 (2011).
  • Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, and S. Dai, Carbon materials for chemical capacitive energy storage, Adv. Mater. 23(42), 4828–4850 (2011).
  • A. Ghosh and Y. H. Lee, Carbon-based electrochemical capacitors, ChemSusChem. 5(3), 480–499 (2012).
  • L. Wei and G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors, Nano Energy. 1(4), 552–565 (2012).
  • J. Wang and S. Kaskel, KOH activation of carbon-based materials for energy storage, J. Mater. Chem. 22(45), 23710–23725 (2012).
  • Y. P. Wu, E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries, J. Power Sources. 114(2), 228–236 (2003).
  • J. C. Arrebola, A. Caballero, L. Hernán, J. Morales, M. Olivares-Marín, and V. Gómez-Serrano, Improving the performance of biomass-derived carbons in Li-ion batteries by controlling the lithium insertion process, J. Electrochem. Soc. 157(7), A791–A797 (2010).
  • P. Novák, D. Goers, and M. E. Spahr, Carbon materials in lithium-ion batteries. In Carbons for Electrochemical Energy Storage and Conversion Systems, F. Béguin and E. Frąckowiak (eds.), CRC Press, Boca Raton, 263–328 (2010).
  • R. J. Brodd, Carbon in batteries and energy conversion devices. In F. Béguin and E. Frąckowiak (eds.), Carbons for Electrochemical Energy Storage and Conversion Systems, CRC Press, Boca Raton, 411–428 (2010).
  • P. Kalyani and A. Anitha, Biomass carbon & its prospects in electrochemical energy systems, Int. J. Hydrogen Energy. 38, 4034–4045 (2013).
  • X. Peng, J. Fu, C. Zhang, J. Tao, L. Sun, and P. K. Chu, Rice husk-derived activated carbon for Li Ion battery anode, Nanosci. Nanotechnol. Lett. 6(1), 68–71 (2014).
  • S. Sankar, S. Saravanan, A. T. A. Ahmed, A. I. Inamdar, H. Im, S. Lee, and D. Y. Kim, Spherical activated-carbon nanoparticles derived from biomass green tea wastes for anode material of lithium-ion battery, Mater. Lett. 240, 189–192 (2019).
  • C. Li, J. Li, Y. Zhang, X. Cui, H. Lei, and G. Li, Heteroatom-doped hierarchically porous carbons derived from cucumber stem as high-performance anodes for sodium-ion batteries, J. Mater. Sci. 54(7), 5641–5657 (2019).
  • C. Lamy, Fuel cell systems: Which technological breakthrough for industrial development? In Carbons for Electrochemical Energy Storage and Conversion Systems, F. Béguin and E. Frąckowiak (eds.), CRC Press, Boca Raton, 377–410 (2010).
  • D. Cao, G. Wang, C. Wang, J. Wang, and T. Lu, Enhancement of electrooxidation activity of activated carbon for direct carbon fuel cell, Int. J. Hydrogen Energy. 35(4), 1778–1782 (2010).
  • J. Zhang, Z. Zhong, D. Shen, J. Zhao, H. Zhang, M. Yang, and W. Li, Preparation of bamboo-based activated carbon and its application in direct carbon fuel cells, Energy Fuels. 25(5), 2187–2193 (2011).
  • J. Zhang, Z. Zhong, J. Zhao, M. Yang, W. Li, and H. Zhang, Study on the preparation of activated carbon for direct carbon fuel cell with oak sawdust, Can. J. Chem. Eng. 90(3), 762–768 (2012).
  • L.-D. Tsai, H.-C. Chien, C.-H. Wang, C.-M. Lai, J.-N. Lin, C.-Y. Zhu, and F.-C. Chang, Poly(ethylene glycol) modified activated carbon for high performance proton exchange membrane fuel cells, Int. J. Hydrogen Energy. 38(26), 11331–11339 (2013).
  • P. Balakrishnan, I. I. G. Inal, E. Cooksey, A. Banford, Z. Aktas, and S. M. Holmes, Enhanced performance based on a hybrid cathode backing layer using a biomass derived activated carbon framework for methanol fuel cells, Electrochim. Acta. 251, 51–59 (2017).
  • L. Fan, J. Wang, L. Zhao, N. Hou, T. Gan, X. Yao, P. Li, Y. Zhao, and Y. Li, Effects of surface modification on the reactivity of activated carbon in direct carbon fuel cells, Electrochim. Acta. 284, 630–638 (2018).
  • L. L. Zhang, Y. Gu, and X. S. Zhao, Advanced porous carbon electrodes for electrochemical capacitors, J. Mater. Chem. A. 1(33), 9395–9408 (2013).
  • M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review, Nanoscale. 5(1), 72–88 (2013).
  • P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars, A. J. R. Rennie, G. O. Shitta-Bey, G. Wilson, A. Cruden, and R. Carter, Energy storage in electrochemical capacitors: Designing functional materials to improve performance, Energy Environ. Sci. 3(9), 1238–1251 (2010).
  • J. Sánchez-González, F. Stoeckli, and T. A. Centeno, The role of the electric conductivity of carbons in the electrochemical capacitor performance, J. Electroanal. Chem. 657(1-2), 176–180 (2011).
  • F. Maillard, P. A. Simonov, and E. R. Savinova, Carbon materials as supports for fuel cells electrocatalysts. In Carbon Material for Catalysis, P. Serp and J. L. Figueiredo (eds.), John Wiley & Sons, Hoboken, 429–480 (2009).
  • H. Wang, P. Cheng, and Y. Wang, Advanced electrocatalytic performance of activated carbon prepared from asphalt, Int. J. Electrochem. Sci. 13, 3257–3266 (2018).
  • K. Kuriyama and M. S. Dresselhaus, Photoconductivity of activated carbon fibers, J. Mater. Res. 6(5), 1040–1047 (1991).
  • F. Skaupy and O. Kantorowicz, Das verhalten pulverförmiger metalle unter druck, Z. Elektrochem. Angew. Phys. Chem. 37, 482–485 (1931).
  • F. Skaupy and O. Kantorowicz, Die elektrische leitfähigkeit pulverförmiger metalle unter druck, Met. Met. Met. 10, 45–47 (1931).
  • P. L. Walker and F. Rusinko, Determination of the electrical resistivity of particulate carbons, Fuel. 36(1), 43–50 (1957).
  • S. Mrozowski, Studies of carbon powders under compression. In Proceedings of the Third Conference on Carbon, S. Mrozowski, M. L. Studebaker, and P. L. Walker (eds.), Pergamon, Buffalo, 495– 508 (1959).
  • S. Marinković, Č. Sužnjević, and M. Djordjević, Pressure dependence of the electrical resistivity of graphite powder and its mixtures, Phys. Stat. Sol. (a). 4(3), 743–754 (1971).
  • K.-J. Euler, The conductivity of compressed powders. A review, J. Power Sources. 3(2), 117–136 (1978).
  • A. Espinola, P. M. Miguel, M. R. Salles, and A. R. Pinto, Electrical properties of carbons-resistance of powder materials, Carbon N. Y. 24(3), 337–341 (1986).
  • N. Deprez and D. S. McLachlan, The analysis of the electrical conductivity of graphite powders during compaction, J. Phys. D: Appl. Phys. 21(1), 101–107 (1988).
  • A. Celzard, J. F. Marêché, F. Payot, and G. Furdin, Electrical conductivity of carbonaceous powders, Carbon N. Y. 40(15), 2801–2815 (2002).
  • B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, and G. de With, Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technol. 221, 351–358 (2012).
  • F. J. Chacón, M. L. Cayuela, A. Roig, and M. A. Sánchez-Monedero, Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications, Rev. Environ. Sci. Biotechnol. 16(4), 695–715 (2017).
  • G. Giraud, J. P. Clerc, and E. Guyon, Étude par des mesures de résistance electrique de la répartition des pressions dans un empilement désordonné de sphères, Powder Technol. 35(1), 107–111 (1983).
  • F. I. Zorin, Electric resistivity of powdered graphites, Inorg. Mater. 22, 47–49 (1986).
  • A. Gervois, M. Ammi, T. Travers, D. Bideau, J.-C. Messager, and J.-P. Troadec, Importance of disorder in the conductivity of packings under compression, Phys. A Stat. Mech. Appl. 157(1), 565–569 (1989).
  • J. P. Troadec and D. Bideau, Importance du désordre dans la conductivité de matériaux granulaires sous compression, Onde Électrique. 71, 30–33 (1991).
  • H. Braun and P. Herger, On the separation of the contributions of powder particle cores and intergranular contacts to the electric resistivity of compressed powder materials, Mater. Chem. 7(6), 787–802 (1982).
  • J. Sánchez-González, A. Macías-García, M. F. Alexandre-Franco, and V. Gómez-Serrano, Electrical conductivity of carbon blacks under compression, Carbon N. Y. 43(4), 741–747 (2005).
  • A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernández-González, A. Macías-García, and V. Gómez-Serrano, Electrical conductivity of activated carbon–metal oxide nanocomposites under compression: A comparison study, Phys. Chem. Chem. Phys. 16(45), 25161–25175 (2014).
  • J. D. Bernal, A geometrical approach to the structure of liquids, Nature. 183(4655), 141–147 (1959).
  • R. Ben Aïm and P. Le Goff, La Coordinance des Empilements Désordonnés de Sphères. Application aux Mélanges Binaires de Sphères, Powder Technol. 2, 1–12 (1968).
  • J. A. Dodds, The porosity and contact points in multicomponent random sphere packings calculated by a simple statistical geometric model, J. Colloid Interface Sci. 77(2), 317–327 (1980).
  • J. P. Troadec, A. Gervois, D. Bideau, and L. Oger, Coordinance of a spherical impurity in a disordered packing of equal spheres, J. Phys. C: Solid State Phys. . 20(8), 993–1004 (1987).
  • A. Bertei and C. Nicolella, A comparative study and an extended theory of percolation for random packings of rigid spheres, Powder Technol. 213(1-3), 100–108 (2011).
  • A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernández-González, J. Sánchez-González, and V. Gómez-Serrano, Electrical conductivity of metal (hydr)oxide–activated carbon composites under compression. A comparison study, Mater. Chem. Phys. 152, 113–122 (2015).
  • R. Holm. Electric Contacts: Theory and Applications, 4th ed., Springer Verlag, Berlin (1967).
  • T. Travers, D. E. Bideau, A. Gervois, J. P. Troadec, and J. C. Messager, Uniaxial compression effects on 2D mixtures of “hard” and “soft” cylinders, J. Phys. A Math. Gen. 19(16), L1033–L1038 (1986).
  • F. Radjai, M. Jean, J. J. Moreau, and S. Roux, Force distributions in dense two-dimensional granular systems, Phys. Rev. Lett. 77(2), 274–277 (1996).
  • F. Radjai, D. E. Wolf, M. Jean, and J.-J. Moreau, Bimodal character of stress transmission in granular packings, Phys. Rev. Lett. 80(1), 61–64 (1998).
  • M. Sahimi, Applications of Percolation Theory, Taylor & Francis, London (1994).
  • L. R. Brodd and A. Kosawa, Primary batteries. In Techniques of electrochemistry, E. Yeager and A. J. Salkind (eds.), Wiley-Interscience, New York, 3, 199–289 (1978).
  • V. Hoffmann, C. Rodriguez Correa, D. Sautter, E. Maringolo, and A. Kruse, Study of the electrical conductivity of biobased carbonaceous powder materials under moderate pressure for the application as electrode materials in energy storage technologies, GCB Bioenergy. 11(1), 230–248 (2019).
  • Y. Singh, Electrical resistivity measurements: A review, Int. J. Mod. Phys. Conf. Ser. 22, 745–756 (2013).
  • L. B. Coleman, Technique for conductivity measurements on single crystals of organic materials, Rev. Sci. Instrum. 46(8), 1125–1126 (1975).
  • M. B. Heany, Electrical conductivity and resistivity. In Electrical Measurement, Signal Processing, and Displays, J. G. Webster (ed.), CRC Press, Boca Raton, 7–1–7-14 (2003).
  • L. J. Kennedy, J. J. Vijaya, and G. Sekaran, Electrical conductivity study of porous carbon composite derived from rice husk, Mater. Chem. Phys. 91(2-3), 471–476 (2005).
  • N. Konikkara, L. J. Kennedy, U. Aruldoss, and J. J. Vijaya, Electrical conductivity studies of nanoporous carbon derived from leather waste: Effect of pressure, temperature and porosity, J. Nanosci. Nanotechnol. 16(8), 8829–8838 (2016).
  • J. G. Hernandez, I. Hernandez-Calderon, C. A. Luengo, and R. Tsu, Microscopic structure and electrical properties of heat treated coals and eucalyptus charcoal, Carbon N. Y. 20(3), 201–205 (1982).
  • F. G. Emmerich, J. C. de Sousa, I. L. Torriani, and C. A. Luengo, Applications of a granular model and percolation theory to the electrical resistivity of heat treated endocarp of babassu nut, Carbon N. Y. 25(3), 417–424 (1987).
  • J. S. Mattson, Activated Carbon: Surface Chemistry and Adsorption from Solution, Marcel Dekker, New York (1971).
  • L. R. Radovic, Surface chemistry of activated carbon materials: State of the art and implications for adsorption. In Surfaces Nanoparticles Porous Mater, J. A. Schwarz and C. I. Contescu (eds.), Marcel Dekker, New York, 529–565 (1999).
  • H. P. Boehm, Surface oxides on carbon and their analysis: A critical assessment, Carbon N. Y. 40(2), 145–149 (2002).
  • T. J. Bandosz and A. Co, Surface chemistry of activated carbons and its characterization. In Activated Carbon Surfaces in Environmental Remediation, T. J. Bandosz (ed.), Academic Press, New York, 159–229 (2006).
  • H. P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon N. Y. 32(5), 759–769 (1994).
  • M. V. Lopez-Ramon, F. Stoeckli, C. Moreno-Castilla, and F. Carrasco-Marin, On the characterization of acidic and basic surface sites on carbons by various techniques, Carbon N. Y. 37(8), 1215–1221 (1999).
  • M. Domingo-García, F. J. López-Garzón, and M. Pérez-Mendoza, Effect of some oxidation treatments on the textural characteristics and surface chemical nature of an activated carbon, J. Colloid Interface Sci. 222(2), 233–240 (2000).
  • I. I. Salame and T. J. Bandosz, Surface chemistry of activated carbons: Combining the results of temperature-programmed desorption, Boehm, and potentiometric titrations, J Colloid Interface Sci. 240(1), 252–258 (2001).
  • M. A. Montes-Morán, D. Suárez, J. A. Menéndez, and E. Fuente, On the nature of basic sites on carbon surfaces: An overview, Carbon N. Y. 42(7), 1219–1225 (2004).
  • Y. El-Sayed and T. J. Bandosz, Adsorption of valeric acid from aqueous solution onto activated carbons: Role of surface basic sites, J. Colloid Interface Sci. 273(1), 64–72 (2004).
  • O. Sirichote, W. Innajitara, and L. Chuenchom, Adsorption of iron (III) ion on activated carbons obtained from bagasse, pericarp of rubber fruit and coconut shell, Songklanakarin J. Sci. Technol. 24, 235–242 (2002).
  • R. C. Bansal and M. Goyal, Activated Carbon Adsorption, CRC Press, Boca Raton (2005).
  • J. T. Cookson, Adsorption mechanisms: The chemistry of organic adsorption on activated carbon. In Carbon Adsorption Handbook, P. N. Cheremisinoff and F. Ellerbusch, Ann Arbor Science, Ann Arbor, 241–279 (1978).
  • V. Gómez-Serrano, M. Acedo-Ramos, A. J. López-Peinado, and C. Valenzuela-Calahorro, Oxidation of activated carbon by hydrogen peroxide. Study of surface functional groups by FT-i.r, Fuel. 73, 387–395 (1994).
  • V. Gómez-Serrano, F. Piriz-Almeida, C. J. Durán-Valle, and J. Pastor-Villegas, Formation of oxygen structures by air activation. A study by FT-IR spectroscopy, Carbon N. Y. 37(10), 1517–1528 (1999).
  • H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, and C. A. Zaror, Effect of ozone treatment on surface properties of activated carbon, Langmuir. 18(6), 2111–2116 (2002).
  • H. Tamon and M. Okazaki, Influence of acidic surface oxides of activated carbons on gas adsorption characteristics, Carbon N. Y. 34(6), 741–746 (1996).
  • V. Gómez-Serrano, M. Acedo-Ramos, A. J. López-Peinado, and C. Valenzuela- Calahorro, Mass and surface changes of activated carbon treated with nitric acid. Thermal behavior of the samples, Thermochim. Acta. 291(1-2), 109–115 (1997).
  • C. Moreno-Castilla, M. V. López-Ramón, and F. Carrasco-Marı́n, Changes in surface chemistry of activated carbons by wet oxidation, Carbon N. Y. 38(14), 1995–2001 (2000).
  • J. Jaramillo, P. M. Álvarez, and V. Gómez-Serrano, Oxidation of activated carbon by dry and wet methods. Surface chemistry and textural modifications, Fuel Process. Technol. 91(11), 1768–1775 (2010).
  • T. J. Bandosz, Surface chemistry of carbon materials. In Carbon Materials for Catalysis, P. Serp and J. L. Figueiredo (eds.), Wiley, Hoboken, 45–92 (2009).
  • T. J. Bandosz, J. Jagiello, and J. A. Schwarz, Comparison of methods to assess surface acidic groups on activated carbons, Anal. Chem. 64(8), 891–895 (1992).
  • M. S. Shafeeyan, W. M. A. W. Daud, A. Houshmand, and A. Shamiri, A review on surface modification of activated carbon for carbon dioxide adsorption, J. Anal. Appl. Pyrolysis. 89(2), 143–151 (2010).
  • J. S. Noh and J. A. Schwarz, Effect of HNO3 treatment on the surface acidity of activated carbons, Carbon N. Y. 28(5), 675–682 (1990).
  • Y. Otake and R. G. Jenkins, Characterization of oxygen-containing surface complexes created on a microporous carbon by air and nitric acid treatment, Carbon N. Y. 31(1), 109–121 (1993).
  • J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, and J. J. M. Órfão, Modification of the surface chemistry of activated carbons, Carbon N. Y. 37(9), 1379–1389 (1999).
  • J. F. Vivo-Vilches, E. Bailón-García, A. F. Pérez-Cadenas, F. Carrasco-Marín, and F. J. Maldonado-Hódar, Tailoring the surface chemistry and porosity of activated carbons: Evidence of reorganization and mobility of oxygenated surface groups, Carbon N. Y. 68, 520–530 (2014).
  • C. Moreno-Castilla, M. A. Ferro-Garcia, J. P. Joly, I. Bautista-Toledo, F. Carrasco-Marin, and J. Rivera-Utrilla, Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments, Langmuir. 11(11), 4386–4392 (1995).
  • G. S. Szymański, Z. Karpiński, S. Biniak, and A. Świa̧Tkowski, The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon, Carbon N. Y. 40(14), 2627–2639 (2002).
  • J. A. Menéndez, M. J. Illán-Gómez, C. A. L. y León, and L. R. Radovic, On the difference between the isoelectric point and the point of zero charge of carbons, Carbon N. Y. 33(11), 1655–1657 (1995).
  • J. A. Menéndez, J. Phillips, B. Xia, and L. R. Radovic, On the modification and characterization of chemical surface properties of activated carbon: In the search of carbons with stable basic properties, Langmuir. 12(18), 4404–4410 (1996).
  • S. Shin, J. Jang, S.-H. Yoon, and I. Mochida, A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR, Carbon N. Y. 35(12), 1739–1743 (1997).
  • J. A. Menéndez, B. Xia, J. Phillips, and L. R. Radovic, On the modification and characterization of chemical surface properties of activated carbon: Microcalorimetric, electrochemical, and thermal desorption probes, Langmuir. 13(13), 3414–3421 (1997).
  • S. A. Dastgheib and T. Karanfil, Adsorption of oxygen by heat-treated granular and fibrous activated carbons, J. Colloid Interface Sci. 274(1), 1–8 (2004).
  • E. Papirer, S. Li, and J.-B. Donnet, Contribution to the study of basic surface groups on carbons, Carbon N. Y. 25(2), 243–247 (1987).
  • U. Zielke, K. J. Hüttinger, and W. P. Hoffman, Surface-oxidized carbon fibers: I. Surface structure and chemistry, Carbon N. Y. 34(8), 983–998 (1996).
  • W. W. Smeltzer and R. McIntosh, The effect of physical adsorption on the electrical resistance of active carbon, Can. J. Chem. 31(12), 1239–1251 (1953).
  • S. S. Barton and J. E. Koresh, A study of the surface oxides on carbon cloth by electrical conductivity, Carbon N. Y. 22(6), 481–485 (1984).
  • A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernández-González, and V. Gómez-Serrano, Preparation of activated carbon-metal (hydr)oxide materials by thermal methods. Thermogravimetric-mass spectrometric (TG-MS) analysis, J. Anal. Appl. Pyrolysis. 116, 243–252 (2015).
  • M. Polovina, B. Babić, B. Kaluderović, and A. Dekanski, Surface characterization of oxidized activated carbon cloth, Carbon N. Y. 35(8), 1047–1052 (1997).
  • Z. Hashisho, M. J. Rood, S. Barot, and J. Bernhard, Role of functional groups on the microwave attenuation and electric resistivity of activated carbon fiber cloth, Carbon N. Y. 47(7), 1814–1823 (2009).
  • D. D. L. Chung, Applied Materials Science: Applications of Engineering Materials in Structural, Electronics, Thermal, and Other Industries, CRC Press, Boca Raton (2001).
  • H.-P. Boehm, Catalytic properties of nitrogen-containing carbons. In Carbon Materials for Catalysis, P. Serp and J. L. Figueiredo (eds.), Wiley, Hoboken, 219–265 (2009).
  • S. Biniak, G. Szymański, J. Siedlewski, and A. Świątkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon N. Y. 35(12), 1799–1810 (1997).
  • J. Lahaye, G. Nansé, A. Bagreev, and V. Strelko, Porous structure and surface chemistry of nitrogen containing carbons from polymers, Carbon N. Y. 37(4), 585–590 (1999).
  • N. Inagaki, K. Narushima, H. Hashimoto, and K. Tamura, Implantation of amino functionality into amorphous carbon sheet surfaces by NH3 plasma, Carbon N. Y. 45(4), 797–804 (2007).
  • Y. El-Sayed and T. J. Bandosz, Role of surface oxygen groups in incorporation of nitrogen to activated carbons via ethylmethylamine adsorption, Langmuir. 21(4), 1282–1289 (2005).
  • A. Bagreev, J. A. Menendez, I. Dukhno, Y. Tarasenko, and T. J. Bandosz, Oxidative adsorption of methyl mercaptan on nitrorgen-enriched bituminous coal-based activated carbon, Carbon N. Y. 43(1), 208–210 (2005).
  • M. H. Kasnejad, A. Esfandiari, T. Kaghazchi, and N. Asasian, Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu (II) adsorption, J. Taiwan Inst. Chem. Eng. 43(5), 736–740 (2012).
  • R. J. J. Jansen and H. van Bekkum, XPS of nitrogen-containing functional groups on activated carbon, Carbon N. Y. 33(8), 1021–1027 (1995).
  • R. J. J. Jansen and H. van Bekkum, Amination and ammoxidation of activated carbons, Carbon N. Y. 32(8), 1507–1516 (1994).
  • F. Kapteijn, J. A. Moulijn, S. Matzner, and H.-P. Boehm, The development of nitrogen functionality in model chars during gasification in CO2 and O2, Carbon N. Y. 37(7), 1143–1150 (1999).
  • Y. El-Sayed and T. J. Bandosz, Acetaldehyde adsorption on nitrogen-containing activated carbons, Langmuir. 18(8), 3213–3218 (2002).
  • G. Sethia and A. Sayari, Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture, Carbon N. Y. 93, 68–80 (2015).
  • J. Kou and L.-B. Sun, Fabrication of nitrogen-doped porous carbons for highly efficient CO2 capture: Rational choice of a polymer precursor, J. Mater. Chem. A . 4(44), 17299–17307 (2016).
  • J. Fujiki and K. Yogo, The increased CO2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping, Chem. Commun. 52(1), 186–189 (2016).
  • M. Machida, T. Goto, Y. Amano, and T. Iida, Adsorptive removal of nitrate from aqueous solution using nitrogen doped activated carbon, Chem. Pharm. Bull. 64(11), 1555–1559 (2016).
  • Y. Kang, Z. Guo, J. Zhang, H. Xie, H. Liu, and C. Zhang, Enhancement of Ni(II) removal by urea-modified activated carbon derived from Pennisetum alopecuroides with phosphoric acid activation, J. Taiwan Inst. Chem. Eng. 60, 335–341 (2016).
  • Q. Liu, M. Ke, F. Liu, P. Yu, H. Hu, and C. Li, High-performance removal of methyl mercaptan by nitrogen-rich coconut shell activated carbon, RSC Adv. 7(37), 22892–22899 (2017).
  • I. Mochida, Y. Korai, M. Shirahama, S. Kawano, T. Hada, Y. Seo, M. Yoshikawa, and A. Yasutake, Removal of SOx and NOx over activated carbon fibers, Carbon N. Y. 38(2), 227–239 (2000).
  • C.-M. Yang and K. Kaneko, Nitrogen-doped activated carbon fiber as an applicant for NO adsorbent, J. Colloid Interface Sci. 255(2), 236–240 (2002).
  • A. Bagreev, S. Bashkova, and T. J. Bandosz, Adsorption of SO2 on activated carbons: The effect of nitrogen functionality and pore sizes, Langmuir. 18(4), 1257–1264 (2002).
  • A. Bagreev, J. Angel Menendez, I. Dukhno, Y. Tarasenko, and T. J. Bandosz, Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide, Carbon N. Y. 42(3), 469–476 (2004).
  • L. Yang, S. Wu, and J. P. Chen, Modification of activated carbon by polyaniline for enhanced adsorption of aqueous arsenate, Ind. Eng. Chem. Res. 46(7), 2133–2140 (2007).
  • M. Hofman and R. Pietrzak, Nitrogen-doped carbonaceous materials for removal of phenol from aqueous solutions, Sci. World J. 2012, 1–8 (0212).
  • G. Yang, H. Chen, H. Qin, and Y. Feng, Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups, Appl. Surf. Sci. 293, 299–305 (2014).
  • B. Stöhr, H. P. Boehm, and R. Schlögl, Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon N. Y. 29(6), 707–720 (1991).
  • S.-I. Fujita, K. Yamada, A. Katagiri, H. Watanabe, H. Yoshida, and M. Arai, Nitrogen-doped metal-free carbon catalysts for aerobic oxidation of xanthene, Appl. Catal. A Gen. 488, 171–175 (2014).
  • X. Wang, B. Dai, Y. Wang, and F. Yu, Nitrogen-doped pitch-based spherical active carbon as a nonmetal catalyst for acetylene hydrochlorination, ChemCatChem. 6(8), 2339–2344 (2014).
  • B. Zhang, Z. Wen, S. Ci, S. Mao, J. Chen, and Z. He, Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells, ACS Appl. Mater. Interfaces. 6(10), 7464–7470 (2014).
  • O. Y. Podyacheva and Z. R. Ismagilov, Nitrogen-doped carbon nanomaterials: To the mechanism of growth, electrical conductivity and application in catalysis, Catal. Today. 249, 12–22 (2015).
  • S. Fujita, S. Asano, and M. Arai, Nitrobenzene-assisted reduction of phenylacetylene with hydrazine over nitrogen-doped metal-free activated carbon catalyst: Significance of interactions among substrates and catalyst, J. Mol. Catal. A Chem. 423, 181–184 (2016).
  • T. Tanabe, Y. Yamada, J. Kim, M. Koinuma, S. Kubo, N. Shimano, and S. Sato, Knoevenagel condensation using nitrogen-doped carbon catalysts, Carbon N. Y. 109, 208–220 (2016).
  • H. Tang, B. Xu, M. Xiang, X. Chen, Y. Wang, and Z. Liu, Catalytic performance of nitrogen-doped activated carbon supported Pd catalyst for hydrodechlorination of 2,4-dichlorophenol or chloropentafluoroethane, Molecules. 24(4), 674 (2019).
  • A. Volperts, A. Plavniece, G. Dobele, A. Zhurinsh, I. Kruusenberg, K. Kaare, J. Locs, L. Tamasauskaite-Tamasiunaite, and E. Norkus, Biomass based activated carbons for fuel cells, Renew. Energy. 141, 40–45 (2019).
  • M. Yang and Z. Zhou, Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials, Adv. Sci. 4(8), 1600408 (2017).
  • M. Seredych, D. Hulicova-Jurcakova, G. Q. Lu, and T. J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon N. Y. 46(11), 1475–1488 (2008).
  • T. Cordero-Lanzac, J. M. Rosas, F. J. García-Mateos, J. J. Ternero-Hidalgo, J. Palomo, J. Rodríguez-Mirasol, and T. Cordero, Role of different nitrogen functionalities on the electrochemical performance of activated carbons, Carbon N. Y. 126, 65–76 (2018).
  • V. V. Strelko, V. S. Kuts, and P. A. Thrower, On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions, Carbon N. Y. 38(10), 1499–1503 (2000).
  • M. J. Mostazo-López, R. Ruiz-Rosas, E. Morallón, and D. Cazorla-Amorós, Generation of nitrogen functionalities on activated carbons by amidation reactions and Hofmann rearrangement: Chemical and electrochemical characterization, Carbon N. Y. 91, 252–265 (2015).
  • D. Hulicova-Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z. H. Zhu, and G. Q. Lu, Nitrogen-enriched nonporous carbon electrodes with extraordinary supercapacitance, Adv. Funct. Mater. 19(11), 1800–1809 (2009).
  • Z. R. Ismagilov, A. E. Shalagina, O. Y. Podyacheva, A. V. Ischenko, L. S. Kibis, A. I. Boronin, Y. A. Chesalov, D. I. Kochubey, A. I. Romanenko, O. B. Anikeeva, T. I. Buryakov, and E. N. Tkachev, Structure and electrical conductivity of nitrogen-doped carbon nanofibers, Carbon N. Y. 47(8), 1922–1929 (2009).
  • J. D. Wiggins-Camacho and K. J. Stevenson, Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes, J. Phys. Chem. C. 113(44), 19082–19090 (2009).
  • E. M. M. Ibrahim, V. O. Khavrus, A. Leonhardt, S. Hampel, S. Oswald, M. H. Rümmeli, and B. Büchner, Synthesis, characterization, and electrical properties of nitrogen-doped single-walled carbon nanotubes with different nitrogen content, Diam. Relat. Mater. 19(10), 1199–1206 (2010).
  • M. A. Kanygin, O. V. Sedelnikova, I. P. Asanov, L. G. Bulusheva, A. V. Okotrub, P. P. Kuzhir, A. O. Plyushch, S. A. Maksimenko, K. N. Lapko, A. A. Sokol, O. A. Ivashkevich, and P. Lambin, Effect of nitrogen doping on the electromagnetic properties of carbon nanotube-based composites, J. Appl. Phys. 113(14), 144315 (2013).
  • H. Chen, F. Sun, J. Wang, W. Li, W. Qiao, L. Ling, and D. Long, Nitrogen doping effects on the physical and chemical properties of mesoporous carbons, J. Phys. Chem. C. 117(16), 8318–8328 (1320).
  • D. P. Kim, C. L. Lin, T. Mihalisin, P. Heiney, and M. M. Labes, Electronic properties of nitrogen-doped graphite flakes, Chem. Mater. 3(4), 686–692 (1991).
  • E. Pollak, G. Salitra, A. Soffer, and D. Aurbach, On the reaction of oxygen with nitrogen-containing and nitrogen-free carbons, Carbon N. Y. 44(15), 3302–3307 (2006).
  • W. Shen and W. Fan, Nitrogen-containing porous carbons: Synthesis and application, J. Mater. Chem. A. 1(4), 999–1013 (2013).
  • L. Zhao, N. Baccile, S. Gross, Y. Zhang, W. Wei, Y. Sun, M. Antonietti, and M.-M. Titirici, Sustainable nitrogen-doped carbonaceous materials from biomass derivatives, Carbon N. Y. 48(13), 3778–3787 (2010).
  • M. J. Mostazo-López, R. Ruiz-Rosas, E. Morallón, and D. Cazorla-Amorós, Nitrogen doped superporous carbon prepared by a mild method. Enhancement of supercapacitor performance, Int. J. Hydrogen Energy. 41(43), 19691–19701 (2016).
  • J. Kim, J. Chun, S.-G. Kim, H. Ahn, and K. C. Roh, Nitrogen and fluorine co-doped activated carbon for supercapacitors, J. Electrochem. Sci. Technol. 8(4), 338–343 (2017).
  • M. E. Ramos, J. D. González, P. R. Bonelli, and A. L. Cukierman, Effect of process conditions on physicochemical and electrical characteristics of denim-based activated carbon cloths, Ind. Eng. Chem. Res. 46(4), 1167–1173 (2007).
  • M. E. Ramos, P. R. Bonelli, and A. L. Cukierman, Physico-chemical and electrical properties of activated carbon cloths. Effect of inherent nature of the fabric precursor, Colloids Surfaces A Physicochem. Eng. Asp. 324(1-3), 86–92 (2008).
  • M. E. Ramos, P. R. Bonelli, S. Blacher, M. M. L. Ribeiro Carrott, P. J. M. Carrott, and A. L. Cukierman, Effect of the activating agent on physico-chemical and electrical properties of activated carbon cloths developed from a novel cellulosic precursor, Colloids Surfaces A Physicochem. Eng. Asp. 378(1-3), 87–93 (2011).
  • A. Subrenat, J. N. Baléo, P. Le Cloirec, and P. E. Blanc, Electrical behaviour of activated carbon cloth heated by the joule effect: Desorption application, Carbon N. Y. 39(5), 707–716 (2001).
  • A. S. Subrenat and P. A. Le Cloirec, Volatile organic compound (VOC) removal by adsorption onto activated carbon fiber cloth and electrothermal desorption: An industrial application, Chem. Eng. Commun. 193(4), 478–486 (2006).
  • K. Nishimiya, T. Hata, H. Kikuchi, and Y. Imamura, Effect of aluminum compound addition on graphitization of wood charcoal by direct electric pulse heating method, J. Wood Sci. 50(2), 177–181 (2004).
  • O. Ioannidou and A. Zabaniotou, Agricultural residues as precursors for activated carbon production-A review, Renew. Sustain. Energy Rev. 11(9), 1966–2005 (2007).
  • H. Marsh, ed., Introduction to Carbon Science, Butterworth-Heinemann, Oxford (1989).
  • H. Marsh and F. Rodríguez-Reinoso, Sciences of Carbon Materials, Publicaciones de la Universidad de Alicante, Alicante (2000).
  • M. Inagaki and L. R. Radovic, Nanocarbons, Carbon N. Y. 40(12), 2279–2282 (2002).
  • Y.-R. Rhim, D. Zhang, D. H. Fairbrother, K. A. Wepasnick, K. J. Livi, R. J. Bodnar, and D. C. Nagle, Changes in electrical and microstructural properties of microcrystalline cellulose as function of carbonization temperature, Carbon N. Y. 48(4), 1012–1024 (2010).
  • H. Sugimoto and M. Norimoto, Dielectric relaxation due to interfacial polarization for heat-treated wood, Carbon N. Y. 42(1), 211–218 (2004).
  • H. Sugimoto and M. Norimoto, Dielectric relaxation due to the heterogeneous structure of wood charcoal, J. Wood Sci. 51(6), 554–558 (2005).
  • A. K. Kercher and D. C. Nagle, Evaluation of carbonized medium-density fiberboard for electrical applications, Carbon N. Y. 40(8), 1321–1330 (2002).
  • A. K. Kercher and D. C. Nagle, AC electrical measurements support microstructure model for carbonization: A comment on ‘dielectric relaxation due to interfacial polarization for heat-treated wood’, Carbon N. Y. 42(1), 219–221 (2004).
  • G. Xiao, R. Xiao, B. Jin, W. Zuo, J. Liu, and J. R. Grace, Study on electrical resistivity of rice straw charcoal, J. Biobased Mat. Bioenergy. 4(4), 426–429 (2010).
  • N. Indayaningsih, A. Zulfia, D. Priadi, and S. Hendrana, Study of the electrical conductivity of oil palm fiber carbon, Adv Mater. Res. 277, 137–142 (2011).
  • G. Xiao, W. Xu, Z. Luo, and H. Pang, Characteristics of toluene decomposition and adsorbent regeneration based on electrically conductive charcoal particle-triggered discharge, RSC Adv. 7(71), 44696–44705 (2017).
  • Z.-H. Jiang, D.-S. Zhang, and B.-H. Fei, Effects of carbonization temperature on the microstructure and electrical conductivity of bamboo charcoal, New Carbon Mater. 19, 249–253 (2004).
  • G. Xiao, M. Ni, R. Xiao, X. Gao, and K. Cen, Catalytic carbonization of lignin for production of electrically conductive charcoal, J. Biobased Mat. Bioenergy. 6(1), 69–74 (2012).
  • X. Xu, G. Xiao, and J. Cao, Raman analysis of lignin conductive char, J. Wuhan Univ. Technol-Mat. Sci. Edit. 43, 115–119 (2013).
  • R.-B. Wu, G. Xiao, D. Chen, H.-L. Zhou, M.-J. Ni, X. Gao, and K.-F. Cen, Characteristics of electrically conductive charcoal prepared by high temperature carbonization of lignin, J. Zhejiang Univ. (Eng. Sci.). 48, 1752–1757 (2014).
  • H. Zhou, G. Xiao, R. Wu, L. Huang, M. Ni, X. Gao, and K. Cen, Influence of temperature on the structure of lignin conductive charcoal graphitization, J. Zhejiang Univ. (Eng. Sci.). 48, 2066–2071 (2014).
  • M. Kumar and R. C. Gupta, Electrical resistivity of Acacia and Eucalyptus wood chars, J. Mater. Sci. 28(2), 440–444 (1993).
  • S.-Y. Wang and C.-P. Hung, Electromagnetic shielding efficiency of the electric field of charcoal from six wood species, J. Wood Sci. 49(5), 450–454 (2003).
  • T. Manabe, M. Ohata, S. Yoshizawa, D. Nakajima, S. Goto, K. Uchida, and H. Yajima, Effect of carbonization temperature on the physicochemical structure of wood charcoal, Trans. Mater. Res. Soc. Japan. 32, 1035–1038 (2007).
  • L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Muha, and M. C. Vera, Structure, electrical resistivity, and thermal conductivity of beech wood biocarbon produced at carbonization temperatures below 1000 °C, Phys. Solid State . 53, 2398–2407 (2011).
  • J. H. Kwon, S. B. Park, N. Ayrilmis, S. W. Oh, and N. H. Kim, Effect of carbonization temperature on electrical resistivity and physical properties of wood and wood-based composites, Compos. Part B Eng. 46, 102–107 (2013).
  • S. Mrozowski, Semiconductivity and diamagnetism of polycrystalline graphite and condensed ring systems, Phys. Rev. 85(4), 609–620 (1952).
  • A. K. Kercher and D. C. Nagle, Microstructural evolution during charcoal carbonization by X-ray diffraction analysis, Carbon N. Y. 41(1), 15–27 (2003).
  • O. Paris, C. Zollfrank, and G. A. Zickler, Decomposition and carbonisation of wood biopolymers–A microstructural study of softwood pyrolysis, Carbon N. Y. 43(1), 53–66 (2005).
  • S. Mrozowski, Electronic properties and band model of carbons, Carbon N. Y. 9(2), 97–109 (1971).
  • K. Nishimiya, T. Hata, Y. Imamura, and S. Ishihara, Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy, J. Wood Sci. 44(1), 56–61 (1998).
  • W. Djeridi, A. Ouederni, N. B. Mansour, P. L. Llewellyn, A. Alyamani, and L. El Mir, Effect of the both texture and electrical properties of activated carbon on the CO2 adsorption capacity, Mater. Res. Bull. 73, 130–139 (2016).
  • M. Weber and M. R. Kamal, Estimation of the volume resistivity of electrically conductive composites, Polym. Compos. 18(6), 711–725 (1997).
  • C. Rodriguez Correa, T. Otto, and A. Kruse, Influence of the biomass components on the pore formation of activated carbon, Biomass Bioenergy. 97, 53–64 (2017).
  • M. A. Naeem, M. Khalid, M. Arshad, and R. Ahmad, Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures, Pakistan J. Agric. Sci. 51, 75–82 (2014).
  • S. Biniak, A. Świa̧Tkowski, and M. Pakuła, Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces. In Chemistry and Physics of Carbon, L. R. Radovic (ed.), Marcel Dekker, New York, 27, 125-225 (2001).
  • L. R. Radovic, Chemistry and Physics of Carbon, Marcel Dekker, New York, 24 (1994).
  • C. P. Suhas and C. M. Ribeiro, Lignin - from natural adsorbent to activated carbon: A review, Bioresour. Technol. 98, 2301–2312 (2007).
  • A. Jain, R. Balasubramanian, and M. P. Srinivasan, Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review, Chem. Eng. J. 283, 789–805 (2016).
  • M.-M. Titirici, R. J. White, C. Falco, and M. Sevilla, Black perspectives for a green future: Hydrothermal carbons for environment protection and energy storage, Energy Environ. Sci. 5(5), 6796–6822 (2012).
  • K. K. Lee, E. Björkman, D. Morin, M. Lilliestråle, F. Björefors, A. M. Andersson, and N. Hedin, Effects of hydrothermal carbonization conditions on the textural and electrical properties of activated carbons, Carbon N. Y. 107, 619–621 (2016).
  • M. Kurniati, D. Nurhayati, and A. Maddu, Study of structural and electrical conductivity of sugarcane bagasse-carbon with hydrothermal carbonization, IOP Conf. Ser. Earth Environ. Sci. 58, 012049 (2017).
  • K. Siebel, Über die Änderung des elektrischen Widerstandes von Kohle durch Gasabsorption, Z Physik. 4(2), 288–299 (1921).
  • J. W. McBain, Sorption of Gases and Vapours by Solids, G. Routledge and Sons, London (1932).
  • G. M. Schwab and B. Karkalos, The electrical conductivity of activated charcoal, Z. Elektrochem. Angew. Phys. Chem. 47, 345–353 (1941).
  • J. Sandor,The Ultra-Fine Structure of Coals and Cokes. British Coal Utilization Research Association, London, 342 (1944).
  • J. R. Dacey, G. J. C. Frohnsdorff, and J. T. Gallagher, The effects of adsorbed water on the electrical resistance and the length of Saran charcoal rods-A preliminary account, Carbon N. Y. 2(1), 41–51 (1964).
  • R. McIntosh, R. S. Haines, and G. C. Benson, The effect of physical adsorption on the electrical resistance of activated carbon, J. Chem. Phys. 15(1), 17–27 (1947).
  • S. Brunauer, The Adsorption of Gases and Vapors, Princeton University Press, Princeton, 1 (1943).
  • R. A. Beebe, G. L. Kington, M. H. Polley, and W. R. Smith, Heats of adsorption and molecular configuration. The pentanes on carbon black, J. Am. Chem. Soc. 72(1), 40–42 (1950).
  • M. E. Ramos, P. R. Bonelli, A. L. Cukierman, M. M. L. Ribeiro Carrott, and P. J. M. Carrott, Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor, J. Hazard. Mater. 177(1-3), 175–182 (2010).
  • D. L. Johnsen, Z. Zhang, H. Emamipour, Z. Yan, and M. J. Rood, Effect of isobutane adsorption on the electrical resistivity of activated carbon fiber cloth with select physical and chemical properties, Carbon N. Y. 76, 435–445 (2014).
  • N. A. Travlou, M. Seredych, E. Rodríguez-Castellón, and T. J. Bandosz, Activated carbon-based gas sensors: Effects of surface features on the sensing mechanism, J. Mater. Chem. A. 3(7), 3821–3831 (2015).
  • N. A. Travlou, C. Ushay, M. Seredych, E. Rodríguez-Castellón, and T. J. Bandosz, Nitrogen-doped activated carbon-based ammonia sensors: Effect of specific surface functional groups on carbon electronic properties, ACS Sens. 1(5), 591–599 (2016).
  • F. D. Yu, L. Luo, and G. Grevillot, Electrothermal swing adsorption of toluene on an activated carbon monolith. Experiments and parametric theoretical study, Chem. Eng. Process. Process Intensif. 46(1), 70–81 (2007).
  • J. Imai and K. Kaneko, Electrical conductivity of a single micrographitic carbon fiber with a high surface area under various atmospheres, Langmuir. 8(7), 1695–1697 (1992).
  • N. Kobayashi, T. Enoki, C. Ishii, K. Kaneko, and M. Endo, Gas adsorption effects on structural and electrical properties of activated carbon fibers, J. Chem. Phys. 109(5), 1983–1990 (1998).
  • S. L. di Vittorio, M. S. Dresselhaus, M. Endo, J.-P. Issi, L. Piraux, and V. Bayot, The transport properties of activated carbon fibers, J. Mater. Res. 6, 778–783 (1991).
  • M. S. Dresselhaus, A. W. P. Fung, A. M. Rao, S. L. di Vittorio, K. Kuriyama, G. Dresselhaus, and M. Endo, New characterization techniques for activated carbon fibers, Carbon N. Y. 30(7), 1065–1073 (1992).
  • I. S. McLintock and J. C. Orr, The effect of oxygen adsorption on the electrical resistance of evaporated carbon films, Carbon N. Y. 6(3), 309–323 (1968).
  • Y. Shibayama, H. Sato, T. Enoki, M. Endo, and N. Shindo, Magnetic properties of activated carbon fibers and their iodine-doping effect, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 310(1), 273–278 (1998).
  • M. Kempiński, Resistivity switching in activated carbon fibers, Mater. Lett. 230, 180–182 (2018).
  • A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernández-González, J. Sánchez-González, and V. Gómez-Serrano, Temperature dependence of DC electrical conductivity of activated carbon-metal oxide nanocomposites. Some insight into conduction mechanisms, J. Phys. Chem. Solids. 87, 259–270 (2015).
  • S. Mrozowski, Electric resistivity of polycrystalline graphite and carbons, Phys. Rev. 77(6), 838 (1950).
  • F. Carmona, P. Delhaes, G. Keryer, and J. P. Manceau, Non-metal-metal transition in a non-crystalline carbon, Solid State Commun. 14(11), 1183–1187 (1974).
  • H. Fritzsche, Optical and electrical energy gaps in amorphous semiconductors, J. Non. Cryst. Solids. 6(1), 49–71 (1971).
  • A. C. Metaxas, Foundations of Electroheat: A Unified Approach, Wiley, Chichester (1996).
  • R. J. Meredith, Engineers’ Handbook of Industrial Microwave Heating, The Institution of Electrical Engineers, London (1998).
  • P. D. Sullivan, M. J. Rood, K. J. Hay, and S. Qi, Adsorption and electrothermal desorption of hazardous organic vapors, J. Environ. Eng. 127(3), 217–223 (2001).
  • L. Luo, D. Ramirez, M. J. Rood, G. Grevillot, K. J. Hay, and D. L. Thurston, Adsorption and electrothermal desorption of organic vapors using activated carbon adsorbents with novel morphologies, Carbon N. Y. 44(13), 2715–2723 (2006).
  • A. Nakayama, K. Suzuki, T. Enoki, K-i Koga, M. Endo, and N. Shindo, Electronic and magnetic properties of activated carbon fibers, Bull. Chem. Soc. Jpn. 69(2), 333–339 (1996).
  • A. W. P. Fung, A. M. Rao, K. Kuriyama, M. S. Dresselhaus, G. Dresselhaus, M. Endo, and N. Shindo, Raman scattering and electrical conductivity in highly disordered activated carbon fibers, J. Mater. Res. 8(3), 489–500 (1993).
  • Y. Huang, Electrical and thermal properties of activated carbon fibers. In Activated Carbon Fiber and Textiles, J. Y. Chen (ed.), Elsevier Ltd., Cambridge, 181–192 (2017).
  • A. W. P. Fung, M. S. Dresselhaus, and M. Endo, Transport properties near the metal-insulator transition in heat-treated activated carbon fibers, Phys. Rev. B. 48(20), 14953–14962 (1993).
  • M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, and H. A. Goldberg, Graphite Fibers and Filaments, Springer Verlag, Berlin (1988).
  • A. W. P. Fung, A. M. Rao, K. Kuriyama, M. S. Dresselhaus, G. Dresselhaus, and M. Endo, Characterization of activated carbon fibers. In Materials Research Society Symposium Proceedings, Volume 209, Defects in Materials, P. D. Bristowe, J. E. Epperson, J. E. Griffith et al. (eds.), Cambridge University Press, New York, 335–340 (1991).
  • A. W. P. Fung, A. M. Rao, K. Kuriyama, M. S. Dresselhaus, G. Dresselhaus, and M. Endo, Transport properties of heat-treated activated carbon fibers. In Extended Abstracts and Program-Biennial Conference on Carbon, R. A. Meyer (ed.), American Carbon Society, Santa Barbara, 296–297 (1991).
  • B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie, Structural and electrical properties of granular metal films, Adv. Phys. 24(3), 407–461 (1975).
  • M. Kempiński, W. Kempiński, J. Kaszyński, and M. Śliwińska-Bartkowiak, Model of spin localization in activated carbon fibers, Appl. Phys. Lett. 88(14), 143103 (2006).
  • A. W. Fung, Z. H. Wang, M. S. Dresselhaus, G. Dresselhaus, R. W. Pekala, and M. Endo, Coulomb-gap magnetotransport in granular and porous carbon structures, Phys. Rev. B Condens. Matter. 49(24), 17325–17335 (1994).
  • M. Kempiński, W. Kempiński, and M. Śliwińska-Bartkowiak, Influence of guest molecules adsorption on electronic properties of activated carbon fibers, Rev. Adv. Mater. Sci. 12, 72–77 (2006).
  • I. L. Spain, The electronic transport properties of graphite, carbons, and related materials. In Chemistry and Physics of Carbon, P. L. Walker and P. A. Thrower (eds.), Marcel Dekker, New York, 16, 119 (1981).
  • J. Robertson, Amorphous carbon, Adv. Phys. 35(4), 317–374 (1986).
  • B. Kastening, A model of the electronic properties of activated carbon, Ber. Bunsenges. Phys. Chem. 102(2), 229–237 (1998).
  • N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 1st ed., Clarendon Press, Oxford (1971).
  • P. Sheng and J. Klafter, Hopping conductivity in granular disordered systems, Phys. Rev. B. 27(4), 2583–2586 (1983).
  • B. Kastening, M. Hahn, B. Rabanus, M. Heins, and U. Zum Felde, Electronic properties and double layer of activated carbon, Electrochim. Acta. 42(18), 2789–2799 (1997).
  • A. Nakayama, K. Suzuki, T. Enoki, S. L. di Vittorio, M. S. Dresselhaus, K. Koga, M. Endo, and N. Shindo, Magnetic properties of activated carbon fibers, Synth. Met. 57(1), 3736–3741 (1993).
  • S. Lengyel and B. E. Conway, Thermodynamic and transport properties of aqueous and molten electrolytes. In Comprehensive Treatise of Electrochemistry, B. E. Conway, J. O Bockris, and E. Yeager (eds.), Plenum Press, New York, 5, 16–47 (1983).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.