439
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Structural electroactive cermets: dielectric and structural properties of conductive metallic reinforced piezoelectric ceramics

References

  • Wu, X.; Yang, M.; Yuan, F.; Wu, G.; Wei, Y.; Huang, X.; Zhu, Y. Heterogeneous Lamella Structure Unites Ultrafine-Grain Strength with Coarse-Grain Ductility. Proc. Natl. Acad. Sci. USA 2015, 112, 14501.
  • Ritchie, R. O. The Conflicts between Strength and Toughness. Nat. Mater. 2011, 10, 817. doi:10.1038/nmat3115
  • Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications. Science 2014, 345, 1153. doi:10.1126/science.1254581
  • Ashby, M. F.; Bréchet, Y. Designing Hybrid Materials. Acta Mater. 2003, 51, 5801–5821. doi:10.1016/S1359-6454(03)00441-5
  • Barthelat, F. Architectured Materials in Engineering and Biology: Fabrication, Structure, Mechanics and Performance. Int. Mater. Rev. 2015, 60, 413–430. doi:10.1179/1743280415Y.0000000008
  • Kromm, F. X.; Quenisset, J. M.; Harry, R.; Lorriot, T. An Example of Multimaterials Design. Adv. Eng. Mater. 2002, 4, 371–374. doi:10.1002/1527-2648(20020605)4:6<371::AID-ADEM371>3.0.CO;2-R
  • Callister, W. D.; Rethwisch, D. G. Materials Science and Engineering: An Introduction; Wiley: New Jersey, NJ, 2013.
  • Hwang, H. J.; Yasuoka, M.; Sando, M.; Toriyama, M.; Niihara, K. Fabrication, Sinterability, and Mechanical Properties of Lead Zirconate Titanate/Silver Composites. J. Am. Ceram. Soc. 1999, 82, 2417–2422. doi:10.1111/j.1151-2916.1999.tb02099.x
  • Pearce, D. H.; Button, T. W. Processing and Properties of Silver/PZT Composites. Ferroelectrics 1999, 228, 91–98. doi:10.1080/00150199908226128
  • Zhang, H. L.; Li, J. F. Fabrication and Evaluation of PZT/Ag Piezoelectric Composites and Graded Actuator. Key Eng. Mater. 2007, 280–283, 1913–1916. doi:10.4028/www.scientific.net/KEM.280-283.1913
  • Chen, C. Y.; Tuan, W. H. Mechanical and Dielectric Properties of BaTiO3/Ag Composites. J. Mater. Sci. Lett. 1999, 18, 353–354. doi:10.1023/A:1006612129503
  • Panteny, S.; Bowen, C. R.; Stevens, R. Characterisation of Barium Titanate-Silver Composites, Part I: Microstructure and Mechanical Properties. J. Mater. Sci. 2006, 41, 3837–3843. doi:10.1007/s10853-005-5163-x
  • Li, J. F.; Takagi, K.; Terakubo, N.; Watanabe, R. Electrical and Mechanical Properties of Piezoelectric Ceramic/Metal Composites in the Pb(Zr, Ti)O3/Pt System. Appl. Phys. Lett. 2001, 79, 2441–2443. doi:10.1063/1.1403662
  • Xu, N.; Pu, Y.-P.; Wang, B.; Wu, H.-D.; Chen, K. Enhanced Mechanical and Dielectric Behavior of BaTiO3/Cu Composites. Ceram. Int. 2012, 38, 141–146.
  • Halder, N.; Sharma, A. D.; Khan, S. K.; Sen, A.; Maiti, H. S. Effect of Silver Addition on the Dielectric Properties of Barium Titanate Based Low Temperature Processed Capacitors. Mater. Res. Bull. 1999, 34, 545–550. doi:10.1016/S0025-5408(99)00046-X
  • Ren, P.; Fan, H.; Wang, X.; Shi, J. Effects of Silver Addition on Microstructure and Electrical Properties of Barium Titanate Ceramics. J. Alloy. Compd. 2011, 509, 6423–6426. doi:10.1016/j.jallcom.2011.03.077
  • Pecharromán, C.; Moya, J. S. Experimental Evidence of a Giant Capacitance in Insulator-Conductor Composites at the Percolation Threshold. Adv. Mater. 2000, 12, 294–297. doi:10.1002/(SICI)1521-4095(200002)12:4<294::AID-ADMA294>3.0.CO;2-D
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Quantifying the Properties of Low-Cost Powder Metallurgy Titanium Alloys. Mater. Sci. Eng. A 2017, 687, 47–53. doi:10.1016/j.msea.2017.01.049
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Influence of Sintering Parameters on the Properties of Powder Metallurgy Ti-3Al-2.5V Alloy. Mater. Charact. 2013, 84, 48–57. doi:10.1016/j.matchar.2013.07.009
  • Bolzoni, L.; Esteban, P. G.; Ruiz-Navas, E. M.; Gordo, E. Behaviour of Pressed and Sintered Titanium Alloys Obtained from Prealloyed and Blended Elemental Powders. J. Mech. Behav. Biomed. Mater. 2012, 14, 29–38. doi:10.1016/j.jmbbm.2012.05.013
  • Hwang, H. J.; Toriyama, M.; Sekino, T.; Niihara, K. In-Situ Fabrication of Ceramic/Metal Nanocomposites by Reduction Reaction in Barium Titanate-Metal Oxide Systems. J. Eur. Ceram. Soc. 1998, 18, 2193–2199. doi:10.1016/S0955-2219(98)00154-X
  • Bolzoni, L.; Montealegre Meléndez, I.; Ruiz-Navas, E. M.; Gordo, E. Microstructural Evolution and Mechanical Properties of the Ti-6Al-4V Alloy Produced by Vacuum Hot-Pressing. Mater. Sci. Eng. A 2012, 546, 189–197. doi:10.1016/j.msea.2012.03.050
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Influence of Vacuum Hot-Pressing Temperature on the Microstructure and Mechanical Properties of Ti-3Al-2.5V Alloy Obtained by Blended Elemental and Master Alloy Addition Powders. Mater. Chem. Phys. 2012, 137, 608–616. doi:10.1016/j.matchemphys.2012.10.010
  • Qiao, L.; Bi, X. Dielectric Behavior of BaTiO3-Ni Composite Ferroic Films. Appl. Phys. A 2009, 95, 733–738. doi:10.1007/s00339-008-5030-0
  • Sugawara, Y.; Onitsuka, K.; Yoshikawa, S.; Xu, Q.; Newnham, R. E.; Uchino, K. Metal-Ceramic Composite Actuators. J. Am. Ceram. Soc. 1992, 75, 996–998. doi:10.1111/j.1151-2916.1992.tb04172.x
  • Ueno, S.; Sakamoto, Y.; Nakashima, K.; Wada, S. Microstructure and Dielectric Properties of Silver-Barium Titanate Nanocomplex Materials by Wet Chemical Approach. Jpn. J. Appl. Phys. 2014, 53, 09PB05. doi:10.7567/JJAP.53.09PB05
  • Wongsaenmai, S.; Ananta, S.; Yimnirun, R. Effect of Li Addition on Phase Formation Behavior and Electrical Properties of (K0.5Na0.5)NbO3 Lead Free Ceramics. Ceram. Int. 2012, 38, 147–152. doi:10.1016/j.ceramint.2011.06.049
  • Azough, F.; Wegrzyn, M.; Freer, R.; Sharma, S.; Hall, D. Microstructure and Piezoelectric Properties of CuO Added (K, Na, Li)NbO3 Lead-Free Piezoelectric Ceramics. J. Eur. Ceram. Soc. 2011, 31, 569–576. doi:10.1016/j.jeurceramsoc.2010.10.033
  • Bobnar, V.; Hrovat, M.; Holc, J.; Kosec, M. All-Ceramic Lead-Free Percolative Composite with a Colossal Dielectric Response. J. Eur. Ceram. Soc. 2009, 29, 725–729. doi:10.1016/j.jeurceramsoc.2008.07.023
  • Emoto, H.; Hojo, J. Sintering and Dielectric Properties of BaTiO3-Ni Composite Ceramics. Nippon. Seramikkusu. Kyokai. Gakujutsu. Ronbunshi. 1992, 100, 555–559. doi:10.2109/jcersj.100.555
  • Huang, Y.-C.; Chen, S. S.; Tuan, W.-H. Process Window of BaTiO3-Ni Ferroelectric-Ferromagnetic Composites. J. Am. Ceram. Soc. 2007, 90, 1438–1443. doi:10.1111/j.1551-2916.2007.01624.x
  • Wang, B.; Pu, Y.-P.; Xu, N.; Wu, H.-D.; Chen, K. Dielectric Properties of Barium Titanate-Molybdenum Composite. Ceram. Int. 2012, 38, S37–S40. doi:10.1016/j.ceramint.2011.04.044
  • Gonnard, P.; Troccaz, M. Dopant Distribution between a and B Sites in the PZT Ceramics of Type ABO3. J. Solid State Chem. 1978, 23, 321–326. doi:10.1016/0022-4596(78)90080-4
  • Bersuker, I. B. On the Origin of Ferroelectricity in Perovskite-Type Crystals. Phys. Lett. 1966, 20, 589–590. doi:10.1016/0031-9163(66)91127-9
  • Damjanovic, D. Piezoelectric Properties of Perovskite Ferroelectrics: Unsolved Problems and Future Research. Ann. Chim. Sci. Mat. 2001, 26, 99–106. doi:10.1016/S0151-9107(01)90020-0
  • Rödel, J.; Jo, W.; Seifert, K. T. P.; Anton, E.-M.; Granzow, T.; Damjanovic, D. Perspective on the Development of Lead-Free Piezoceramics. J. Am. Ceram. Soc. 2009, 92, 1153–1177. doi:10.1111/j.1551-2916.2009.03061.x
  • Uchino, K. Glory of Piezoelectric Perovskites. Sci. Technol. Adv. Mater. 2015, 16, 046001. doi:10.1088/1468-6996/16/4/046001
  • George, S.; Santha, N. I.; Sebastian, M. T. Percolation Phenomenon in Barium Samarium Titanate-Silver Composite. J. Phys. Chem. Solids 2009, 70, 107–111. doi:10.1016/j.jpcs.2008.09.015
  • Deepa, K. S.; Priyatha, P. L.; Parameswaran, P.; Sebastian, M. T.; James, J. Ba0.7Sr0.3TiO3-Glass-Silver Percolative Composite. Ceram. Int. 2010, 36, 75–78. doi:10.1016/j.ceramint.2009.06.019
  • Sampathkumar, P.; Gowdhaman, P.; Sundaram, S.; Annamalai, V. A Review on PZT-Polymer Composites: Dielectric and Piezoelectric Properties. Nano Vision 2013, 3, 223–230.
  • Moya, J. S.; Lopez-Esteban, S.; Pecharromán, C. The Challenge of Ceramic/Metal Microcomposites and Nanocomposites. Prog. Mater. Sci. 2007, 52, 1017–1090. doi:10.1016/j.pmatsci.2006.09.003
  • Halasyamani, P. S.; Poeppelmeier, K. R. Noncentrosymmetric Oxides. Chem. Mater. 1998, 10, 2753–2769. doi:10.1021/cm980140w
  • Waser, R. Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices; Wyley-VCCH: Weinheim, Germany, 2012.
  • Mitchell, R. H. Perovskites: Modern and Ancient; Almaz Press: Thunder Bay, Canada, 2002.
  • Costa, L. C.; Henry, F.; Valente, M. A.; Mendiratta, S. K.; Sombra, A. S. Electrical and Dielectrical Properties of the Percolating System Polystyrene/Polypyrrole Particles. Eur. Polym. J. 2002, 38, 1495–1499. doi:10.1016/S0014-3057(02)00044-7
  • Hyuga, H.; Hayashi, Y.; Sekino, T.; Niihara, K. Fabrication Process and Electrical Properties of BaTiO3-Ni Nanocomposites. Nanostruct. Mater. 1997, 9, 547–550. doi:10.1016/S0965-9773(97)00121-9
  • Singh, V.; Tiwari, A. N.; Kulkarni, A. R. Electrical Behaviour of Attritor Processed Al/PMMA Composites. Mater. Sci. Eng. B 1996, 41, 310–313. doi:10.1016/S0921-5107(96)01897-1
  • Ardi, M. S.; Dick, W.; McQueen, D. H. Dielectric Properties of Epoxy-Barium Titanate-Carbon Black Composites. Plast. Rubber Compos. Process. Appl. 1995, 24, 157–164.
  • Zhang, H.; Li, J. F.; Zhang, B.-P. Sintering and Piezoelectric Properties of Co-Fired Lead Zirconate Titanate/Ag Composites. J. Am. Ceram. Soc. 2006, 89, 1300–1307. doi:10.1111/j.1551-2916.2005.00849.x
  • Duan, N.; ten Elshof, J. E.; Verweij, H.; Greuel, G.; Dannapple, O. Enhancement of Dielectric and Ferroelectric Properties by Addition of Pt Particles to a Lead Zirconate Titanate Matrix. Appl. Phys. Lett. 2000, 77, 3263–3265. doi:10.1063/1.1325405
  • Panteny, S.; Bowen, C. R.; Stevens, R. Characterisation of Barium Titanate-Silver Composites Part II: Electrical Properties. J. Mater. Sci. 2006, 41, 3845–3851. doi:10.1007/s10853-005-5162-y
  • Narita, F.; Fox, M. A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Adv. Eng. Mater. 2018, 20, 1700743. doi:10.1002/adem.201700743
  • Markets and Markets. Piezoelectric Devices Market worth 31.33 Billion USD by 2022. https://wwwmarketsandmarketscom/PressReleases/piezoelectric-devicesasp (accessed November 2018).
  • Jaffe, B.; Cook, W. R.; Jaffe, H. Properties of PbTiO3, PbZrO3, PbSnO3, and PbHfO3 Plain and Modified. In Piezoelectric Ceramics, Jaffe, B., Cook, W. R., Jaffe, H., Eds. London: Academic Press, 1971; pp 115–134.
  • Newnham, R. E. Molecular Mechanisms in Smart Materials. MRS Bull. 1997, 22, 20–34. doi:10.1557/S0883769400033170
  • Damjanovic, D.; Klein, N.; Li, J.; Porokhonskyy, V. What Can Be Expected from Lead-Free Piezoelectric Materials? Funct. Mater. Lett. 2010, 03, 5–13. doi:10.1142/S1793604710000919
  • Megaw, H. D. Origin of Ferroelectricity in Barium Titanate and Other Perovskite-Type Crystals. Acta Cryst. 1952, 5, 739–749. doi:10.1107/S0365110X52002069
  • Harwood, M. G.; Popper, P.; Rushman, D. F. Curie Point of Barium Titanate. Nature 1947, 160, 58. doi:10.1038/160058a0
  • EU-Directive 2011/65/EU. Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS). Official J. Eur. Union 2011, 54, 88–98.
  • EU-Directive 2012/19/EU. Waste Electrical and Electronic Equipment (WEEE). Official J. Eur. Union 2012, 55, 38–52.
  • Panda, P. K.; Sahoo, B. PZT to Lead Free Piezo Ceramics: A Review. Ferroelectrics 2015, 474, 128–143. doi:10.1080/00150193.2015.997146
  • Lin, Y.; Nan, C.-W.; Wang, J.; Liu, G.; Wu, J.; Cai, N. Dielectric Behavior of Na0.5Bi0.5TiO3-Based Composites Incorporating Silver Particles. J. Am. Ceram. Soc. 2004, 87, 742–745. doi:10.1111/j.1551-2916.2004.00742.x
  • Huang, J.; Cao, Y.; Hong, M.; Du, P. Ag-Ba0.75Sr0.25TiO3 Composites with Excellent Dielectric Properties. Appl. Phys. Lett. 2008, 92, 022911. doi:10.1063/1.2836764
  • Cho, W. W.; Kagomiya, I.; Kakimoto, K.-I.; Ohsato, H. Paraelectric Ceramics/Metal Dual Composites SrTiO3/Pt System with Giant Relative Permittivity. Appl. Phys. Lett. 2006, 89, 152905. doi:10.1063/1.2361176
  • Zhao, G.-L.; Zhang, H.; Zhang, B. P.; Li, J. F. Sintering and Electrical Properties of Cu-Particle-Dispersed (Na,K,Li)NbO3. Ceram. Int. 2010, 36, 583–587. doi:10.1016/j.ceramint.2009.09.031
  • Zhang, H.; Yang, S.; Zhang, B.-P.; Li, J.-F. Electrical Properties of Ni-Particle-Dispersed Alkaline Niobate Composites Sintered in a Protective Atmosphere. Mater. Chem. Phys. 2010, 122, 237–240. doi:10.1016/j.matchemphys.2010.02.041
  • Zheng, T.; Wu, J.; Xiao, D.; Zhu, J. Recent Development in Lead-Free Perovskite Piezoelectric Bulk Materials. Prog. Mater. Sci. 2018, 98, 552–624. doi:10.1016/j.pmatsci.2018.06.002
  • Rödel, J.; Webber, K. G.; Dittmer, R.; Jo, W.; Kimura, M.; Damjanovic, D. Transferring Lead-Free Piezoelectric Ceramics into Application. J. Eur. Ceram. Soc. 2015, 35, 1659–1681. doi:10.1016/j.jeurceramsoc.2014.12.013
  • Schlag, S.; Eicke, H.-F. Size Driven Phase Transition in Nanocrystalline BaTiO3. Solid State Commun. 1994, 91, 883–887. doi:10.1016/0038-1098(94)90007-8
  • Fiedziuszko, S. J.; Hunter, I. C.; Itoh, T.; Kobayashi, Y.; Nishikawa, T.; Stitzer, S. N.; Wakino, K. Dielectric Materials, Devices, and Circuits. IEEE Trans. Microwave Theory Tech. 2002, 50, 706–720. doi:10.1109/22.989956
  • Ye, Z.-G. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials; Woodhead Publishing: Cambridge, UK, 2008.
  • Randall, C. A.; Kelnberger, A.; Yang, G. Y.; Eitel, R. E.; Shrout, T. R. High Strain Piezoelectric Multilayer Actuators - A Material Science and Engineering Challenge. J. Electroceram. 2005, 14, 177–191. doi:10.1007/s10832-005-0956-5
  • Uchino, K. Materials Issues in Design and Performance of Piezoelectric Actuators: An Overview. Acta Mater. 1998, 46, 3745–3753. doi:10.1016/S1359-6454(98)00102-5
  • Mamunya, E. P.; Davidenko, V. V.; Lebedev, E. V. Percolation Conductivity of Polymer Composites Filled with Dispersed Conductive Filler. Polym. Compos. 1995, 16, 319–324. doi:10.1002/pc.750160409
  • Zou, J.-F.; Yu, Z.-Z.; Pan, Y.-X.; Fang, X.-P.; Ou, Y.-C. Conductive Mechanism of Polymer/Graphite Conducting Composites with Low Percolation Threshold. J. Polym. Sci. B Polym. Phys. 2002, 40, 954–963. doi:10.1002/polb.10141
  • McLachlan, D. S.; Blaszkiewicz, M.; Newnham, R. E. Electrical Resistivity of Composites. J. Am. Ceram. Soc. 1990, 73, 2187–2203. doi:10.1111/j.1151-2916.1990.tb07576.x
  • R¨Ímská, Z.; Křuesálek, V.; S¨Pac¨Ek, J.; AC Conductivity of Carbon Fiber-Polymer Matrix Composites at the Percolation Threshold. Polym. Compos. 2002, 23, 95–103.
  • Pecharromán, C.; Iglesias, J. E. Effective Dielectric Properties of Packed Mixtures of Insulator Particles. Phys. Rev. B 1994, 49, 7137–7147. doi:10.1103/PhysRevB.49.7137
  • Brouers, F.; Clerc, J. P.; Giraud, G.; Laugier, J. M.; Randriamantany, Z. A. Dielectric and Optical Properties Close to the Percolation Threshold II. Phys. Rev. B 1993, 47, 666–673. doi:10.1103/PhysRevB.47.666
  • Li, M.; Ober, C. K. Block Copolymer Patterns and Templates. Mater. Today 2006, 9, 30–39. doi:10.1016/S1369-7021(06)71620-0
  • Tseng, Y.-C.; Darling, S. B. Block Copolymer Nanostructures for Technology. Polymers 2010, 2, 470. doi:10.3390/polym2040470
  • Nan, C.-W.; Shen, Y.; Ma, J. Physical Properties of Composites near Percolation. Annu. Rev. Mater. Res. 2010, 40, 131–151. doi:10.1146/annurev-matsci-070909-104529
  • Stauffer, D. Scaling Theory of Percolation Clusters. Phys. Rep. 1979, 54, 1–74. doi:10.1016/0370-1573(79)90060-7
  • Guichard, J. L.; Tillement, O.; Mocellin, A. Alumina-Chromium Cermets by Hot-Pressing of Nanocomposite Powders. J. Eur. Ceram. Soc. 1998, 18, 1743–1752. doi:10.1016/S0955-2219(98)00009-0
  • Song, Y.; Noh, T. W.; Lee, S.-I.; Gaines, J. R. Experimental Study of the Three-Dimensional AC Conductivity and Dielectric Constant of a Conductor-Insulator Composite near the Percolation Threshold. Phys. Rev. B 1986, 33, 904–908. doi:10.1103/PhysRevB.33.904
  • McLachlan, D. S. A Grain Consolidation Model for the Critical or Percolation Volume Fraction in Conductor-Insulator Mixtures. J. Appl. Phys. 1991, 70, 3681–3682. doi:10.1063/1.349216
  • Efros, A. L.; Shklovskii, B. I. Critical Behaviour of Conductivity and Dielectric Constant near the Metal-Non-Metal Transition Threshold. Phys. Stat. Sol. 1976, 76, 475–485. doi:10.1002/pssb.2220760205
  • Xu, N.; Pu, Y.-P.; Wang, B.; Wu, H.-D.; Chen, K. Microstructure and Electrical Properties of BaTiO3/Cu Ceramic Composite Sintered in Nitrogen Atmosphere. Ceram. Int. 2012, 38, S249–S253. doi:10.1016/j.ceramint.2011.04.094
  • Nan, C.-W. Physics of Inhomogeneous Inorganic Materials. Prog. Mater. Sci. 1993, 37, 1–116. doi:10.1016/0079-6425(93)90004-5
  • George, S.; Sebastian, M. T. Three-Phase Polymer-Ceramic-Metal Composite for Embedded Capacitor Applications. Compos. Sci. Technol. 2009, 69, 1298–1302. doi:10.1016/j.compscitech.2009.03.003
  • Stauffer, D. Introduction to Percolation Theory; Taylor and Francis: London, 1982.
  • Bunde, A.; Kantelhardt, J. W. Diffusion and Conduction in Percolation Systems. In Diffusion in Condensed Matter: Methods, Materials, Models; Heitjans, P., Kärger, J., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp 895–914.
  • Kirkpatrick, S. Percolation and Conduction. Rev. Mod. Phys. 1973, 45, 574–588. doi:10.1103/RevModPhys.45.574
  • Feng, S.; Halperin, B. I.; Sen, P. N. Transport Properties of Continuum Systems near the Percolation Threshold. Phys. Rev. B 1987, 35, 197–214. doi:10.1103/PhysRevB.35.197
  • Heaney, M. B. Measurement and Interpretation of Nonuniversal Critical Exponents in Disordered Conductor-Insulator Composites. Phys. Rev. B 1995, 52, 12477–12480. doi:10.1103/PhysRevB.52.12477
  • Stauffer, D.; Zabolitzky, J. G. Re-Examination of 3D Percolation Threshold Estimates. J. Phys. A: Math. Gen. 1986, 19, 3705. doi:10.1088/0305-4470/19/17/034
  • Kwan, S. H.; Shin, F. G.; Tsui, W. L. Dielectric Constant of Silver-Thermosetting Polyester Composites. J. Mater. Sci. 1984, 19, 4093–4098. doi:10.1007/BF00980776
  • Prabhakaran, K.; Raghunath, S.; Melkeri, A.; Jayasingh, M. E.; Durgaprasad, C.; Gokhale, N. M. Preparation of PZT Microtubes by Slip Casting on Vermicelli, Followed by in Situ Polymerization. Int. J. Appl. Ceram. Technol. 2009, 7, 409–414. doi:10.1111/j.1744-7402.2009.02361.x
  • Chen, H.-J.; Chen, Y. W. Hydrothermal Synthesis of Barium Titanate. Ind. Eng. Chem. Res. 2003, 42, 473–483. doi:10.1021/ie010796q
  • Linardos, S.; Zhang, Q.; Alcock, J. R. Preparation of Sub-Micron PZT Particles with the Sol-Gel Technique. J. Eur. Ceram. Soc. 2006, 26, 117–123. doi:10.1016/j.jeurceramsoc.2004.10.007
  • Gómez-Yáñez, C.; Balmori-Ramı́rez, H.; Martı́nez, F.; Colloidal Processing of BaTiO3 Using Ammonium Polyacrylate as Dispersant. Ceram. Int. 2000, 26, 609–616. doi:10.1016/S0272-8842(99)00105-4
  • Rahaman, M. N. Ceramics Processing and Sintering; Taylor and Francis: Boca Raton, FL, 1995.
  • German, R. M. Powder Metallurgy Science, 2nd ed.; MPIF - Metal Powder Industries Federation: Princeton, NJ, 1994.
  • German, R. M. Sintering Theory and Practice; Wiley: New Jersey, NJ, 1996.
  • Bolzoni, L.; Esteban, P. G.; Ruiz-Navas, E. M.; Gordo, E. Mechanical Behaviour of Pressed and Sintered Titanium Alloys Obtained from Master Alloy Addition Powders. J. Mech. Behav. Biomed. Mater. 2012, 15, 33–45. doi:10.1016/j.jmbbm.2012.05.019
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Flexural Properties, Thermal Conductivity and Electrical Resistivity of Prealloyed and Master Alloy Addition Powder Metallurgy Ti-6Al-4V. Mater. Des. 2013, 52, 888–895. doi:10.1016/j.matdes.2013.06.036
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Powder Metallurgy CP-Ti Performances: Hydride-Dehydride vs. sponge. Mater. Des. 2014, 60, 226–232. doi:10.1016/j.matdes.2014.04.005
  • Bolzoni, L.; Weissgaerber, T.; Kieback, B.; Ruiz-Navas, E. M.; Gordo, E. Mechanical Behaviour of Pressed and Sintered CP Ti and Ti-6Al-7Nb Alloy Obtained from Master Alloy Addition Powder. J. Mech. Behav. Biomed. Mater. 2013, 20, 149–161. doi:10.1016/j.jmbbm.2012.08.022
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Investigation of the Factors Influencing the Tensile Behaviour of PMTi-3Al-2.5V Alloy. Mater. Sci. Eng. A 2014, 609, 266–272. doi:10.1016/j.msea.2014.05.017
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Understanding the Properties of Low-Cost Iron-Containing Powder Metallurgy Titanium Alloys. Mater. Des. 2016, 110, 317–323. doi:10.1016/j.matdes.2016.08.010
  • Suryanarayana, C. Mechanical Alloying and Milling. Prog. Mater. Sci. 2001, 46, 1–184. doi:10.1016/S0079-6425(99)00010-9
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Evaluation of the Mechanical Properties of Powder Metallurgy Ti-6Al-7Nb Alloy. J. Mech. Behav. Biomed. Mater. 2017, 67, 110–116. doi:10.1016/j.jmbbm.2016.12.005
  • Bolzoni, L.; Herraiz, E.; Ruiz-Navas, E. M.; Gordo, E. Study of the Properties of Low-Cost Powder Metallurgy Titanium Alloys by 430 Stainless Steel Addition. Mater. Des. 2014, 60, 628–636. doi:10.1016/j.matdes.2014.04.019
  • Bolzoni, L.; Ruiz-Navas, E. M.; Gordo, E. Feasibility Study of the Production of Biomedical Ti-6Al-4V Alloy by Powder Metallurgy. Mater. Sci. Eng. C 2015, 49, 400–407. doi:10.1016/j.msec.2015.01.043
  • Hwang, H. J.; Watari, K.; Sando, M.; Toriyama, M.; Niihara, K. Low-Temperature Sintering and High-Strength Pb(Zr,Ti)O3-Matrix Composites Incorporating Silver Particles. J. Am. Ceram. Soc. 1997, 80, 791–793. doi:10.1111/j.1151-2916.1997.tb02901.x
  • Hwang, H. J.; Nagai, T.; Ohji, T.; Sando, M.; Toriyama, M.; Niihara, K. Curie Temperature Anomaly in Lead Zirconate Titanate/Silver Composites. J. Am. Ceram. Soc. 2005, 81, 709–712. doi:10.1111/j.1151-2916.1998.tb02394.x
  • Zhang, H. L.; Li, J. F.; Zhang, B. P.; Jiang, W. Enhanced Mechanical Properties in Ag-Particle-Dispersed PZT Piezoelectric Composites for Actuator Applications. Mater. Sci. Eng. A 2008, 498, 272–277. doi:10.1016/j.msea.2008.07.073
  • Xiang, P.-H.; Dong, X.-L.; Feng, C.-D.; Liang, R.-H.; Wang, Y.-L. Dielectric Behavior of Lead Zirconate Titanate/Silver Composites. Mater. Chem. Phys. 2006, 97, 410–414. doi:10.1016/j.matchemphys.2005.08.034
  • Hwang, H. J.; Tajima, K.-I.; Sando, M.; Toriyama, M.; Niihara, K. Fatigue Behavior of PZT-Based Nanocomposites with Fine Platinum Particles. J. Am. Ceram. Soc. 1998, 81, 3325–3328. doi:10.1111/j.1151-2916.1998.tb02776.x
  • Hwang, H. J.; Tajima, K.-I.; Sando, M.; Toriyama, M.; Niihara, K. Microstructure and Mechanical Properties of Lead Zirconate Titanate (PZT) Nanocomposites with Platinum Particles. Nippon. Seramikkusu. Kyokai. Gakujutsu. Ronbunshi. 2000, 108, 339–344. doi:10.2109/jcersj.108.1256_339
  • Takagi, K.; Li, J. F.; Yokoyama, S.; Watanabe, R. Fabrication and Evaluation of PZT/Pt Piezoelectric Composites and Functionally Graded Actuators. J. Eur. Ceram. Soc. 2003, 23, 1577–1583. doi:10.1016/S0955-2219(02)00407-7
  • Fang, M. H.; Pan, W.; Wang, R. G.; Cao, Z. Z.; Chen, J.; Hou, L. K. Fabrication of Cu/PZT Functionally Graded Actuators by Spark Plasma Sintering. Mater. Sci. Forum 2003, 423–425, 423–426. doi:10.4028/www.scientific.net/MSF.423-425.423
  • Chen, C.-Y.; Tuan, W.-H. Effect of Silver on the Sintering and Grain-Growth Behavior of Barium Titanate. J. Am. Ceram. Soc. 2000, 83, 2988–2992. doi:10.1111/j.1151-2916.2000.tb01671.x
  • Chen, R. Z.; Wang, X.; Gui, Z. L.; Li, L. T. Effect of Silver Addition on the Dielectric Properties of Barium Titanate-Based X7R Ceramics. J. Am.Ceram. Soc. 2003, 86, 1022–1024. doi:10.1111/j.1151-2916.2003.tb03412.x
  • Panteny, S.; Stevens, R.; Bowen, C. R. Characterisation and Modelling of Barium Titanate-Silver Composites. Integr. Ferroelectr. 2004, 63, 131–135. doi:10.1080/10584580490459215
  • Kuga, Y.; Lee, S.-W.; Taya, M.; Almajid, A.; Lee, S.; Li, J.-F. Experimental and Numerical Studies of Dielectric Properties of BaTiO3-Platinum Composites at Microwave Frequencies. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 827–834.
  • Yoon, S.; Dornseiffer, J.; Xiong, Y.; Grüner, D.; Shen, Z.; Iwaya, S.; Pithan, C.; Waser, R. Synthesis, Spark Plasma Sintering and Electrical Conduction Mechanism in BaTiO3-Cu Composites. J. Eur. Ceram. Soc. 2011, 31, 773–782. doi:10.1016/j.jeurceramsoc.2010.11.012
  • Xu, N.; Pu, Y.-P.; Wang, Z. Large Dielectric Constant and Maxwell-Wagner Effects in BaTiO3/Cu Composites. J. Am. Ceram. Soc. 2012, 95, 999–1003. doi:10.1111/j.1551-2916.2011.04895.x
  • Pecharromán, C.; Esteban-Betegón, F.; Bartolomé, J. F.; López-Esteban, S.; Moya, J. S. New Percolative BaTiO3-Ni Composites with a High and Frequency-Independent Dielectric Constant (ϵr ≈ 80000). Adv. Mater. 2001, 13, 1541–1544. doi:10.1002/1521-4095(200110)13:20<1541::AID-ADMA1541>3.0.CO;2-X
  • Chen, R. Z.; Wang, X.; Wen, H.; Li, L. T.; Gui, Z. L. Enhancement of Dielectric Properties by Additions of Ni Nano-Particles to a X7R-Type Barium Titanate Ceramic Matrix. Ceram. Int. 2004, 30, 1271–1274. doi:10.1016/j.ceramint.2003.12.049
  • Chen, Z.; Huang, J.; Chen, Q.; Song, C.; Han, G.; Weng, W.; Du, P. A Percolative Ferroelectric-Metal Composite with Hybrid Dielectric Dependence. Scr. Mater. 2007, 57, 921–924. doi:10.1016/j.scriptamat.2007.07.020
  • Huang, Y.-C.; Tuan, W.-H. Solubility of Ni in BaTiO3 during Co-Firing. J. Electroceram. 2007, 18, 183–188. doi:10.1007/s10832-007-9022-9
  • Tuan, W.-H.; Huang, Y.-C. High Percolative BaTiO3-Ni Nanocomposites. Mater. Chem. Phys. 2009, 118, 187–190. doi:10.1016/j.matchemphys.2009.07.029
  • Tuan, W. H.; Chen, S. S. Processing and Properties of BaTiO3-Ni Ferroelectric-Ferromagnetic Composites. Ferroelectrics 2009, 381, 167–175. doi:10.1080/00150190902876090
  • Sánchez-Jiménez, P. E.; Pérez-Maqueda, L. A.; Diánez, M. J.; Perejón, A.; Criado, J. M. Mechanochemical Preparation of BaTiO3-Ni Nanocomposites with High Dielectric Constant. Compos. Struct. 2010, 92, 2236–2240. doi:10.1016/j.compstruct.2009.08.011
  • Yoon, S.; Dornseiffer, J.; Schneller, T.; Hennings, D.; Iwaya, S.; Pithan, C.; Waser, R. Percolative BaTiO3-Ni Composite Nanopowders from Alkoxide-Mediated Synthesis. J. Eur. Ceram. Soc. 2010, 30, 561–567. doi:10.1016/j.jeurceramsoc.2009.06.024
  • Yoon, S.; Pithan, C.; Waser, R.; Dornseiffer, J.; Xiong, Y.; Grüner, D.; Shen, Z.; Iwaya, S. Electronic Conduction Mechanisms in BaTiO3-Ni Composites with Ultrafine Microstructure Obtained by Spark Plasma Sintering. J. Am. Ceram. Soc. 2010, 93, 4075–4080. doi:10.1111/j.1551-2916.2010.04011.x
  • Saleem, M.; Kim, I. S.; Song, J. S.; Jeong, S. J.; Kim, M. S.; Yoon, S. Synthesis, Sintering and Dielectric Properties of a BaTiO3-Ni Composite. Ceram. Int. 2014, 40, 7329–7335. doi:10.1016/j.ceramint.2013.12.075
  • Saleem, M.; Song, J. S.; Jeong, S. J.; Kim, M. S.; Yoon, S.; Kim, I. S. Dielectric Response on Microwave Sintered BaTiO3 Composite with Ni Nanopowder and Paste. Mater. Res. Bull. 2015, 64, 380–385. doi:10.1016/j.materresbull.2015.01.024
  • Valant, M.; Dakskobler, A.; Ambrozic, M.; Kosmac, T. Giant Permittivity Phenomena in Layered BaTiO3-Ni Composites. J. Eur. Ceram. Soc. 2006, 26, 891–896. doi:10.1016/j.jeurceramsoc.2004.12.034
  • Lee, J. H.; Kim, H.-K.; Lee, S.-H.; Choi, K.; Lee, Y.-H. Effect of Zn Filler for Percolative BaTiO3/Zn Composite Films Fabricated by Aerosol Deposition. Ceram. Int. 2015, 41, 12153–12157. doi:10.1016/j.ceramint.2015.06.034
  • Xiang, P.-H.; Kinemuchi, Y.; Watari, K. Enhanced Dielectric Properties of Bismuth Titanate/Silver Composites. J. Electroceram. 2006, 17, 861–865. doi:10.1007/s10832-006-5411-8
  • George, S.; James, J.; Sebastian, M. T. Giant Permittivity of a Bismuth Zinc Niobate-Silver Composite. J. Am. Ceram. Soc. 2007, 90, 3522–3528. doi:10.1111/j.1551-2916.2007.01935.x
  • Cho, W. W.; Kagomiya, I.; Kakimoto, K.-I.; Hitoshi, O. Frequency Dependence of Dielectric Properties of Metallodielectric SrTiO3-Pt Composites. J. Eur. Ceram. Soc. 2007, 27, 2907–2910. doi:10.1016/j.jeurceramsoc.2006.11.052
  • Zhang, H.; Yang, S.; Yang, S.; Kong, D.; Zhang, B. P.; Zhang, Y. Reliability Enhancement in Nickel-Particle-Dispersed Alkaline Niobate Piezoelectric Composites and Actuators. J. Eur. Ceram. Soc. 2011, 31, 795–800. doi:10.1016/j.jeurceramsoc.2010.11.025
  • Tuichai, W.; Somjid, S.; Putasaeng, B.; Yamwong, T.; Chompoosor, A.; Thongbai, P.; Amornkitbamrung, V.; Maensiri, S. Dramatically Enhanced Non-Ohmic Properties and Maximum Stored Energy Density in Ceramic-Metal Nanocomposites: CaCu3Ti4O12/Au Nanoparticles. Nanoscale Res. Lett. 2013, 8, 494. doi:10.1186/1556-276X-8-494
  • Bolzoni, L.; Ruiz-Navas, E. M.; Neubauer, E.; Gordo, E. Mechanical Properties and Microstructural Evolution of Vacuum Hot-Pressed Titanium and Ti-6Al-7Nb Alloy. J. Mech. Behav. Biomed. Mater. 2012, 9C, 91–99. doi:10.1016/j.jmbbm.2012.01.015
  • Bolzoni, L.; Ruiz-Navas, E. M.; Neubauer, E.; Gordo, E. Inductive Hot-Pressing of Titanium and Titanium Alloy Powders. Mater. Chem. Phys. 2012, 131, 672–679. doi:10.1016/j.matchemphys.2011.10.034
  • Kulcsar, F. A Microstructure Study of Barium Titanate Ceramics. J. Am. Ceram. Soc. 1956, 39, 13–17. doi:10.1111/j.1151-2916.1956.tb15591.x
  • Caballero, A. C.; Nieto, E.; Duran, P.; Moure, C.; Kosec, M.; Samardzija, Z.; Drazic, G. Ceramic-Electrode Interaction in PZT and PNN-PZT Multilayer Piezoelectric Ceramics with Ag/Pd 70/30 Inner Electrode. J. Mater. Sci. 1997, 32, 3257–3262.
  • Zuo, R.; Li, L.; Zhang, N.; Gui, Z. Interfacial Reaction of Ag/Pd Metals with Pb-Based Relaxor Ferroelectrics Including Additives. Ceram. Int. 2001, 27, 85–89. doi:10.1016/S0272-8842(00)00046-8
  • Maher, G. H. Effect of Silver Doping on the Physical and Electrical Properties of PLZT Ceramics. J. Am. Ceram. Soc. 1983, 66, 408–413. doi:10.1111/j.1151-2916.1983.tb10071.x
  • Shih, S.-J.; Tuan, W.-H. Solubility of Silver and Palladium in BaTiO3. J. Am. Ceram. Soc. 2004, 87, 401–407. doi:10.1111/j.1551-2916.2004.00401.x
  • Hiroshi, I.; Shigeru, H. Electrical Properties of Ag-Doped Barium Titanate Ceramics. Jpn. J. Appl. Phys. 1965, 4, 328.
  • Sato, Y.; Kanai, H.; Yamashita, Y. Effects of Silver and Palladium Doping on the Dielectric Properties of 0.9Pb(Mg1/3Nb2/3)O3-0.1 PbTiO3 Ceramic. J. Am. Ceram. Soc. 1996, 79, 261–265. doi:10.1111/j.1151-2916.1996.tb07907.x
  • Cao, J. L.; Wang, X. H.; Zhang, N. X.; Li, L. T. Direct Current-Voltage Failure of Lead-Based Relaxor Ferroelectrics with Silver Doping. J. Am. Ceram. Soc. 2003, 86, 1856–1860. doi:10.1111/j.1151-2916.2003.tb03572.x
  • Rubin, Z.; Sunshine, S. A.; Heaney, M. B.; Bloom, I.; Balberg, I. Critical Behavior of the Electrical Transport Properties in a Tunneling-Percolation System. Phys. Rev. B 1999, 59, 12196–12199. doi:10.1103/PhysRevB.59.12196
  • Toker, D.; Azulay, D.; Shimoni, N.; Balberg, I.; Millo, O. Tunneling and Percolation in Metal-Insulator Composite Materials. Phys. Rev. B 2003, 68, 041403. doi:10.1103/PhysRevB.68.041403
  • Balberg, I.; Azulay, D.; Toker, D.; Millo, O. Percolation and Tunneling in Composite Materials. Int. J. Mod. Phys. B 2004, 18, 2091–2121. doi:10.1142/S0217979204025336
  • Dang, Z. M.; Shen, Y.; Nan, C. W. Dielectric Behavior of Three-Phase Percolative Ni-BaTiO3/Polyvinylidene Fluoride Composites. Appl. Phys. Lett. 2002, 81, 4814–4816. doi:10.1063/1.1529085
  • Huang, C.; Zhang, Q. Enhanced Dielectric and Electromechanical Responses in High Dielectric Constant All-Polymer Percolative Composites. Adv. Funct. Mater. 2004, 14, 501–506. doi:10.1002/adfm.200305021
  • Bergman, D. J.; Imry, Y. Critical Behavior of the Complex Dielectric Constant near the Percolation Threshold of a Heterogeneous Material. Phys. Rev. Lett. 1977, 39, 1222–1225. doi:10.1103/PhysRevLett.39.1222
  • Glaum, J.; Hoffman, M. Electric Fatigue of Lead-Free Piezoelectric Materials. J. Am. Ceram. Soc. 2014, 97, 665–680. doi:10.1111/jace.12811
  • Nawa, M.; Sekino, T.; Niihara, K. Fabrication and Mechanical Behaviour of Al2O3/Mo Nanocomposites. J. Mater. Sci. 1994, 29, 3185–3192. doi:10.1007/BF00356661
  • Sekino, T.; Niihara, K. Microstructural Characteristics and Mechanical Properties for Al2O3/Metal Nanocomposites. Nanostruct. Mater. 1995, 6, 663–666. doi:10.1016/0965-9773(95)00145-X
  • Tuan, W. H.; Liu, S. M.; Ho, C. J.; Lin, C. S.; Yang, T. J.; Zhang, D. M. Preparation of Al2O3-ZrO2-Ni Nanocomposite by Pulse Electric Current and Pressureless Sintering. J. Eur. Ceram. Soc. 2005, 25, 3125–3133. doi:10.1016/j.jeurceramsoc.2004.07.001
  • Slinkina, M. V.; Dontsov, G. I.; Zhukovsky, V. M. Diffusional Penetration of Silver from Electrodes into PZT Ceramics. J. Mater. Sci. 1993, 28, 5189–5192. doi:10.1007/BF00570062
  • Guha, J. P.; Hong, D. J.; Anderson, H. U. Effect of Excess PbO on the Sintering Characteristics and Dielectric Properties of Pb(Mg1/3Nb2/3)O3-PbTiO3-Based Ceramics. J. Am. Ceram. Soc. 1988, 71, C-152–4. doi:10.1111/j.1151-2916.1988.tb05038.x
  • Song, B.-M.; Kim, D.-Y.; Shirasaki, S.-I.; Yamamura, H. Effect of Excess PbO on the Densification of PLZT Ceramics. J. Am. Ceram. Soc. 1989, 72, 833–836. doi:10.1111/j.1151-2916.1989.tb06226.x
  • Tuan, W.-H.; Chen, W.-R. Mechanical Properties of Alumina-Zirconia-Silver Composites. J. Am. Ceram. Soc. 1995, 78, 465–469. doi:10.1111/j.1151-2916.1995.tb08825.x
  • Erdogan, F.; Joseph, P. F. Toughening of Ceramics through Crack Bridging by Ductile Particles. J. Am. Ceram. Soc. 1989, 72, 262–270. doi:10.1111/j.1151-2916.1989.tb06112.x
  • Cheng, C.-C.; Hsieh, T.-E.; Lin, I. N. Microwave Dielectric Properties of Glass-Ceramic Composites for Low Temperature Co-Firable Ceramics. J. Eur. Ceram. Soc. 2003, 23, 2553–2558. doi:10.1016/S0955-2219(03)00166-3
  • Pohanka, R. C.; Freiman, S. W.; Bender, B. A. Effect of the Phase Transformation on the Fracture Behavior of BaTiO3. J. Am. Ceram. Soc. 1978, 61, 72–75. doi:10.1111/j.1151-2916.1978.tb09234.x
  • Pohanka, R. C.; Rice, R. W.; Walker, B. E. Effect of Internal Stress on the Strength of BaTiO3. J. Am. Ceram. Soc. 1976, 59, 71–74. doi:10.1111/j.1151-2916.1976.tb09394.x
  • Zhu, X.; Meng, Z. Operational Principle, Fabrication and Displacement Characteristics of a Functionally Gradient Piezoelectric Ceramic Actuator. Sens. Actuators A Phys. 1995, 48, 169–176. doi:10.1016/0924-4247(95)00996-5
  • Wu, C. C. M.; Kahn, M.; Moy, W. Piezoelectric Ceramics with Functional Gradients: A New Application in Material Design. J. Am. Ceram. Soc. 2005, 79, 809–812. doi:10.1111/j.1151-2916.1996.tb07951.x
  • Corker, D. L.; Whatmore, R. W.; Ringgaard, E.; Wolny, W. W. Liquid-Phase Sintering of PZT Ceramics. J. Eur. Ceram. Soc. 2000, 20, 2039–2045. doi:10.1016/S0955-2219(00)00089-3
  • Fang, T.-T.; Hsieh, H.-L.; Shiau, F.-S. Effects of Pore Morphology and Grain Size on the Dielectric Properties and Tetragonal-Cubic Phase Transition of High-Purity Barium Titanate. J. Am. Ceram. Soc. 1993, 76, 1205–1211. doi:10.1111/j.1151-2916.1993.tb03742.x
  • Arlt, G.; Hennings, D.; de With, G. Dielectric Properties of Fine-Grained Barium Titanate Ceramics. J. Appl. Phys. 1985, 58, 1619–1625. doi:10.1063/1.336051
  • Nagaya, T.; Ishibashi, Y. Dielectric Breakdown in Polycrystalline System. Jpn. J. Appl. Phys. 1997, 36, 6136. doi:10.1143/JJAP.36.6136
  • Bowman, D. R.; Stroud, D. Model for Dielectric Breakdown in Metal-Insulator Composites. Phys. Rev. B 1989, 40, 4641–4650. doi:10.1103/PhysRevB.40.4641
  • ASM International. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Ohio, OH, 1990.
  • Assal, J.; Hallstedt, B.; Gauckler, L. J. Thermodynamic Assessment of the Silver-Oxygen System. J.Am. Ceram. Soc. 2005, 80, 3054–3060. doi:10.1111/j.1151-2916.1997.tb03232.x
  • Suzuki, R. O.; Ogawa, T.; Ono, K. Use of Ozone to Prepare Silver Oxides. J. Am. Ceram. Soc. 2004, 82, 2033–2038. doi:10.1111/j.1151-2916.1999.tb02036.x
  • Chýlek, P.; Srivastava, V. Effective Dielectric Constant of a Metal-Dielectric Composite. Phys. Rev. B 1984, 30, 1008–1009. doi:10.1103/PhysRevB.30.1008
  • Kaiser, W. J.; Logothetis, E. M.; Wenger, L. E. Dielectric Response of Small Metal Particle Composites. J. Phys. C Solid State Phys. 1985, 18, L837. doi:10.1088/0022-3719/18/26/013
  • Sen, A.; Maiti, H. S. Mechanism of Silver-Induced Enhanced Synthesis of Y1Ba2Cu3O7 − x. Phys. C Superconductivity 1994, 229, 188–192. doi:10.1016/0921-4534(94)90830-3
  • Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A 1976, 81, 751–767. doi:10.1107/S0567739476001551
  • Wang, S.-F.; Yang, T. C. K.; Lee, S.-C. Wettability of Electrode Metals on Barium Titanate Substrate. J. Mater. Sci. 2001, 36, 825–829. doi:10.1023/A:1004862011318
  • Lin, M.-H.; Chou, J.-F.; Lu, H.-Y. The Rate-Determining Mechanism in the Sintering of Undoped Nonstoichiometric Barium Titanate. J. Eur. Ceram. Soc. 2000, 20, 517–526. doi:10.1016/S0955-2219(99)00174-0
  • Luan, W.; Gao, L.; Guo, J. Size Effect on Dielectric Properties of Fine-Grained BaTiO3 Ceramics. Ceram. Int. 1999, 25, 727–729. doi:10.1016/S0272-8842(99)00009-7
  • Meschke, F.; Kolleck, A.; Schneider, G. A. R-Curve Behaviour of BaTiO3 Due to Stress-Induced Ferroelastic Domain Switching. J. Eur. Ceram. Soc. 1997, 17, 1143–1149. doi:10.1016/S0955-2219(96)00211-7
  • Bowen, C. R.; Perry, A.; Kara, H.; Mahon, S. W. Analytical Modelling of 3-3 Piezoelectric Composites. J. Eur. Ceram. Soc. 2001, 21, 1463–1467. doi:10.1016/S0955-2219(01)00042-5
  • Shin, B.-C.; Kim, H.-G. Partial Discharge, Microcracking, and Breakdown in BaTiO3 Ceramics. Ferroelectrics 1988, 77, 161–166. doi:10.1080/00150198808223239
  • Park, S.-E.; Chung, S.-J.; Kim, I.-T. Ferroic Phase Transitions in (Na1/2Bi1/2)TiO3 Crystals. J. Am. Ceram. Soc. 1996, 79, 1290–1296. doi:10.1111/j.1151-2916.1996.tb08586.x
  • Wang, C.; Fang, Q. F.; Zhu, Z. G. Enhanced Dielectric Properties of Low-Temperature Sintered SrBi2Nb2O9-Ag Composites. Appl. Phys. Lett. 2002, 80, 3578–3580. doi:10.1063/1.1477616
  • Lin, Y.; Zhao, S.; Cai, N.; Wu, J.; Zhou, X.; Nan, C. W. Effects of Doping Eu2O3 on the Phase Transformation and Piezoelectric Properties of Na0.5Bi0.5TiO3-Based Ceramics. Mater. Sci. Eng. B 2003, 99, 449–452. doi:10.1016/S0921-5107(02)00465-8
  • Chen, C.-Y.; Tuan, W.-H. Evaporation of Silver during Cofiring with Barium Titanate. J. Am. Ceram. Soc. 2004, 83, 1693–1698. doi:10.1111/j.1151-2916.2000.tb01451.x
  • Foulger, S. H. Reduced Percolation Thresholds of Immiscible Conductive Blends. J. Polym. Sci. B Polym. Phys. 1999, 37, 1899–1910. doi:10.1002/(SICI)1099-0488(19990801)37:15<1899::AID-POLB14>3.0.CO;2-0
  • White, G. S.; Raynes, A. S.; Vaudin, M. D.; Freiman, S. W. Fracture Behavior of Cyclically Loaded PZT. J. Am. Ceram. Soc. 1994, 77, 2603–2608. doi:10.1111/j.1151-2916.1994.tb04649.x
  • Cao, H.; Evans, A. G. Electric-Field-Induced Fatigue Crack Growth in Piezoelectrics. J. Am. Ceram. Soc. 1994, 77, 1783–1786. doi:10.1111/j.1151-2916.1994.tb07051.x
  • Wu, K.; Schulze, W. A. Aging of the Weak-Field Dielectric Response in Fine- and Coarse-Grain Ceramic BaTiO3. J. Am. Ceram. Soc. 1992, 75, 3390–3395. doi:10.1111/j.1151-2916.1992.tb04439.x
  • Li, S.; Cao, W.; Cross, L. E. The Extrinsic Nature of Nonlinear Behavior Observed in Lead Zirconate Titanate Ferroelectric Ceramic. J. Appl. Phys. 1991, 69, 7219–7224. doi:10.1063/1.347616
  • Bringhurst, S.; Iskander, M. F. FDTD Analysis of Dielectric Properties Measurements Using Open-Ended Coaxial Probes. IEEE Antennas and Propagation Society International Symposium, 1996; Vol. 2. pp 1032–1035.
  • Wu, D.; Chen, J.; Liu, C. Numerical Evaluation of Effective Dielectric Properties of Three-Dimensional Composite Materials with Arbitrary Inclusions Using a Finite-Difference Time-Domain Method. J. Appl. Phys. 2007, 102, 024107. doi:10.1063/1.2756089
  • McLachlan, D. S. Evaluating the Microstructure of Conductor-Insulator Composites Using Effective Media and Percolation Theories. MRS Proc. 1995, 411, 309. doi:10.1557/PROC-411-309
  • Kouvatov, A.; Steinhausen, R.; Seifert, W.; Hauke, T.; Langhammer, H. T.; Beige, H.; Abicht, H. Comparison between Bimorphic and Polymorphic Bending Devices. J. Eur. Ceram. Soc. 1999, 19, 1153–1156. doi:10.1016/S0955-2219(98)00396-3
  • Ruigang, W.; Wei, P.; Mengning, J.; Jian, C.; Yongming, L. Investigation of the Physical and Mechanical Properties of Hot-Pressed Machinable Si3N4/h-BN Composites and FGM. Mater. Sci. Eng. B 2002, 90, 261–268. doi:10.1016/S0921-5107(01)01048-0
  • Lux, F. Models Proposed to Explain the Electrical Conductivity of Mixtures Made of Conductive and Insulating Materials. J. Mater. Sci. 1993, 28, 285–301. doi:10.1007/BF00357799
  • Jonscher, A. K. The ‘Universal’ Dielectric Response. Nature 1977, 267, 673. doi:10.1038/267673a0
  • Baer, W. S. Interband Faraday Rotation in Some Perovskite Oxides and Rutile. J. Phys. Chem. Solids 1967, 28, 677–687. doi:10.1016/0022-3697(67)90099-6
  • Hirose, N.; West, A. R. Impedance Spectroscopy of Undoped BaTiO3 Ceramics. J. Am. Ceram. Soc. 1996, 79, 1633–1641. doi:10.1111/j.1151-2916.1996.tb08775.x
  • Steinsvik, S.; Bugge, R.; Gjønnes, J. O. N.; TaftØ, J.; Norby, T. The Defect Structure of SrTi1-xFexO3-y (x = 0-0.8) Investigated by Electrical Conductivity Measurements and Electron Energy Loss Spectroscopy (EELS). J. Phys. Chem. Solids 1997, 58, 969–976. doi:10.1016/S0022-3697(96)00200-4
  • Lohkämper, R.; Neumann, H.; Arlt, G. Internal Bias in Acceptor-Doped BaTiO3 Ceramics: Numerical Evaluation of Increase and Decrease. J. Appl. Phys. 1990, 68, 4220–4224. doi:10.1063/1.346212
  • Waser, R. M. Electrochemical Boundary Conditions for Resistance Degradation of Doped Alkaline-Earth Titanates. J. Am. Ceram. Soc. 1989, 72, 2234–2240. doi:10.1111/j.1151-2916.1989.tb06067.x
  • Warren, W. L.; Vanheusden, K.; Dimos, D.; Pike, G. E.; Tuttle, B. A. Oxygen Vacancy Motion in Perovskite Oxides. J. Am. Ceram. Soc. 1996, 79, 536–538. doi:10.1111/j.1151-2916.1996.tb08162.x
  • West, A. R.; Adams, T. B.; Morrison, F. D.; Sinclair, D. C. Novel High Capacitance Materials: BaTiO3:La and CaCu3Ti4O12. J. Eur. Ceram. Soc. 2004, 24, 1439–1448. doi:10.1016/S0955-2219(03)00510-7
  • Michel-Calendini, F. M.; Mesnard, G. Band Structure and Optical Properties of Tetragonal BaTiO3. J. Phys. C Solid State Phys. 1973, 6, 1709. doi:10.1088/0022-3719/6/10/007
  • Tzing, W. H.; Tuan, W. H. Effect of NiO Addition on the Sintering and Grain Growth Behaviour of BaTiO3. Ceram. Int. 1999, 25, 69–75. doi:10.1016/S0272-8842(98)00003-0
  • Lee, H.-Y.; Kim, J.-S.; Hwang, N.-M.; Kim, D.-Y. Effect of Sintering Temperature on the Secondary Abnormal Grain Growth of BaTiO3. J. Eur. Ceram. Soc. 2000, 20, 731–737. doi:10.1016/S0955-2219(99)00197-1
  • Konopka, K.; Olszówka-Myalska, A.; Szafran, M. Ceramic-Metal Composites with an Interpenetrating Network. Mater. Chem. Phys. 2003, 81, 329–332. doi:10.1016/S0254-0584(02)00595-3
  • Ryshkewitch, E. Compression Strength of Porous Sintered Alumina and Zirconia. J. Am. Ceram. Soc. 1953, 36, 65–68. doi:10.1111/j.1151-2916.1953.tb12837.x
  • Loópez, S.; Bartolomeé, J. F.; Moya, J. S.; Tanimoto, T. Mechanical Performance of 3Y-TZP/Ni Composites: Tensile, Bending, and Uniaxial Fatigue Tests. J. Mater. Res. 2002, 17, 1592–1600. doi:10.1557/JMR.2002.0237
  • Beltrán, J. I.; Gallego, S.; Cerdá, J.; Muñoz, M. C. Oxygen Vacancies at Ni/c-ZrO2 Interfaces. J. Eur. Ceram. Soc. 2003, 23, 2737–2740. doi:10.1016/S0955-2219(03)00284-X
  • Bartolomé, J. F.; Dı́az, M.; Requena, J.; Moya, J. S.; Tomsia, A. P. Mullite/Molybdenum Ceramic-Metal Composites. Acta Mater. 1999, 47, 3891–3899. doi:10.1016/S1359-6454(99)00220-7
  • Wong, C. K.; Poon, Y. M.; Shin, F. G. Explicit Formulas for Effective Piezoelectric Coefficients of Ferroelectric 0-3 Composites Based on Effective Medium Theory. J. Appl. Phys. 2003, 93, 487–496. doi:10.1063/1.1524720
  • Rocks, S. A.; Tredez, Q.; Almond, H. J.; Shaw, C. P.; Dorey, R. A. Bottom up Fabrication of a Nickel-Lead Zirconate Titanate Piezoelectric Microcantilevers. Mater. Lett. 2009, 63, 88–90. doi:10.1016/j.matlet.2008.09.011
  • Pan, D.-A.; Zhang, S.-G.; Tian, J.-J.; Sun, J.-S.; Alex, A. V.; Qiao, L. J. Current-Voltage Characteristics of Lead Zirconate Titanate/Nickel Bilayered Hollow Cylindrical Magnetoelectric Composites. Chin. Phys. B 2010, 19, 027201.
  • Wu, W.; Bi, K.; Wang, Y. G. Magnetoelectric Performance of Cylindrical Ni-Lead Zirconate Titanate-Ni Laminated Composite Synthesized by Electroless Deposition. J. Mater. Sci. 2011, 46, 1602–1605. doi:10.1007/s10853-010-4971-9
  • Gaskell, D. R. Introduction to the Thermodtynamics of Materials; Scripta Publishing Co.: New York, NY, 2003.
  • Ihrig, H. PTC Effect in BaTiO3 as a Function of Doping with 3d Elements. J. Am. Ceram. Soc. 1981, 64, 617–620. doi:10.1111/j.1151-2916.1981.tb10228.x
  • Makovec, D.; Samardžija, Z.; Drofenik, M. Solid Solubility of Holmium, Yttrium, and Dysprosium in BaTiO3. J. Am. Ceram. Soc. 2004, 87, 1324–1329. doi:10.1111/j.1151-2916.2004.tb07729.x
  • Arlt, G.; Neumann, H. Internal Bias in Ferroelectric Ceramics: Origin and Time Dependence. Ferroelectrics 1988, 87, 109–120. doi:10.1080/00150198808201374
  • Diaz, M.; Bartolomé, J. F.; Requena, J.; Moya, J. S. Wet Processing of Mullite/Molybdenum Composites. J. Eur. Ceram. Soc. 2000, 20, 1907–1914. doi:10.1016/S0955-2219(00)00066-2
  • Yang, C.-F. Improvement of the Sintering and Dielectric Characteristics of Surface Barrier Layer Capacitors by CuO Addition. Jpn. J. Appl. Phys. 1996, 35, 1806. doi:10.1143/JJAP.35.1806
  • Park, Y.; Kim, H.-G. Internal Stress Effect on the Temperature Dependence of the Dielectric and Lattice Constant in Sm-Doped BaTiO3 Ceramics. Jpn. J. Appl. Phys. 1997, 36, 3558. doi:10.1143/JJAP.36.3558
  • Kinoshita, K.; Yamaji, A. Grain-Size Effects on Dielectric Properties in Barium Titanate Ceramics. J. Appl. Phys. 1976, 47, 371–373. doi:10.1063/1.322330
  • Diamond, H. Variation of Permittivity with Electric Field in Perovskite-Like Ferroelectrics. J. Appl. Phys. 1961, 32, 909–915. doi:10.1063/1.1736132
  • Ambrožič, M.; Dakskobler, A.; Valant, M. Numerical Analysis of Steric Influence on Conductivity Percolation Threshold. Eur. Phys. J. Appl. Phys. 2005, 30, 23–31. doi:10.1051/epjap:2005006
  • Abdeen, A. M. Dielectric Behaviour in Ni-Zn Ferrites. J. Magn. Magn. Mater. 1999, 192, 121–129. doi:10.1016/S0304-8853(98)00324-2
  • Zhen, Z.; Shijie, W.; Wendong, S.; Li, L.; Chang, S.; Ping, W. Comparative Study of Effects of Mo and W Dopants on the Ferroelectric Property of Pb(Zr0.3Ti0.7) Thin Films. J. Phys. D Appl. Phys. 2008, 41, 135402.
  • Choi, S.; Shih, W. Y.; Yi, J. W.; Lee, Y. H.; Shih, W. Pb(Zr.52Ti.48)O3 Thin Films on Metal Foils by RF Magnetron Sputtering. Morphotropic Phase Boundary Perovskites, High Strain Piezoelectrics, and Dielectric Ceramics; The American Ceramic Society: Ohio, OH, 2012; pp 497–506.
  • Afanasiev, P. Molten Salt Synthesis of Barium Molybdate and Tungstate Microcrystals. Mater. Lett. 2007, 61, 4622–4626. doi:10.1016/j.matlet.2007.02.061
  • Li, G.-J.; Tu, R.; Goto, T. Preparation of Polycrystalline BaTi2O5 Ferroelectric Ceramics. Mater. Lett. 2009, 63, 2280–2282. doi:10.1016/j.matlet.2009.07.040
  • Rečnik, A.; Kolar, D. Exaggerated Growth of Hexagonal Barium Titanate under Reducing Sintering Conditions. J. Am. Ceram. Soc. 1996, 79, 1015–1018. doi:10.1111/j.1151-2916.1996.tb08541.x
  • Hennings, D. Dielectric Materials for Sintering in Reducing Atmospheres. J. Eur. Ceram. Soc. 2001, 21, 1637–1642. doi:10.1016/S0955-2219(01)00082-6
  • Lee, W.-H.; Groen, W. A.; Schreinemacher, H.; Hennings, D. Dysprosium Doped Dielectric Materials for Sintering in Reducing Atmospheres. J. Electroceram. 2000, 5, 31–36. doi:10.1023/A:1009937310444
  • Choi, G.-K.; Kim, J.-R.; Yoon, S. H.; Hong, K. S. Microwave Dielectric Properties of Scheelite (a = Ca, Sr, Ba) and Wolframite (a = Mg, Zn, Mn) AMoO4 Compounds. J.Eur. Ceram. Soc. 2007, 27, 3063–3067. doi:10.1016/j.jeurceramsoc.2006.11.037
  • Kumar, S.; Raju, V. S.; Kutty, T. Preparation of BaTi4O9 and Ba2Ti9O20 Ceramics by the Wet Chemical Gel-Carbonate Method and Their Dielectric Properties. Mater. Sci. Eng. B 2007, 142, 78–85. doi:10.1016/j.mseb.2007.06.018
  • Lee, S.-H.; Yoon, C.-B.; Lee, S.-M.; Kim, H.-E. Reaction Sintering of Lead Zinc Niobate-Lead Zirconate Titanate Ceramics. J. Eur. Ceram. Soc. 2006, 26, 111–115. doi:10.1016/j.jeurceramsoc.2004.10.005
  • Khorrami, G. H.; Khorsand, Z. A.; Kompany, A.; Yousefi, R. Optical and Structural Properties of X-Doped (X = Mn, Mg, and Zn) PZT Nanoparticles by Kramers-Kronig and Size Strain Plot Methods. Ceram. Int. 2012, 38, 5683–5690. doi:10.1016/j.ceramint.2012.04.012
  • Wang, D.-W.; Cao, M.-S.; Yuan, J.; Lin, H.-B.; Zhao, Q.-L.; Zhang, D.-Q. Fabrication, Microstructure and Properties of Zinc Oxide Nanowhisker Reinforced Lead Zirconate Titanate Nanocomposites. Curr. Nanosci. 2011, 7, 227–234. doi:10.2174/157341311794653730
  • Oh, J.-M.; Nam, S.-M. Causes Arising High Leakage Currents in Thin BaTiO3 Films Prepared by Aerosol Deposition Method. J. Korean Phys. Soc. 2015, 56, 448–452. doi:10.3938/jkps.56.448
  • Kim, Y.-H.; Osada, M.; Kim, H.-K.; Nam, S.-M. Percolative BaTiO3/Carbon-Nanotube Composite Films Employing Aerosol Deposition. Jpn. J. Appl. Phys. 2012, 51, 09LC07. doi:10.1143/JJAP.51.09LC07
  • Wang, L.; Dang, Z.-M. Carbon Nanotube Composites with High Dielectric Constant at Low Percolation Threshold. Appl. Phys. Lett. 2005, 87, 042903. doi:10.1063/1.1996842
  • Imanaka, Y.; Akedo, J. Embedded Capacitor Technology Using Aerosol Deposition. Int. J. Appl. Ceram. Technol. 2009, 7, E23–E32. doi:10.1111/j.1744-7402.2009.02359.x
  • Thongbai, P.; Jumpatam, J.; Putasaeng, B.; Yamwong, T.; Maensiri, S. The Origin of Giant Dielectric Relaxation and Electrical Responses of Grains and Grain Boundaries of W-Doped CaCu3Ti4O12 Ceramics. J. Appl. Phys. 2012, 112, 114115. doi:10.1063/1.4768468
  • Ribeiro, W. C.; Araújo, R. G. C.; Bueno, P. R. The Dielectric Suppress and the Control of semiconductor non-Ohmic Feature of CaCu3Ti4O12 by Means of Tin Doping. Appl. Phys. Lett. 2011, 98, 132906. doi:10.1063/1.3574016
  • Ueno, S.; Sakamoto, Y.; Nakashima, K.; Wada, S. Low-Temperature Fabrication of Titanium Metal/Barium Titanate Composite Capacitors via Hydrothermal Method and Their Dielectric Properties. J. Ceram. Soc. Jpn. 2014, 122, 447–451. doi:10.2109/jcersj2.122.447
  • Zhu, W.; Akbar, S. A.; Asiaie, R.; Dutta, P. K. Synthesis, Microstructure and Electrical Properties of Hydrothermally Prepared Ferroelectric BaTiO3 Thin Films. J. Electroceram. 1998, 2, 21–31.
  • Dutta, P. K.; Asiaie, R.; Akbar, S. A.; Zhu, W. Hydrothermal Synthesis and Dielectric Properties of Tetragonal BaTiO3. Chem. Mater. 1994, 6, 1542–1548. doi:10.1021/cm00045a011
  • Basca, R. R.; Dougherty, J. P. Hydrothermal Synthesis of Barium Titanate Thin Film on Titanium Metal Powder. J. Mater. Sci. Lett. 1995, 14, 600–602. doi:10.1007/BF00275390
  • Bendale, P.; Venigalla, S.; Ambrose, J.-R.; Verink, E.-D.; Adair, J.-H. Preparation of Barium Titanate Films at 55 °C by an Electrochemical Method. J. Am. Ceram. Soc. 1993, 76, 2619–2627. doi:10.1111/j.1151-2916.1993.tb03990.x
  • Hsiang, H.-I.; Yen, F.-S. Effect of Crystallite Size on the Ferroelectric Domain Growth of Ultrafine BaTiO3 Powders. J. Am. Ceram. Soc. 1996, 79, 1053–1060. doi:10.1111/j.1151-2916.1996.tb08547.x
  • Yanaseko, T.; Asanuma, H.; Sato, H. Characterization of a Metal-Core Piezoelectric Ceramics Fiber/Aluminum Composite. Mech. Eng. J. 2015, 2, 14–00357. doi:10.1299/mej.14-00357
  • Sato, H.; Sekiya, T.; Nagamine, M. Design of the Metal-Core Piezoelectric Fiber. Smart Struct. Mat.: SPIE 2004, 7, 5390.
  • Sato, H.; Nagamine, M. Mechanical Properties of Metal-Core Piezoelectric Fiber. SPIE Smart Struct. Mater.: SPIE 2005, 7, 5764.
  • Qiu, J.; Tani, J.; Yamada, N.; Takahashi, H. Fabrication of Piezoelectric Fibers with Metal Core. Smart Struct. Mater.: SPIE 2003, 9, 5053.
  • Zhang, H. L.; Li, J. F.; Zhang, B.-P. Fabrication and Evaluation of PZT/Ag Composites and Functionally Graded Piezoelectric Actuators. J. Electroceram. 2006, 16, 413–417. doi:10.1007/s10832-006-9890-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.