734
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Distortion and energy transfer assisted tunability in garnet phosphors

, & ORCID Icon

References

  • Schlotter, P.; Schmidt, R.; Schneider, J. Luminescence Conversion of Blue Light Emitting Diodes. Appl. Phys. A 1997, 64, 417–419. doi:10.1007/s003390050498
  • Thangadurai, V.; Narayanan, S.; Pinzaru, D. Garnet-Type Solid State Fast Li Ion Conductors for Li Batteries: Critical Review. Chem. Soc. Rev. 2014, 43, 4714–4727. doi:10.1039/c4cs00020j
  • Shannon, R. D.; Rossman, G. R. Dielectric Constants of Silicate Garnets and the Oxide Additivity Rule. Am. Min. 1992, 77, 94–100.
  • Rakhi, M.; Subodh, G. Crystal Structure and Microwave Dielectric Properties of NaPb2B2V3O12(B = Mg, Zn) Ceramics. J. Eur. Ceram. Soc. 2018, 38, 4962–4966. doi:10.1016/j.jeurceramsoc.2018.07.023
  • Rakhi, M.; Subodh, G. Crystal Structure, Phonon Modes, and Bond Characteristics of AgPb2B2V3O12 (B = Mg, Zn) Microwave Ceramics. J. Am. Ceram. Soc. 2020, 103, 3157–3167.
  • Sibi, N.; Induja, I. J.; Surendran, K. P.; Subodh, G. Natural Garnet Reinforced High Density Polyethylene Composites for Sustainable Microwave Substrates. Mater. Res. Bull. 2018, 106, 478–484. doi:10.1016/j.materresbull.2018.06.002
  • Sibi, N.; Subodh, G. Structural and Microstructural Correlations of Physical Properties in Natural Almandine-Pyrope Solid Solution: Al70Py29. J. Electron. Mater. 2017, 46, 6947–6956. doi:10.1007/s11664-017-5801-5
  • Katelnikovas, A.; Sakirzanovas, S.; Dutczak, D.; Plewa, J.; Enseling, D.; Winkler, H.; Kareiva, A.; Justel, T. Synthesis and Optical Properties of Yellow Emitting Garnet Phosphors for pcLEDs. J. Lumin. 2013, 136, 17–25. doi:10.1016/j.jlumin.2012.11.012
  • Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. Engl. 2007, 46, 7778–7781. doi:10.1002/anie.200701144
  • Antao, S. M. The Mystery of Birefringent Garnet: Is the Symmetry Lower than Cubic? Powder Diffr. 2013, 28, 281–288. doi:10.1017/S0885715613000523
  • Fisher, J. C. A Brief History of the Nd:YAG, Laser; Springer-Verlag: New York, NY, 1988; pp 7–9.
  • Dachraoui, H.; Rupp, R. A.; Lengyel, K.; Ellabban, M. A.; Fally, M.; Corradi, G.; Kov’Acs, L.; Ackermann, L. Photochromism of Doped Terbium Gallium Garnet. Phys. Rev. B 2006, 74, 144104–144111. doi:10.1103/PhysRevB.74.144104
  • Ouedraogo, K.; Topsu, S.; Gayhmouni, J.; Chassagne, L.; Alayli, Y.; Juncar, P.; Gournay, P.; Bielsa, F.; Geneves, G. Accurate Ellipsometric Magnetic-Field Sensor Used to Align the Watt Balance Magnetic Circuit of the French National Metrology Institute. Sens. Actuators A 2012, 175, 9–14. doi:10.1016/j.sna.2011.11.031
  • Gruber, J. B.; Sardar, D. K.; Yow, R. M.; Valiev, U. V.; Mukhammadiev, A. K.; Sokolov, V. Y.; Amin, I.; Lengyel, K.; Kachur, I. S.; Piryatinskaya, V. G.; Zandi, B. Analyses of the Optical and Magneto-Optical Spectra of Tb3Ga5O12. J. Appl. Phys. 2007, 101, 023108. doi:10.1063/1.2408344
  • Heber, J. Nobel Prize 2014: Akasaki, Amano and Nakamura. Nat. Phys. 2014, 10, 791–791. doi:10.1038/nphys3147
  • Shang, M.; Li, C.; Li, J. How to Produce White Light in a Single-Phase Host? Chem. Soc. Rev. 2014, 43, 1372–1386. doi:10.1039/c3cs60314h
  • Xia, Z.; Meijerink, A. Ce3+-Doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications. Chem. Soc. Rev. 2017, 46, 275–299. doi:10.1039/C6CS00551A
  • Song, Z.; Xia, Z.; Liu, Q. Insight into Relationship between Crystal Structure and Crystal-Field Splitting of Ce3+ Doped Garnet Compounds. J. Phys. Chem. C 2018, 122, 3567–3574. doi:10.1021/acs.jpcc.7b12826
  • Li, J. G.; Sakka, Y. Recent Progress in Advanced Optical Materials Based on Gadolinium Aluminate Garnet (Gd3Al5O12). Sci. Technol. Adv. Mater. 2015, 16, 014902–014918. doi:10.1088/1468-6996/16/1/014902
  • Menzer, G. Die Kristallstruktur Der Granate. Z. Kristallogr. 1928, 69, 300–396.
  • Zhang, S.; Zhang, P.; Liu, X.; Yang, Z. First Observation of 5DJ (J = 1, 2, 3) Emission Transitions in Eu3+-Activated Rare-Earth Antimony Garnet R3Sb5O12 (R = Y, Gd, La). Ceram. Inter. 2018, 44, 15622–15626. doi:10.1016/j.ceramint.2018.05.230
  • Zhang, S.; Huang, Y.; Shi, L.; Qiao, X.; Seo, H. J. Synthesis, Luminescence and Crystallographic Structure of Eu3+-Doped Garnet-Type Yafsoanite Ca3Te2(ZnO4)3. Phys. B 2009, 404, 4136–4414. doi:10.1016/j.physb.2009.07.179
  • Donrian, M. H.; Dana, T. G. Phase Transitions in the Grandite Garnets. Am. Min. 1989, 74, 151–159.
  • Baklanova, Y. V.; Ishchenko, A. V.; Melkozerova, M. A.; Maksimova, L. G.; Denisova, T. A.; Tyutyunnik, A. P.; Zubkov, V. G.; Shulgin, B. V. Synthesis and Optical Properties of Cerium Doped Li7La3Hf2O12 with Tetragonal Garnet Structure. J. Lumin. 2018, 194, 193–199. doi:10.1016/j.jlumin.2017.10.038
  • Huang, Y.; Yu, Y. M.; Tsuboi, T.; Seo, H. J. Novel Yellow-Emitting Phosphors of Ca5M4(VO4)6 (M=Mg, Zn) with Isolated VO4 Tetrahedra. Opt. Express 2012, 20, 4360–4368. doi:10.1364/OE.20.004360
  • Milanese, M. C.; Buscaglia, V.; Maglia, F.; Tamburini, U. A. Disorder and Nonstoichiometry in Synthetic Garnets A3B5O12 (a = Y, Lu-La, B = Al, Fe, Ga). A Simulation Study. Chem. Mater. 2004, 16, 1232–1239. doi:10.1021/cm031138u
  • Geller, S. Crystal Chemistry of the Garnets. Z. Kristallogr. Bd. 1967, 125, 1–47. doi:10.1524/zkri.1967.125.125.1
  • Grew, E. S.; Locock, A. J.; Mills, S. J.; Galuskina, I. O.; Galuskin, E. V.; Hålenius, U. Nomenclature of the Garnet Supergroup. Am. Min. 2013, 98, 785–811. doi:10.2138/am.2013.4201
  • Xu, Y. N.; Ching, W. Y. Electronic Structure of Yttrium Aluminum Garnet Y3Al5O12. Phys. Rev. B 1999, 59, 10530–10535. doi:10.1103/PhysRevB.59.10530
  • Cavalli, E.; Zannoni, E.; Bettinelli, M.; Speghini, A.; Tonelli, M.; Toncelli, A. Vibrational Properties of Ca3Sc2Ge3O12, a Garnet Host Crystal for Laser Applications. J. Phys. Condens. Matter 2000, 12, 4665–4674. doi:10.1088/0953-8984/12/21/310
  • Lin, L. H.; Xu, J.; Huang, Q.; Wang, B.; Chen, H.; Lin, Z.; Wang, Y. Bandgap Tailoring via Si Doping in Inverse-Garnet Mg3Y2Ge3O12:Ce3+ Persistent Phosphor Potentially Applicable in AC-LED. ACS Appl. Mater. Interfaces 2015, 7, 21835–21843. doi:10.1021/acsami.5b06071
  • Robbins, D. J. The Effects of Crystal Field and Temperature on the Photoluminescence Excitation Efficiency of Ce3+ in YAG. J. Electrochem. Soc. 1979, 126, 1550–1555. doi:10.1149/1.2129328
  • Randic, M. Ligand Field Splitting of d Orbitals in Eight Coordinated Complexes of Dodecahedral Structure. J. Chem. Phys. 1962, 36, 2094–2097.
  • Burdet, J. K.; Hoffmann, R.; Fay, R. C. Eight-Coordination. Inorg. Chem. 1978, 17, 2553–2568. doi:10.1021/ic50187a041
  • Nakatsuka, A.; Yoshiasa, A.; Takeno, S. Site Preference of Cations and Structural Variation in Y3Fe5-xGaxO12 (0 ≤ x≤ 5) Solid Solutions with Garnet Structure. Acta Crystallogr. B Struct. Sci. 1995, 51, 737–745. doi:10.1107/S0108768194014813
  • Setlur, A. A.; Heward, W. J.; Gao, Y.; Srivastava, A. M.; Chandran, R. G.; Shankar, M. V. Crystal Chemistry and Luminescence of Ce3+-Doped Lu2CaMg2(Si,Ge)3O12 and Its Use in LED Based Lighting. Chem. Mater. 2006, 18, 3314–3322. doi:10.1021/cm060898c
  • Gong, X.; Huang, J.; Chen, Y.; Lin, Y.; Luo, Z.; Huang, Y. Novel Garnet-Structure Ca2GdZr2(AlO4)3: Ce3+ Phosphor and Its Structural Tuning of Optical Properties. Inorg. Chem. 2014, 53, 6607–6614. doi:10.1021/ic500153u
  • Levy, D.; Barbeir, J. Normal and Inverse Garnets: Ca3Fe2Ge3O12 and Mg3Y2Ge3O12. Acta Cryst. 1999, C55, 1611–1614.
  • Jansen, T.; Gorobez, J.; Kirm, M.; Brik, M. G.; Vielhauer, S.; Oja, M.; Khaidukov, N. M.; Makhov, V. N.; Justel, T. Narrow Band Deep Red Photoluminescence of Y2Mg3Ge3O12:Mn4+,Li+ Inverse Garnet for High Power Phosphor Converted LEDs. ECS J. Solid State Sci. Technol. 2018, 7, R3086–R3092. doi:10.1149/2.0121801jss
  • Loiko, P.; Khaidukov, N.; Volokitina, A.; Zhidkova, I.; Vilejshikova, E.; Novichkov, A.; Aseev, V.; Serres, J. M.; Mateos, X.; Yumashev, K. Luminescence Peculiarities of Eu3+ Ions in Multicomponent Ca2YSc2GaSi2O12 Garnet. Dyes Pigm. 2018, 150, 158–164. doi:10.1016/j.dyepig.2017.11.059
  • Pauling, L. The Principles Determining the Structure of Complex Ionic Crystals. J. Am. Chem. Soc. 1929, 51, 1010–1026. doi:10.1021/ja01379a006
  • Zhong, J.; Zhuang, W.; Xing, X.; Liu, R.; Li, Y.; Liu, Y.; Hu, Y. Synthesis, Crystal Structures, and Photoluminescence Properties of Ce3+-Doped Ca2LaZr2Ga3O12: New Garnet Green-Emitting Phosphors for White LEDs. J. Phys. Chem. C 2015, 119, 5562–5569. doi:10.1021/jp508409r
  • Zheng, Y.; Zhuang, W.; Xing, X.; Zhong, J.; Liu, R.; Li, Y.; Liu, Y.; Hu, Y. Synthesis, Structure and Luminescent Properties of a New Blue-Green-Emitting Garnet Phosphor Ca2LuScZrAl2GeO12:Ce3+. RSC Adv. 2016, 6, 68852–68859. doi:10.1039/C6RA11258G
  • Sole, J. G.; Bausa, L. E.; Jaque, D. An Introduction to the Optical Spectroscopy of Inorganic Solids; John Wiley and Sons Ltd, England 2005.
  • Blasse, G. Luminescence and Energy Transfer; Springer: Berlin, 1980; pp 1–41.
  • Yen, W. M.; Shionoya, S.; Yamamoto, H. Phosphor Handbook; Taylor & Francis Group, LLC, USA 2006.
  • Cussen, E. J.; Yip, T. W. S. A Neutron Diffraction Study of the d0 and d10 Lithium Garnets Li3Nd3W2O12 and Li5La3Sb2O12. J. Solid State Chem. 2007, 180, 1832–1839.
  • Ziegler, T.; Rauk, A.; Baerends, E. J. The Electronic Structures of Tetrahedral oxo-Complexes. The Nature of the “Charge Transfer” Transitions. Chem. Phys. 1976, 16, 209–217. doi:10.1016/0301-0104(76)80056-0
  • Nakajima, T.; Isobe, M.; Tsuchiya, T.; Ueda, Y.; Manabe, T. Correlation between Luminescence Quantum Efficiency and Structural Properties of Vanadate Phosphors with Chained, Dimerized, and Isolated VO4 Tetrahedra. J. Phys. Chem. C 2010, 114, 5160–5167. doi:10.1021/jp910884c
  • Ronde, H.; Blasse, G. The Nature of the Electronic Transitions of the Vanadate Group. J. Inorg. Nucl. Chem. 1978, 40, 215–219. doi:10.1016/0022-1902(78)80113-4
  • Schiff, L. I. Quantum Mechanics; McGraw-Hill Book Co.: New York, NY, 1955.
  • Tao, Z.; Tsuboi, T.; Huang, Y.; Huang, W.; Cai, P.; Seo, H. J. Photoluminescence Properties of Eu3+-Doped Glaserite-Type Orthovanadates CsK2Gd[VO4]2. Inorg. Chem. 2014, 53, 4161–4168. doi:10.1021/ic500208h
  • House, J. Inorganic Chemistry, 3rd ed.; Academic Press, Elsevier 2019.
  • Randic, M.; Vucelic, M. Ligand-Field Splitting in Eight-co-Ordinate Complexes of Dodecahedral Structure. J. Chem. Soc. A 1971, 3309–3312.
  • George, N. C.; Denault, K. A.; Seshadri, R. Phosphors for Solid-State White Lighting. Annu. Rev. Mater. Res. 2013, 43, 481–501. doi:10.1146/annurev-matsci-073012-125702
  • Dorenbos, P. Crystal Field Splitting of Lanthanide 4f 5d-Levels in Inorganic Compounds. J. Alloys Compd. 2002, 341, 156–159. doi:10.1016/S0925-8388(02)00056-7
  • Dorenbos, P. Electronic Structure and Optical Properties of the Lanthanide Activated RE3(Al1-x Gax)5O12 (RE = Gd, Y, Lu)Garnet Compounds. J. Lumin. 2013, 134, 310–318. doi:10.1016/j.jlumin.2012.08.028
  • Rack, P. D.; Holloway, P. H. The Structure, Device Physics, and Material Properties of Thin Film Electroluminescent Displays. Mater. Sci. Eng. R 1998, 21, 171–219. doi:10.1016/S0927-796X(97)00010-7
  • Jorgenson, C. K. Modern Aspects of Ligand Field Theory; North-Holland: Amsterdam, The Netherlands, 1971.
  • Suchocki, A.; Biernacki, S. W.; Kamińska, A.; Arizmendi, L. Nephelauxetic Effect in Luminescence of Cr3+-Doped Lithium Niobate and Garnets. J. Lumin. 2003, 102–103, 571–574. doi:10.1016/S0022-2313(02)00620-8
  • Dorenbos, P.; Andriessen, J.; van Eijk, C. 4fn–15d Centroid Shift in Lanthanides and Relation with Anion Polarizability, Covalency and Cation Electronegativity. J. Solid State Chem. 2003, 171, 133–136. doi:10.1016/S0022-4596(02)00196-2
  • Nakajima, T.; Žemva, B.; Tressaud, A. Advanced Inorganic Fluorides Synthesis, Characterization and Applications; Elsevier Science S. A: Switzerland, 2000.
  • Harrison, W. A. Electronic Structure and the Properties of Solids; W.H. Freeman and Company: San Francisco, 1980.
  • Gao, F.; Zhang, S. Investigation of Mechanism of Nephelauxetic Effect. J. Phys. Chem. Solids 1997, 58, 1991–1994. doi:10.1016/S0022-3697(96)00139-4
  • Albuquerque, R. Q.; Rocha, G. B.; Malta, O. L.; Porcher, P. On the Charge Factors of the Simple Overlap Model for the Ligand Field in Lanthanide Coordination Compounds. Chem. Phys. Lett. 2000, 331, 519–525. doi:10.1016/S0009-2614(00)01201-X
  • Porcher, P.; Dos Santos, M. C.; Malta, O. Relationship between Phenomenological Crystal Field Parameters and the Crystal Structure: The Simple Overlap Model. Phys. Chem. Chem. Phys. 1999, 1, 397–405. doi:10.1039/a803807d
  • Hasegawa, T.; Abe, Y.; Koizumi, A.; Ueda, T.; Toda, K.; Sato, M. Bluish-White Luminescence in Rare-Earth-Free Vanadate Garnet Phosphors: Structural Characterization of LiCa3MV3O12 (M = Zn and Mg). Inorg. Chem. 2018, 57, 857–866. doi:10.1021/acs.inorgchem.7b02820
  • Bharat, L. K.; Jeon, S. K.; Krishna, K. G.; Yu, J. S. Rare-Earth Free Self-Luminescent Ca2KZn2(VO4)3 Phosphors for Intense White Light-Emitting Diodes. Sci. Rep. 2017, 7, 42348. doi:10.1038/srep42348
  • Li, J.; Qiu, K.; Li, J.; Li, W.; Yang, Q.; Li, J. A Novel Broadband Emission Phosphor Ca2KMg2V3O12 for White Light Emitting Diodes. Mater. Res. Bull. 2010, 45, 598–602. doi:10.1016/j.materresbull.2010.01.014
  • Song, D.; Guo, C.; Li, T. Luminescence of the Self-Activated Vanadate Phosphors Na2LnMg2V3O12 (Ln = Y, Gd). Ceram. Inter. 2015, 41, 6518–6524. doi:10.1016/j.ceramint.2015.01.094
  • Xie, H.; Tsuboi, T.; Huang, W.; Huang, Y.; Qin, L.; Seo, H. J. Luminescence and Quantum Efficiencies of Eu3+-Doped Vanadate Garnets. J. Am. Ceram. Soc. 2014, 97, 1434–1438. doi:10.1111/jace.12771
  • Chen, X.; Xia, Z. Luminescence Properties of Li2Ca2ScV3O12 and Li2Ca2ScV3O12:Eu3+ Synthesized by Solid-State Reaction Method. Opt. Mater. 2013, 35, 2736–2739. doi:10.1016/j.optmat.2013.06.008
  • Yang, L.;·Mi, X.; Su, J.; Zhang, H.; Wang, N.; Bai, Z.; Zhang, X. Tunable Luminescence and Energy Transfer Properties in Ca2−xNaMg2V3O12:xEu3+ Phosphors. J. Mater. Sci.: Mater. Electron. 2017, 28, 9975–9982. doi:10.1007/s10854-017-6779-8
  • Chen, X.; Xia, Z.; Yi, M.; Wu, X.; Xin, H. Rare-Earth Free Self-Activated and Rare-Earth Activated Ca2NaZn2V3O12 Vanadate Phosphors and Their Color-Tunable Luminescence Properties. J. Phys. Chem. Solids 2013, 74, 1439–1443. doi:10.1016/j.jpcs.2013.05.002
  • Huang, X.; Wang, S.; Rtimi, S.; Devakumar, B. KCa2Mg2V3O12: A Novel Efficient Rare-Earth-Free Self-Activated Yellow Emitting Phosphor. J. Photochem. Photobiol. A: Chem. 2020, 401, 112765. doi:10.1016/j.jphotochem.2020.112765
  • Amrithakrishnan, B.; Rakhi, M.; Jawahar, I. N.; Subodh, G. Novel Self -Activated Na2BiMgZnV3O12 Yellow-Green Phosphor for N-UV Excited WLEDs. AIP Conf. Proc. 2020, 2265, 030656.
  • Blasse, G.; de Blank, J.; IJdo, D. J. W. The Luminescence of the Garnet Ca4ZrGe3O12. Mater. Res. Bull. 1995, 30, 845–850. doi:10.1016/0025-5408(95)00068-2
  • Zhang, X.; Zhang, Z.; Kim, S. I.; Moon Yu, Y.; Seo, H. J. Photoluminescence Properties of Eu3+ in Garnet-Type Li7La3Zr2O12 Polycrystalline Ceramics. Ceram. Inter. 2014, 40, 2173–2178. doi:10.1016/j.ceramint.2013.07.135
  • Wei, D.; Seo, H. J. Li8CaRE2Ta2O13 (RE = La3+, Eu3+, Gd3+, Dy3+, Er3+, Y3+, Yb3+): A Highly Lithium Stuffed Tantalate Garnet with Versatile Luminescence Characteristics. J. Alloy. Compd. B 2020, 826, 154186. doi:10.1016/j.jallcom.2020.154186
  • Blasse, G.; Bril, A. Fluoescence of Eu3+ - Activated Garnets Containing Pentavalent Vanadium. J. Electrochem. Soc. 1967, 114, 250. doi:10.1149/1.2426560
  • Gundiah, G.; Shimomura, Y.; Kijima, N.; Cheetham, A. K. Novel Red Phosphors Based on Vanadate Garnets for Solid State Lighting Applications. Chem. Phys. Lett. 2008, 455, 279–283. doi:10.1016/j.cplett.2008.02.083
  • Li, Y.; Wei, X.; Chen, H.; Pang, G.; Pan, Y.; Gong, L.; Zhu, L.; Zhu, G.; Ji, Y. A New Self-Activated Vanadate Phosphor of Na2YMg2(VO4)3 and Luminescence Properties in Eu3+ Doped Na2YMg2(VO4)3. J. Lumin. 2015, 168, 124–129. doi:10.1016/j.jlumin.2015.08.002
  • Li, K.; Deun, R. V. Eu3+/Sm3+-Doped Na2BiMg2(VO4)3 from Substitution of Ca2+ by Na+ and Bi3+ in Ca2NaMg2(VO4)3: Color-Tunable Luminescence via Efficient Energy Transfer from (VO4)3- to Eu3+/Sm3+ Ions. Dyes Pigm. 2018, 155, 258–264. doi:10.1016/j.dyepig.2018.03.050
  • Huang, X.; Guo, H. A Novel Highly Efficient Single-Composition Tunable White-Light-Emitting LiCa3MgV3O12:Eu3+ Phosphor. Dyes Pigm. 2018, 154, 82–86. doi:10.1016/j.dyepig.2018.02.047
  • Zhang, X.; Zhu, Z.; Sun, Z.; Guo, Z.; Zhang, J. Host-Sensitized Color-Tunable Luminescence Properties of Self-Activated and Eu3+-Doped Ca3LiZnV3O12 Phosphors. J. Lumin. 2018, 203, 735–740. doi:10.1016/j.jlumin.2018.07.030
  • Zhang, X.; Zhu, Z.; Guo, Z.; Sun, Z.; Zhou, L.; Wu, Z. Synthesis, Structure and Luminescent Properties of Eu3+ Doped Ca3LiMgV3O12 Color-Tunable Phosphor. Ceram. Int. 2018, 44, 16514–16521. doi:10.1016/j.ceramint.2018.06.069
  • Zheng, Z.; Wanjun, T. Energy Transfer and Tunable Luminescence of Na2(Y,Eu)Mg2V3O12 Phosphors for White LED Applications. Mater. Res. Bull. 2016, 73, 351–356. doi:10.1016/j.materresbull.2015.09.026
  • Zhou, Z.; Wang, F.; Liu, S.; Huang, K.; Li, Z.; Zeng, S.; Jiang, K. A Single-Phase Phosphor Ba3LiMgV3O12: Eu3+ for White Light-Emitting Diodes. J. Electrochem. Soc. 2011, 158, H1238–H1241. doi:10.1149/2.067112jes
  • Setlur, A. A.; Comanzo, H. A.; Srivastava, A. M.; Beers, W. W. Spectroscopic Evaluation of a White Light Phosphor for UV-LEDs—Ca2NaMg2V3O12:Eu3+. J. Electrochem. Soc. 2005, 152, H205–H208. doi:10.1149/1.2077328
  • Dhobale, A. R.; Mohapatra, M.; Natarajan, V.; Godbole, S. V. Synthesis and Photoluminescence Investigations of the White Light Emitting Phosphor, Vanadate Garnet, Ca2NaMg2V3O12 co-Doped with Dy and Sm. J. Lumin. 2012, 132, 293–298. doi:10.1016/j.jlumin.2011.09.004
  • Guo, H.; Devakumar, B.; Vijayakumar, R.; Du, P.; Huang, X. A Novel Sm3+ Singly Doped LiCa3ZnV3O12 Phosphor: A Potential Luminescent Material for Multifunctional Applications. RSC Adv. 2018, 8, 33403–33413. doi:10.1039/C8RA07329E
  • Huang, X.; Guo, H. LiCa3MgV3O12:Sm3+: A New High-Efficiency White-Emitting Phosphor. Ceram. Int. 2018, 44, 10340–10344. doi:10.1016/j.ceramint.2018.03.043
  • Liang, Y.; Liu, M.; Yang, F.; Wu, X.; Yang, W.; Li, X. Preparation and Characteristics of Ca2NaMg2V3O12:Sm3+ Single-Phased White-Emitting Phosphors. J. Inorg. Organomet. Polym. 2013, 23, 684–689. doi:10.1007/s10904-013-9833-x
  • Dang, P.; Liang, S.; Li, G.; Wei, Y.; Cheng, Z.; Lian, H.; Shang, M.; Kheraif, A. A. A.; Lin, J. Full Color Luminescence Tuning in Bi3+/Eu3+-Doped LiCa3MgV3O12 Garnet Phosphors Based on Local Lattice Distortion and Multiple Energy Transfers. Inorg. Chem. 2018, 57, 9251–9259. doi:10.1021/acs.inorgchem.8b01271
  • Cao, R.; Chen, T.; Ren, Y.; Liao, C.; Luo, Z.; Ye, Y.; Guo, Y. Tunable Emission of LiCa3MgV3O12:Bi3+ via Energy Transfer and Changing Excitation Wavelength. Mater. Res. Bull. 2019, 111, 87–92. doi:10.1016/j.materresbull.2018.11.011
  • Bharat, L. K.; Krishna, K. G.; Yu, J. S. Effect of Transition Metal Ion (Nb5+) Doping on the Luminescence Properties of Self-Activated Ca2AgZn2V3O12 Phosphors. J. Alloy. Compd. 2017, 699, 756–762. doi:10.1016/j.jallcom.2016.12.385
  • Pavitra, E.; Raju, G. S. R.; Park, J. Y.; Wang, L.; Moon, B. K.; Yu, J. S. Novel Rare-Earth-Free Yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 Phosphors for Dazzling White Light Emitting Diodes. Sci. Rep. 2015, 5, 10296.
  • Chen, H.; Zhou, J.; Zhang, H.; Hu, Z. Broad-Band Emission and Color Tuning of Eu3+-Doped LiCa2SrMgV3O12 Phosphors for Warm White Light-Emitting Diodes. Opt. Mater. 2019, 89, 132–137. doi:10.1016/j.optmat.2019.01.012
  • Yang, L.; Mi, X.; Zhang, H.; Zhang, X.; Bai, Z.; Lin, J. Tunable Luminescence and Energy Transfer Properties in Ca2NaMg2V3O12: Ln3+ (Dy3+, Sm3+) Phosphors. J. Alloy. Compd. 2019, 787, 815–822. doi:10.1016/j.jallcom.2019.02.100
  • Chen, S.; Qiu, K.; Yan, G.; Jiang, Z.; Zhao, C. Synthesis and Luminescent Properties of Ca2Li2BiV3O12:Eu3+ Phosphor. Mater. Sci. Forum 2015, 815, 309–312. doi:10.4028/www.scientific.net/MSF.815.309
  • Cao, R.; Wang, X.; Jiao, Y.; Ouyang, X.; Guo, S.; Liu, P.; Ao, H.; Cao, C. A Single Phase NaCa2Mg2V3O12:Sm3+ Phosphor: Synthesis, Energy Transfer, and Luminescence Properties. J. Lumin. 2019, 212, 23–28. doi:10.1016/j.jlumin.2019.04.017
  • Zhou, J.; Huang, X.; You, J.; Wang, B.; Chen, H.; Wu, Q. Synthesis, Energy Transfer and Multicolor Luminescent Property of Eu3+ Doped LiCa2Mg2V3O12 Phosphors for Warm White Light-Emitting Diodes. Ceram. Int. 2019, 45, 13832–13837. doi:10.1016/j.ceramint.2019.04.080
  • Huang, X.; Guo, H. Synthesis and Photoluminescence Properties of Eu3+-Activated LiCa3ZnV3O12 White-Emitting Phosphors. RSC Adv. 2018, 8, 17132–17138. doi:10.1039/C8RA03075H
  • Zhang, W.; He, C.; Wu, X.; Huang, X.; Lin, F.; Liu, Y.; Fang, M.; Min, X.; Huang, Z. Yellow Emission Obtained by Combination of Broadband Emission and Multi-Peak Emission in Garnet Structure Na2YMg2V3O12: Dy3+ Phosphor. Molecules 2020, 25, 542. doi:10.3390/molecules25030542
  • Zhou, H.; Guo, N.; Lü, X.; Ding, Y.; Wang, L.; Ouyang, R.; Shao, B. Ratiometric and Colorimetric Fluorescence Temperature Sensing Properties of Trivalent Europium or Samarium Doped Self-Activated Vanadate Dual Emitting Phosphors. J. Lumin. 2020, 217, 116758. doi:10.1016/j.jlumin.2019.116758
  • Park, K.; Hakeem, D. A.; Kim, D. H.; Jung, G. W.; Kim, S. W. Synthesis and Photoluminescence Properties of New Garnet-Type Red-Emitting Li7La3-xZr2O12:xEu3+ Phosphors. Scr. Mater. 2020, 179, 92–98. doi:10.1016/j.scriptamat.2019.12.039
  • Qu, M.; Zhang, X.; Mi, X.; Liu, Q.; Bai, Z. Novel Color Tunable Garnet Phosphor of Tb3+ and Eu3+ co-Doped Ca2YZr2Al3O12 with High Thermal Stability via Energy Transfer. J. Alloy. Compd. 2020, 828, 154398. doi:10.1016/j.jallcom.2020.154398
  • Wang, X.; Wang, Y. Synthesis, Structure, and Photoluminescence Properties of Ce3+- Doped Ca2YZr2Al3O12: A Novel Garnet Phosphor for White LEDs. J. Phys. Chem. C 2015, 119, 16208–16214. doi:10.1021/acs.jpcc.5b01552
  • Wang, X.; Zhao, Z.; Wu, Q.; Li, Y.; Wang, Y. A Garnet-Based Ca2YZr2Al3O12:Eu3+ Red-Emitting Phosphor for nUV Light Emitting Diodes and Field Emission Displays: Electronic Structure and Luminescence Properties. Inorg. Chem. 2016, 55, 11072–11077. doi:10.1021/acs.inorgchem.6b01711
  • Wang, Y.; Ding, J.; Wang, Y. Ca2-xY1+xZr2-xAl3+xO12:Ce3+: Solid Solution Design toward the Green Emission Garnet Structure Phosphor for near-UV LEDs and Their Luminescence Properties. J. Phys. Chem. C 2017, 121, 27018–27028. doi:10.1021/acs.jpcc.7b09783
  • Hakeem, D. A.; Pi, J. W.; Jung, G. W.; Kim, S. W.; Park, K. Structural and Photoluminescence Properties of La1-xNaCaGa3PZrO12 Doped with Ce3+, Eu3+, and Tb3+. Dyes Pigm. 2019, 160, 234–242. doi:10.1016/j.dyepig.2018.06.047
  • Zheng, Z.; Zhang, J.; Liu, X.; Wei, R.; Hu, F.; Guo, H. Luminescence and Self-Referenced Optical Temperature Sensing Performance in Ca2YZr2Al3O12:Bi3+,Eu3+ Phosphors. Ceram. Inter. 2020, 46, 6154–6159. doi:10.1016/j.ceramint.2019.11.081
  • Sun, L.; Devakumar, B.; Liang, J.; Wang, S.; Sun, Q.; Huang, X. A Broadband Cyan-Emitting Ca2LuZr2(AlO4)3:Ce3+ Garnet Phosphor for near-Ultraviolet-Pumped Warm-White Light-Emitting Diodes with an Improved Color Rendering Index. J. Mater. Chem. C 2020, 8, 1095–1103. doi:10.1039/C9TC04952E
  • Gao, T.; Tian, J.; Liu, Y.; Liu, R.; Zhuang, W. Garnet Phosphors for White-Light-Emitting Diodes: Modification and Calculation. Dalton Trans. 2021, 50, 3769–3781. doi:10.1039/d0dt04368k
  • Gupta, K. K.; Som, S.; Lu, C. H. Synthesis and Luminescence Characterization of Ce3+ Activated Y2CaAl2MgZr2O12 Garnet Phosphor for White Light Emitting Diodes. Mater. Res. Express 2020, 6, 125540. doi:10.1088/2053-1591/ab62eb
  • Qu, M.; Zhang, X.; Mi, X.; Sun, H.; Liu, Q.; Bai, Z. Luminescence Color Tuning of Ce3+ and Tb3+ co-Doped Ca2YZr2Al3O12 Phosphors with High Color Rendering Index via Energy Transfer. J. Lumin. 2020, 228, 117557. doi:10.1016/j.jlumin.2020.117557
  • Sun, L.; Liang, J.; Wang, S.; Sun, Q.; Devakumar, B.; Huang, X. Bright Cyan-to-Green Color-Tunable Emissions from Ce3+/Tb3+ Coactivated Garnet Phosphors for High-Color-Quality Solid-State Lighting. Mater. Today Energy 2020, 17, 100487. doi:10.1016/j.mtener.2020.100487
  • Wang, S.; Devakumar, B.; Sun, Q.; Liang, J.; Sun, L.; Huang, X. Efficient Green-Emitting Ca2GdZr2Al3O12:Ce3+, Tb3+ Phosphors for Near-UV Pumped high-CRI Warm-White LEDs. J. Lumin. 2020, 220, 117012. doi:10.1016/j.jlumin.2019.117012
  • Wang, Y.; Ding, J.; Zhou, X.; Wang, Y. Promotion of Efficiency and Thermal Stability by Restraining Dynamic Energy Migration Based on the Highly Symmetric Rigid Structure in the n-UV Excitation Green Emission Garnet Phosphors. Chem. Eng. J. 2020, 381, 122528. doi:10.1016/j.cej.2019.122528
  • Wang, S.; Balaji, D.; Sun, Q.; Liang, J.; Sun, L.; Huang, X. Highly Efficient near-UV-Excitable Ca2YHf2Al3O12:Ce3+,Tb3+ Green Emitting Garnet Phosphors with Potential Application in High Color Rendering Warm-White LEDs,. J. Mater. Chem. C 2020, 8, 4408–4420. doi:10.1039/D0TC00130A
  • Liang, J.; Sun, L.; Wang, S.; Sun, Q.; Devakumar, B.; Huang, X. Filling the Cyan Gap toward Full-Visible-Spectrum LED Lighting with Ca2LaHf2Al3O12:Ce3+ Broadband Green Phosphor. J. Alloy. Compd. 2020, 836, 155469. doi:10.1016/j.jallcom.2020.155469
  • Wang, X.; Zhao, Z.; Wu, Q.; Li, Y.; Wang, Y. Synthesis, Structure and Photoluminescence Properties of Ca2LuHf2(AlO4)3:Ce3+, a Novel Garnet-Based Cyan Light-Emitting Phosphor. J. Mater. Chem. C 2016, 4, 11396–11403. doi:10.1039/C6TC03933B
  • Baklanova, Y. V.; Maksimova, L. G.; Lipina, O. A.; Tyutyunnik, A. P.; Chufarov, A. Y.; Zubkov, V. G. A Red-Emitting Phosphor Based on Eu3+-Doped Li6SrLa2Ta2O12 Garnets for Solid State Lighting Applications. Mater. Res. Express 2019, 6, 066201. doi:10.1088/2053-1591/ab093b
  • Baklanova, Y. V.; Maksimova, L. G.; Lipina, O. A.; Tyutyunnik, A. P.; Zubkov, V. G. Novel Orange-Red-Emitting Li5+xCaxLa3-xTa2O12:Sm3+ (x = 0;1) Phosphors: Crystal Structure, Luminescence and Thermal Quenching Studies. J. Lumin. 2020, 224, 117315. doi:10.1016/j.jlumin.2020.117315
  • Liang, J.; Devakumar, B.; Sun, L.; Wang, S.; Sun, Q.; Huang, X. Full-Visible-Spectrum Lighting Enabled by an Excellent Cyan-Emitting Garnet Phosphor. J. Mater. Chem. C 2020, 8, 4934–4943. doi:10.1039/D0TC00006J
  • Huang, X.; Liang, J.; Rtimi, S.; Devakumar, B.; Zhang, Z. Ultra-High Color Rendering Warm-White Light-Emitting Diodes Based on an Efficient Green-Emitting Garnet Phosphor for Solid-State Lighting. Chem. Eng. J. 2021, 405, 126950. doi:10.1016/j.cej.2020.126950
  • Sun, Q.; Wang, S.; Sun, L.; Liang, J.; Devakumar, B.; Huang, X. Achieving Full-Visible-Spectrum LED Lighting via Employing an Efficient Ce3+ Activated Cyan Phosphor. Mater. Today Energy 2020, 17, 100448. doi:10.1016/j.mtener.2020.100448
  • Zhang, Z.; Liang, J.; Sun, L.; Wang, S.; Sun, Q.; Devakumar, B.; Rtimi, S.; Huang, X. Synthesis and Photoluminescence Properties of Near-UV-Excitable Cyan-Emitting Ca2YHf2Ga3O12:Ce3+ Garnet Phosphors. J. Lumin. 2020, 227, 117544. doi:10.1016/j.jlumin.2020.117544
  • Chen, Y.; Wu, K.; He, J.; Tang, Z.; Shi, J.; Xu, Y.; Liu, Z. Q. A Bright and Moisture-Resistant Red-Emitting Lu3Al5O12:Mn4+, Mg2+ Garnet Phosphor for High-Quality Phosphor-Converted White LEDs. J. Mater. Chem. C 2017, 5, 8828–8835. doi:10.1039/C7TC02514A
  • Donegan, J. F.; Glynn, T. J.; Imbusch, G. F.; Remeika, J. P. Luminescence and Fluorescence Line Narrowing Studies of Y3Al5O12: Mn4+. J. Lumin. 1986, 36, 93–100. doi:10.1016/0022-2313(86)90057-8
  • Asami, K.; Ueda, J.; Shiraiwa, M.; Fujii, K.; Yashima, M.; Tanabe, S. Redshift and Thermal Quenching of Ce3+ Emission in (Gd,Y)3(Al, Si)5(O, N)12 Oxynitride Garnet Phosphors. Opt. Mater. 2019, 87, 117–121. doi:10.1016/j.optmat.2018.04.049
  • Atuchin, V. V.; Beisel, N. F.; Galashov, E. N.; Mandrik, E. M.; Molokeev, M. S.; Yelisseyev, A. P.; Yusuf, A. A.; Xia, Z. Pressure-Stimulated Synthesis and Luminescence Properties of Microcrystalline (Lu,Y)3Al5O12:Ce3+ Garnet Phosphors. ACS Appl. Mater. Interfaces 2015, 7, 26235–26243. doi:10.1021/acsami.5b08411
  • Bartosiewicz, K.; Babin, V.; Mares, J. A.; Beitlerova, A.; Zorenko, Y.; Iskaliyeva, A.; Gorbenko, V.; Bryknar, Z.; Nikl, M. Luminescence and Energy Transfer Processes in Ce3+ Activated (Gd, Tb)3Al5O12 Single Crystalline Films. J. Lumin. 2017, 188, 60–66. doi:10.1016/j.jlumin.2017.04.010
  • Batentschuk, M.; Osvet, A.; Schierning, G.; Klier, A.; Schneider, J.; Winnacker, A. Simultaneous Excitation of Ce3+ and Eu3+ Ions in Tb3Al5O12. Radiat. Meas. 2004, 38, 539–543. doi:10.1016/j.radmeas.2003.12.009
  • He, C.; Ji, H.; Huang, Z.; Wang, T.; Zhang, X.; Liu, Y.; Fang, M.; Wu, X.; Zhang, J.; Min, X. Red-Shifted Emission in Y3MgSiAl3O12: Ce3+ Garnet Phosphor for Blue Light-Pumped White Light-Emitting Diodes. J. Phys. Chem. C 2018, 122, 15659–15665. doi:10.1021/acs.jpcc.8b03940
  • Ji, H.; Wang, L.; Molokeev, M.; Hirosaki, N.; Xie, R.; Huang, Z.; Xia, Z.; Kate, O. M.; Liu, L.; Atuchin, V. V. Structure Evolution and Photoluminescence of Lu3(Al,Mg)2(Al,Si)3O12:Ce3+ Phosphors: New Yellow-Color Converter for Blue LED-Driven Solid State Lighting. J. Mater. Chem. C 2016, 4, 6855–6863. doi:10.1039/C6TC00966B
  • Jiang, L.; Zhang, X.; Tang, H.; Zhu, S.; Li, Q.; Zhang, W.; Mi, X.; Lu, L.; Liu, X. A Mg2+- Ge4+ Substituting Strategy for Optimizing Color Rendering Index and Luminescence of YAG: Ce3+ Phosphors for White LEDs. Mater. Res. Bull. 2018, 98, 180–186. doi:10.1016/j.materresbull.2017.10.019
  • Jang, H. S.; Im, W. B.; Lee, D. C.; Jeon, D. Y.; Kim, S. S. Enhancement of Red Spectral Emission Intensity of Y3Al5O12:Ce3+ Phosphor via Pr co-Doping and Tb Substitution for the Application to White LEDs. J. Lumin. 2007, 126, 371–377. doi:10.1016/j.jlumin.2006.08.093
  • Khaidukov, N. M.; Makhov, V. N.; Zhang, Q.; Shi, R.; Liang, H. Extended Broadband Luminescence of Dodecahedral Multisite Ce3+ Ions in Garnets {Y3}[MgA](BAlSi)O12 (a = Sc, Ga, Al; B = Ga, Al). Dyes Pigm. 2017, 142, 524–529. doi:10.1016/j.dyepig.2017.04.013
  • Khaidukov, N. M.; Zhidkova, I. A.; Kirikova, N. Y.; Makhov, V. N.; Zhang, Q.; Shi, R.; Liang, H. Mechanism for Bifurcation of Broadband Luminescence Spectra from Ce3+ Ions at Dodecahedral Sites in Garnets {CaY2}[M2](Al2Si)O12 (M = Al,Ga,Sc). Dyes Pigm. 2018, 148, 189–195. doi:10.1016/j.dyepig.2017.09.012
  • Shang, M.; Fan, J.; Lian, H.; Zhang, Y.; Geng, D.; Lin, J. A Double Substitution of Mg2+-Si4+/Ge4+ for Al(1)3+-Al(2)3+ in Ce3+-Doped Garnet Phosphor for White LEDs. Inorg. Chem. 2014, 53, 7748–7755. doi:10.1021/ic501063j
  • Nazarov, M.; Noh, D. Y.; Sohn, J.; Yoon, C. Influence of Additional Eu3+ Coactivator on the Luminescence Properties of Tb3Al5O12:Ce3+, Eu3+. Opt. Mater. 2008, 30, 1387–1392. doi:10.1016/j.optmat.2007.07.005
  • Ogiegło, J. M.; Zych, A.; Ivanovskikh, K. V.; Jüstel, T.; Ronda, C. R.; Meijerink, A. Luminescence and Energy Transfer in Lu3Al5O12 Scintillators Co- Doped with Ce3+ and Tb3+. J. Phys. Chem. A 2012, 116, 8464–8474. doi:10.1021/jp301337f
  • Ogiegło, J. M.; Katelnikovas, A.; Zych, A.; Jüstel, T.; Meijerink, A.; Ronda, C. R. Luminescence and Luminescence Quenching in Gd3(Ga,Al)5O12 Scintillators Doped with Ce3+. J. Phys. Chem. A 2013, 117, 2479–2484. doi:10.1021/jp309572p
  • Oh, M. J.; Kim, H. J. Synthesis and Luminescent Properties of Gd3Ga2Al3O12 Phosphors Doped with Eu3+ or Ce3+. J. Korean Phys. Soc. 2016, 69, 1110–1114. doi:10.3938/jkps.69.1110
  • Setlur, A. A.; Heward, W. J.; Hannah, M. E.; Happek, U. Incorporation of Si4+–N3- into Ce3+ -Doped Garnets for Warm White LED Phosphors. Chem. Mater. 2008, 20, 6277–6283. doi:10.1021/cm801732d
  • Fu, S.; Tan, J.; Bai, X.; Yang, S.; You, L.; Du, Z. Effect of Al/Ga Substitution on the Structural and Luminescence Properties of Y3(Al1-xGax)5O12: Ce3+ Phosphors. Opt. Mater. 2018, 75, 619–625. doi:10.1016/j.optmat.2017.11.021
  • Liu, S.; Sun, P.; Liu, Y.; Zhou, T.; Li, S.; Xie, R. J.; Xu, X.; Dong, R.; Jiang, J.; Jiang, H. Warm White Light with a High Color-Rendering Index from a Single Gd3Al4GaO12:Ce3+ Transparent Ceramic for High-Power LEDs and LDs. ACS Appl. Mater. Interfaces. 2019, 11, 2130–2139. doi:10.1021/acsami.8b18103
  • Hu, S.; Qin, X.; Zhou, G.; Lu, C.; Guanghui, L.; Xu, Z.; Wang, S. Luminescence Characteristics of the Ce3+-Doped Garnets: The Case of Gd-Admixed Y3Al5O12 Transparent Ceramics. Opt. Mater. Express 2015, 5, 2902–2910. doi:10.1364/OME.5.002902
  • Tien, T. Y.; Gibbons, E. F.; DeLosh, R. G.; Zacmanidis, P. J.; Smith, D. E.; Stadler, H. L. Ce3+ Activated Y3Al5O12 and Some of Its Solid Solutions. J. Electrochem. Soc. 1973, 120, 278–281. doi:10.1149/1.2403436
  • Tratsiak, Y.; Bokshits, Y.; Borisevich, A.; Korjik, M.; Vaitkevicius, A.; Tamulaitis, G. Y2CaAlGe(AlO4)3:Ce and Y2MgAlGe(AlO4)3:Ce Garnet Phosphors for White LEDs. Opt. Mater. 2017, 67, 108–112. doi:10.1016/j.optmat.2017.03.047
  • Ueda, J.; Tanabe, S.; Nakanishi, T. Analysis of Ce luminescence quenching in solid solutions between Y(3)Al(5)O(12) and Y(3)Ga(5)O(12) by temperature dependence of photoconductivity measurement. J. Appl. Phys. 2011, 110, 53102–531026. doi:10.1063/1.3632069
  • Ueda, J.; Meijerink, A.; Dorenbos, P.; Bos, A. J. J.; Tanabe, S. Thermal Ionization and Thermally Activated Crossover Quenching Processes for 5d-4f Luminescence in Y3Al5−xGaxO12 : Pr3+. Phys. Rev. B 2017, 95, 014303. doi:10.1103/PhysRevB.95.014303
  • Wu, Y.; Ren, G. Crystal Growth, Structure, Optical and Scintillation Properties of Ce3+-Doped Tb2.2Lu0.8Al5O12 Single Crystals. CrystEngComm 2013, 15, 4153–4161. doi:10.1039/c3ce40324f
  • Zhong, J.; Zhuang, W.; Xing, X.; Wang, L.; Li, Y.; Zheng, Y.; Liu, R.; Liu, Y.; Hu, Y. Blue-Shift of Spectrum and Enhanced Luminescent Properties of YAG: Ce3+ Phosphor Induced by Small Amount of La3+ Incorporation. J. Alloys Compd. 2016, 674, 93–97. doi:10.1016/j.jallcom.2016.03.011
  • Tian, L.; Wang, L.; Zhang, L.; Zhang, Q.; Ding, W.; Yu, M. Enhanced Luminescence of Dy3+/Bi3+ co-Doped Gd3Al5O12 Phosphors by High-Efficiency Energy Transfer. J. Mater. Sci.: Mater. Electron. 2015, 26, 8507–8514. doi:10.1007/s10854-015-3522-1
  • Tian, L.; Shen, J.; Xu, T.; Wang, L.; Zhang, L.; Zhang, J.; Zhang, Q. Dy3+ Doped Thermally Stable Garnet-Based Phosphors: Luminescence Improvement by Changing the Host-Lattice Composition and Co-Doping Bi3+. RSC Adv. 2016, 6, 32381–32388. doi:10.1039/C6RA04761K
  • Li, J.; Li, J. G.; Sakka, Y. Investigation of New Red Phosphors of Eu3+ Activated (Gd,Lu)3Al5O12 Garnet. IJMSE. 2013, 1, 15–19. doi:10.12720/ijmse.1.1.15-19
  • Li, J.; Li, J. G.; Zhang, Z.; Wu, X.; Liu, S.; Li, X.; Sun, X.; Sakka, Y. Effective Lattice Stabilization of Gadolinium Aluminate Garnet (GdAG) via Lu3+ Doping and Development of Highly Efficient (Gd,Lu)AG:Eu3+ Red Phosphors. Sci. Technol. Adv. Mater. 2012, 13, 035007. doi:10.1088/1468-6996/13/3/035007
  • Onishi, Y.; Nakamura, T.; Sone, H.; Adachi, S. Synthesis and Properties of Tb3Al5O12:Eu3+ Garnet Phosphor. J. Lumin. 2018, 197, 242–247. doi:10.1016/j.jlumin.2018.01.043
  • Pavasaryte, L.; Katelnikovas, A.; Klimavicius, V.; Balevicius, V.; Momot, A.; Van Bael, M.; Hardy, A.; Kareiva, A. Eu3+ - Doped Y3-xSmxAl5O12 Garnet: Synthesis and Structural Investigation. New J. Chem. 2018, 42, 2278–2287. doi:10.1039/C7NJ03468G
  • Pavasaryte, L.; Katelnikovas, A.; Klimavicius, V.; Balevicius, V.; Krajnc, A.; Mali, G.; Plavec, J.; Kareiva, A. Eu3+-Doped Y3-xNdxAl3O12 Garnet: Synthesis and Structural Investigation. Phys. Chem. Chem. Phys. 2017, 19, 3729–3737. doi:10.1039/c6cp07723d
  • Gheorghe, C.; Lupei, A.; Hău, S.; Voicu, F.; Gheorghe, L.; Vlaicu, A. M. Compositional Dependence of Optical Properties of Sm3+-Doped Y3ScxAl5-xO12 Polycrystalline Ceramics. J. Alloys Compd. 2016, 683, 547–553. doi:10.1016/j.jallcom.2016.05.112
  • Niedźwiedzki, T.; Komar, J.; Głowacki, M.; Berkowski, M.; Romanowski, W. R. Luminescence and Energy Transfer Phenomena in Gd3 (Al,Ga)5O12 Crystals Single Doped with Thulium and co-Doped with Thulium and Holmium. J. Lumin. 2017, 192, 77–84. doi:10.1016/j.jlumin.2017.05.081
  • Lertloypanyachai, P.; Pathumrangsan, N.; Sreebunpeng, K.; Pattanaboonmee, N.; Chewpraditkul, W.; Yoshikawa, A.; Kamada, K.; Nikl, M. Luminescence and Light Yield of (Gd2Y)(Ga3Al2)O12:Pr3+ Single Crystal Scintillators. J. Cryst. Growth 2017, 468, 369–372. doi:10.1016/j.jcrysgro.2016.10.018
  • Xia, M.; Gu, S.; Zhou, C.; Liu, L.; Zhong, Y.; Zhang, Y.; Zhou, Z. Enhanced Photoluminescence and Energy Transfer Performance of Y3Al4GaO12:Mn4+, Dy3+ Phosphors for Plant Growth LED Lights. RSC Adv. 2019, 9, 9244–9252. doi:10.1039/C9RA00700H
  • Yamane, H.; Kawano, T. Preparation, Crystal Structure and Photoluminescence of Garnet-Type Calcium Tin Titanium Aluminates. J. Solid State Chem. 2011, 184, 965–970. doi:10.1016/j.jssc.2011.02.016
  • Kim, Y. H.; Kim, H. J.; Ong, S. P.; Wang, Z.; Im, W. B. Cation-Size-Mismatch as a Design Principle for Enhancing the Efficiency of Garnet Phosphors. Chem. Mater. 2020, 32, 3097–3108. doi:10.1021/acs.chemmater.0c00095
  • Li, J.; Wang, W.; Liu, B.; Duan, G.; Liu, Z. Enhanced Dy3+ white emission via energy transfer in spherical (Lu,Gd)3Al5O12 garnet phosphors. Sci. Rep. 2020, 10, 2285. doi:10.1038/s41598-020-59232-8
  • Ma, S.; Liu, B.; Cao, B.; Li, J.; Liu, Z. Study on Synthesis and Luminescent Properties of Mn4+ Doped (Gd,Y)3Al5O12 Phosphor. Opt. Mater. 2020, 102, 109815. doi:10.1016/j.optmat.2020.109815
  • Tong, E.; Song, K.; Deng, Z.; Shen, S.; Gao, H.; Su, W.; Wang, H. Ionic Occupation Sites, Luminescent Spectra, Energy Transfer Behaviors in Y3MgAl3SiO12: Ce3+, Mn2+ Phosphors for Warm White LED. J. Lumin. 2020, 217, 116787. doi:10.1016/j.jlumin.2019.116787
  • Wang, X.; Cao, Y.; Wei, Q.; Liu, X.; Liao, X.; Zhao, Z.; Shi, Y.; Wang, Y. Insight into a Novel Garnet-Based Yellowish-Green Phosphor: Structure, Luminescence Properties and Application for Warm White Light-Emitting Diodes. CrystEngComm 2019, 21, 6100–6108. doi:10.1039/C9CE01163C
  • Zheng, R.; Ding, J.; Zhang, Q.; Li, B.; Wang, Z.; Liu, C.; Lv, P.; Yu, K.; Wei, W. Dy3+-Doped Y3Al5O12 Transparent Ceramic for High Efficiency Ultraviolet Excited Single-Phase White-Emitting Phosphor. J. Am. Ceram. Soc. 2019, 102, 3510–3516. doi:10.1111/jace.16210
  • Bi, J.; Li, J. G.; Zhu, Q.; Chen, J.; Li, X.; Sun, X.; Kim, B. N.; Sakka, Y. Yellow-Emitting (Tb1−xCex)3Al5O12 Phosphor Powder and Ceramic (0 ≤ x ≤ 0.05): Phase Evolution, Photoluminescence, and the Process of Energy Transfer. Ceram. Int. 2017, 43, 8163–8170. doi:10.1016/j.ceramint.2017.03.142
  • Onishi, Y.; Nakamura, T.; Adachi, S. Yellow-Light Emitting Tb3Al5O12:Ce3+ Phosphor Properties Sensitized by Bi3+ Ions. J. Lumin. 2017, 192, 720–727. doi:10.1016/j.jlumin.2017.07.056
  • Hu, C.; Liu, G.; Wang, M.; Ma, S.; Zhang, J.; Wu, J.; Jing, G.; Wang, S.; Ye, Z. Preparation and Characterization of Gd3(ScAl)2Al3O12:Ce3+ Garnet Phosphors Towards High-Color-Rendering White-Light Illumination. J. Lumin. 2021, 235, 118062. doi:10.1016/j.jlumin.2021.118062
  • Li, X.; Guo, C.; Wang, H.; Chen, Y.; Zhou, J.; Lin, J.; Zeng, Q. Green Emitting Ba1.5Lu1.5Al3.5Si1.5O12: Ce3+ Phosphor with High Thermal Emission Stability for Warm WLEDs and FEDs. Ceram. Int. 2020, 46, 5863–5870. doi:10.1016/j.ceramint.2019.11.037
  • Bi, J.; Wang, X.; Molokeev, M. S.; Zhu, Q.; Li, X.; Chen, J.; Sun, X.; Kim, B. N.; Li, J. G. The Effects of Ga3+ Substitution on Local Structure and Photoluminescence of Tb3Al5O12:Ce Garnet Phoshor. Ceram. Int. 2018, 44, 8684–8690. doi:10.1016/j.ceramint.2018.02.104
  • Pasiński, D.; Sokolnicki, J. Broadband Orange Phosphor by Energy Transfer between Ce3+ and Mn2+ in Ca3Al2Ge3O12 Garnet Host. J. Alloys Compd. 2019, 786, 808–816. doi:10.1016/j.jallcom.2019.01.340
  • Ma, Y.; Zhang, L.; Zhou, T.; Sun, B.; Yao, Q.; Gao, P.; Huang, J.; Kang, J.; Selim, F. A.; Wong, C.; et al. Weak Thermal Quenching and Tunable Luminescence in Ce:Y3(Al,Sc)5O12 Transparent Ceramics for High Power White LEDs/LDs. Chem. Eng. J. 2020, 398, 125486. doi:10.1016/j.cej.2020.125486
  • Xiao, Y.; Xiao, W.; Zhang, L.; Hao, Z.; Pan, G. H.; Yang, Y.; Zhang, X.; Zhang, J. A Highly Efficient and Thermally Stable Green Phosphor (Lu2SrAl4SiO12:Ce3+) for Full-Spectrum White LEDs. J. Mater. Chem. C 2018, 6, 12159–12163. doi:10.1039/C8TC04101F
  • Zhang, X.; Zhang, D.; Kan, D.; Wu, T.; Song, Y.; Zheng, K.; Sheng, Y.; Shi, Z.; Zou, H. Crystal Structure, Luminescence Properties and Application Performance of Color Tuning Y2Mg2Al2Si2O12:Ce3+,Mn2+ Phosphors for Warm White Light-Emitting Diodes. Mater. Adv. 2020, 1, 2261–2270. doi:10.1039/D0MA00556H
  • Varela, C. F.; Molina, Y. D.; Gutiérrez, S. S.; Moreno-Aldana, L. C.; Vargas, C. A. P. Vargas, Optical and Structural Properties of the Fe3+-Doped Lu3Al5O12:Ce3+ Garnet Phosphor. RSC Adv. 2021, 11, 11804–11812. doi:10.1039/D1RA01345A
  • Ma, Y.; Zhang, L.; Huang, J.; Wang, R.; Li, T.; Zhou, T.; Shi, Z.; Li, J. L.; Y.; Huang, G.; Wang, Z.; et al. Broadband Emission Gd3Sc2Al3O12:Ce3+ Transparent Ceramics with a High Color Rendering Index for High-Power White LEDs/LDs. Opt. Express 2021, 29, 9474–9493. doi:10.1364/OE.417464
  • Huang, D.; Liu, Z.; Wang, B.; Che, H.; Zou, M.; Zeng, Q.; Lian, H.; Lin, J. Highly Efficient Yellow-Orange Emission and Superior Thermal Stability of Ba2YAl3Si2O12:Ce3+ for High-Power Solid Lighting. J. Am. Ceram. Soc. 2020, 1–11.
  • Jia, J.; Qiang, Y.; Xu, J.; Liang, M.; Wang, W.; Yang, F.; Cui, J.; Dong, Q.; Ye, X. A Comparison Study on the Substitution of Y3+−Al3+ by M2+−Si4+ (M = Ba, Sr, Ca, Mg) in Y3Al5O12: Ce3+ Phosphor. J. Am. Ceram. Soc. 2020, 1–9.
  • Kang, L.; Wang, H.; Li, X.; Zhou, J. Thermal Quenching and Color Tuning of Ce3+, Mn2+ co-Doped Ba2LuAl3Si2O12 for High Quality White-LED. J. Alloys Compd. 2021, 859, 157853. doi:10.1016/j.jallcom.2020.157853
  • Ming, Z.; Qiao, J.; Molokeev, M. S.; Zhao, J.; Swart, H. C.; Xia, Z. Multiple Substitution Strategies toward Tunable Luminescence in Lu2MgAl4SiO12:Eu2+ Phosphors. Inorg. Chem. 2020, 59, 1405–1413. doi:10.1021/acs.inorgchem.9b03142
  • Yan, B.; Wei, Y.; Wang, W.; Fu, M.; Li, G. Red-Tunable LuAG Garnet Phosphors via Eu3+→Mn4+ Energy Transfer for Optical Thermometry Sensor Application. Inorg. Chem. Front. 2021, 8, 746–757. doi:10.1039/D0QI01285H
  • Meng, Q.; Li, J. G.; Zhu, Q.; Li, X.; Sun, X. The Effects of Mg2+/Si4+ Substitution on Crystal Structure, Local Coordination and Photoluminescence of (Gd,Lu)3Al5O12:Ce Garnet Phosphor. J. Alloys Compd. 2019, 797, 477–485. doi:10.1016/j.jallcom.2019.05.086
  • Ming, Z.; Zhao, J.; Swart, H. C.; Xia, Z. Luminescence and Energy Transfer of Color-Tunable Lu2MgAl4SiO12:Eu2+,Ce3+, Mn2+ Phosphors. J. Rare Earths 2020, 38, 506–513. doi:10.1016/j.jre.2019.12.012
  • Singh, V.; Hakeem, D. A.; Lakshminarayan, G. An Insight into the Luminescence Properties of Ce3+ in Garnet Structured CaY2Al4SiO12:Ce3+ Phosphors. Optik 2020, 206, 163833. doi:10.1016/j.ijleo.2019.163833
  • Singh, V.; Tiwari, M. K. Pb2+ Doped CaY2Al4SiO12 Garnet Phosphor. Optik 2020, 202, 163541. doi:10.1016/j.ijleo.2019.163541
  • Sun, Z.; Chen, Z.; Wang, M.; Lu, B. Production and Optical Properties of Ce3+‐Activated and Lu3+‐ Stabilized Transparent Gadolinium Aluminate Garnet Ceramics. J. Am. Ceram. Soc. 2019, 1–10.
  • Tian, Y.; Tang, Y.; Yi, X.; Ao, G.; Chen, J.; Hao, D.; Lin, Y.; Zhou, S. The Analyses of Structure and Luminescence in (MgyY3-y)(Al5-ySiy)O12 and Y3(MgxAl5-2xSix)O12 Ceramic Phosphors. J. Alloys Compd. 2020, 813, 152236. doi:10.1016/j.jallcom.2019.152236
  • Zhang, Y.; Hu, S.; Liu, Y.; Chen, L.; Wang, Z.; Zhou, G.; Wang, S. Influences of Thermal Post-Treatment on the Mn Valence States and Luminescence Properties of Red-Emitting Lu3Al5O12: Mn4+ Transparent Ceramic Phosphors. Opt. Mater. 2020, 101, 100925–109705. doi:10.1016/j.optmat.2020.109705
  • Zhao, C.; Duan, Y.; Lin, H.; Zhang, D.; Hong, R.; Tao, C.; Han, Z.; Zhou, S. Synthesis and Luminescence Properties of Color-Tunable Ce, Mn co-Doped LuAG Transparent Ceramics by Sintering under Atmospheric Pressure. Ceram. Inter. 2021, 47, 9156–9163. doi:10.1016/j.ceramint.2020.12.040
  • Chen, X.; Qin, H.; Zhang, Y.; Jiang, J.; Wu, Y.; Jiang, H. Effects of Ga Substitution for Al on the Fabrication and Optical Properties of Transparent Ce:GAGG-Based Ceramics. J. Eur. Ceram. Soc. 2017, 37, 4109–4114. doi:10.1016/j.jeurceramsoc.2017.05.024
  • Chewpraditkul, W.; Pánek, D.; Brůža, P.; Chewpraditkul, W.; Wanarak, C.; Pattanaboonmee, N.; Babin, V.; Bartosiewicz, K.; Kamada, K.; Yoshikawa, A.; Nikl, M. Luminescence Properties and Scintillation Response in Ce3+ Doped Y2Gd1Al5-xGaxO12 (x = 2, 3, 4) Single Crystals. J. Appl. Phys. 2014, 116, 083505. doi:10.1063/1.4893675
  • Ueda, J.; Aishima, K.; Tanabe, S. Temperature and Compositional Dependence of Optical and Optoelectronic Properties in Ce3+-doped Y3Sc2Al3-xGaxO12 (x = 0, 1, 2, 3). Opt. Mater. 2013, 35, 1952–1957. doi:10.1016/j.optmat.2012.11.016
  • Chewpraditkul, W.; Pattanaboonmee, N.; Sakthong, O.; Chewpraditkul, W.; Szczesniak, T.; Moszynski, M.; Kamada, K.; Yoshikawa, A.; Nikl, M. Luminescence and Scintillation Characteristics of (GdxY3-x) Al2Ga3O12:Ce (x =1,2,3) Single Crystals. Opt. Mater. 2018, 76, 162–168. doi:10.1016/j.optmat.2017.12.025
  • Zhong, J.; Zhuang, W.; Xing, X.; Liu, R.; Li, Y.; Zheng, Y.; Hu, Y.; Xu, H. Synthesis, Structure and Luminescence Properties of New Blue-Green-Emitting Garnet-Type Ca3Zr2SiGa2O12: Ce3+ Phosphor for Near-UV Pumped White-LEDs. RSC Adv. 2016, 6, 2155–2161. doi:10.1039/C5RA22953G
  • Sawada, K.; Nakamura, T.; Adachi, S. An Orange-Light Emitting Garnet Phosphor: Tb3Ga5O12:Eu3+. ECS J. Solid State Sci. Technol. 2017, 6, R97–R104. doi:10.1149/2.0091708jss
  • Liu, X.; Li, L.; Noh, H. M.; Moon, B. K.; Choi, B. C.; Jeong, J. H. Chemical Bond Properties and Charge Transfer Bands of O2--Eu3+, O2--Mo6+ and O2--W6+ in Eu3+-doped garnet hosts Ln3M5O12 and ABO4 molybdate and tungstate phosphors. Dalton Trans. 2014, 43, 8814–8825. doi:10.1039/c4dt00674g
  • Hakeem, D. A.; Kim, D. H.; Kim, S. W.; Park, K. Crystal Structure and Photoluminescence Properties of Novel Garnet Y2-xLaCaGa3ZrO12:xLn3+ (Ln = Eu and Tb) Phosphors. Dyes Pigm. 2019, 163, 715–724. doi:10.1016/j.dyepig.2018.12.045
  • Jiang, L.; Zhang, X.; Wang, C.; Tang, H.; Zhu, S.; Li, Q.; Mi, X.; Lu, L. Luminescence and Energy Transfer of Sm3+- Codoped Y2.9Al4.25Ga0.75O12:Ce3+ 0.1 Phosphor. J. Mater. Sci.: Mater. Electron. 2017, 28, 18898–18902.
  • Li, Z.; Zhong, B.; Cao, Y.; Zhang, S.; Lv, Y.; Mu, Z.; Hu, Z.; Hu, Y. Energy Transfer and Tunable Luminescence Properties in Y3Al2Ga3O12: Tb3+, Eu3+ Phosphors. J. Alloys Compd. 2019, 787, 672–682. doi:10.1016/j.jallcom.2019.02.154
  • Dong, L.; Zhang, L.; Jia, Y.; Xu, Y.; Yin, S.; You, H. Realizing Broadband Spectral Conversion in Novel Ce3+,Cr3+,Ln3+ (Ln = Yb, Nd, Er) Tridoped near-Infrared Phosphors via Multiple Energy Transfers. Ceram. Int. 2021, 47, 3127–3135. doi:10.1016/j.ceramint.2020.09.149
  • Liu, Q.; Meng, F.; Zhang, X.; Zhang, C.; Wang, X.; Liu, L.; Li, C.; Lin, H.; Zhou, Y.; Zeng, F.; Su, Z. Al3+ -Doping-Induced Enhancement of Tb3Ga5O12:Eu3+ Orange Light-Emitting Phosphor Photoluminescence for White Light-Emitting Diodes. J. Lumin. 2020, 226, 117505. doi:10.1016/j.jlumin.2020.117505
  • Sawada, K.; Nakamura, T.; Adachi, S. Synthesis and Properties of Ca3Ga2Ge3O12:Tb3+ Garnet Phosphor. Ceram. Int. 2017, 43, 14225–14232. doi:10.1016/j.ceramint.2017.07.170
  • Zhong, J.; Zhao, W.; Zhuang, W.; Du, F.; Zhou, Y.; Yu, Y.; Wang, L. Selective Coordination of N3− and Tuning of Luminescence in Garnet (Y1−x,Lax)3(Al,Si)5(O,N)12: Ce3+ Phosphors. J. Alloys Compd. 2017, 726, 658–663. doi:10.1016/j.jallcom.2017.08.023
  • Hakeem, D. A.; Pi, J. W.; Kim, S. W.; Park, K. New Y2LuCaAl2SiO12:Ln (Ln = Ce3+, Eu3+, and Tb3+) Phosphors for White LED Applications. Inorg. Chem. Front. 2018, 5, 1336–1345. doi:10.1039/C8QI00111A
  • Gorbenko, V.; Zorenko, T.; Witkiewicz, S.; Paprocki, K.; Iskaliyeva, A.; Kaczmarek, A. M.; Deun, R. V.; Khaidukov, M. N.; Batentschuk, M.; Zorenko, Y. Luminescence of Ce 3+ Multicenters in Ca2+-Mg2+-Si4+ Based Garnet Phosphors. J. Lumin. 2018, 199, 245–250. doi:10.1016/j.jlumin.2018.03.058
  • Katelnikovas, A.; Winkler, H.; Kareiva, A.; Justel, T. A Synthesis and Optical Properties of Green to Orange Tunable Garnet Phosphors for Pc LEDs. Opt. Mater. 2011, 33, 992–995. doi:10.1016/j.optmat.2010.11.023
  • Khaidukov, N.; Zorenko, T.; Iskaliyeva, A.; Paprocki, K.; Batentschuk, M.; Osvet, A.; Deun, R. V.; Zhydaczevskii, Y.; Suchocki, A.; Zorenko, Y. Synthesis and Luminescent Properties of Prospective Ce3+ Doped Silicate Garnet Phosphors for White LED Converters. J. Lumin. 2017, 192, 328–336. doi:10.1016/j.jlumin.2017.06.068
  • Khaidukov, N.; Zorenko, Y.; Zorenko, T.; Iskaliyeva, A.; Paprocki, K.; Zhydachevskii, Y.; Suchocki, A.; Van Deun, R.; Batentschuk, M. New Ce3+ doped Ca2YMgScSi3O12 garnet ceramic phosphor for white LED converters, Phys. Status Solidi. 2017, 11(5), 1700016 .
  • Liu, Y.; Zhang, X.; Hao, Z.; Wang, X.; Zhang, J. Generation of Broadband Emission by Incorporating N3- into Ca3Sc2Si3O12 : Ce3+ Garnet for High Rendering White LEDs. J. Mater. Chem. 2011, 21, 6354–6358. doi:10.1039/c0jm04404k
  • Liu, Y.; Zhang, X.; Hao, Z.; Luo, Y.; Wang, X. J.; Zhang, J. Crystal Structure and Luminescence Properties of Lu3+ and Mg2+ Incorporated Silicate Garnet [Ca3_(x+0.06)LuxCe0.06](Sc2-yMgy)Si3O12. J. Lumin. 2012, 132, 1257–1260. doi:10.1016/j.jlumin.2011.12.060
  • Pan, Z.; Xu, Y.; Hu, Q.; Li, W.; Zhou, H.; Zheng, Y. Combination Cation Substitution Tuning of Yellow Orange Emitting Phosphor Mg2Y2Al2Si2O12:Ce3+. RSC Adv. 2015, 5, 9489–9496. doi:10.1039/C4RA14425B
  • Pan, Z.; Li, W.; Xu, Y.; Hu, Q.; Zheng, Y. Structure and Redshift of Ce3+ Emission in Anisotropic Expansion Garnet Phosphor MgY2Al4SiO12:Ce3+. RSC Adv. 2016, 6, 20458–20466. doi:10.1039/C6RA00356G
  • Pan, Z.; Chen, J.; Wu, H.; Li, W. Red Emission Enhancement in Ce3+/Mn2+ Co-Doping Suited Garnet Host MgY2Al4SiO12 for Tunable Warm White LED. Opt. Mater. 2017, 72, 257–264. doi:10.1016/j.optmat.2017.06.012
  • Sharma, S. K.; Lin, Y. C.; Carrasco, I.; Tingberg, T.; Bettinelli, M.; Karlsson, M. Weak Thermal Quenching of the Luminescence in the Ca3Sc2Si3O12:Ce3+ Garnet Phosphor. J. Mater. Chem. C 2018, 6, 8923–8933. doi:10.1039/C8TC02907E
  • Shi, Y.; Zhu, G.; Mikami, M.; Shimomura, Y.; Wang, Y. A novel Ce³ activated Lu3MgAl3SiO₁₂ garnet phosphor for blue chip light-emitting diodes with excellent performance . Dalton Trans. 2015, 44, 1775–1781. doi:10.1039/c4dt03144j
  • Lee, J.; Kim, T. W.; Shin, J. Y.; Ryu, J. H. Synthesis of Lu2.94Ce0.06MgAl3SiO12 Phosphor and Its Photoluminescent Properties. J. Korean Cryst. Growth Cryst. Technol. 2015, 25, 121–126. doi:10.6111/JKCGCT.2015.25.3.121
  • Zhou, Y.; Zhuang, W.; Hu, Y.; Liu, R.; Jiang, Z.; Liu, Y.; Li, Y.; Zheng, Y.; Chen, L.; Zhong, J. A Broad-Band Orange-Yellow-Emitting Lu2Mg2Al2Si2O12: Ce3+ Phosphor for Application in Warm White Light-Emitting Diodes. RSC Adv. 2017, 7, 46713–46720. doi:10.1039/C7RA08760H
  • Dobrowolska, A.; Zych, E. Spectroscopic Characterization of Ca3Y2Si3O12:Eu2+, Eu3+ Powders in VUV-UV − Vis Region. J. Phys. Chem. C 2012, 116, 25493–25503. doi:10.1021/jp306764f
  • Pasiński, D.; Sokolnicki, J. Luminescence Study of Eu3+-Doped Garnet Phosphors: Relating Structure to Emission. J. Alloy. Compd. 2017, 695, 1160–1165. doi:10.1016/j.jallcom.2016.10.243
  • Bhagat, M. S.; Shinde, K. N.; Singh, N.; Pathak, M. S.; Singh, P. K.; Pawar, S. U.; Singh, V. Photoluminescence Properties of Green Emitting CaY2Al4SiO12:Tb3+ Garnet Phosphor. Optik 2018, 161, 111–117. doi:10.1016/j.ijleo.2018.02.016
  • Jansen, T.; Jüstel, T.; Kirm, M.; Vielhauer, S.; Khaidukov, N. M.; Makhov, V. N. Composition Dependent Spectral Shift of Mn4+ Luminescence in Silicate Garnet Hosts CaY2M2Al2SiO12 (M = Al, Ga, Sc). J. Lumin. 2018, 198, 314–319. doi:10.1016/j.jlumin.2018.02.054
  • Gaofeng, L.; Degang, D.; Yinqun, L.; Qian, W.; Youjie, H.; Shiqing, X. Luminescence properties of Mn2+ions doped Lu2CaMg2Si3O12 garnet phosphors, J. Rare Earths 2012, 30(3), 193–196.
  • Jansen, T.; Jüstel, T.; Kirm, M.; Kozlova, J.; Mändar, H.; Vielhauer, S.; Khaidukov, N. M.; Makhov, V. N. Thermal Quenching of Mn4+ Luminescence in Sn4+-Containing Garnet Hosts. Opt. Mater. 2018, 84, 600–605. doi:10.1016/j.optmat.2018.07.061
  • Tang, H.; Zhang, X.; Cheng, L.; Wang, H.; Xie, J.; Yu, X.; Wang, Y.; Mi, X.; Liu, Q. Luminescence Properties and Applications of Ce3+-Activated Lu3Mg2GaSi2O12 Yellow Green Emission Garnet Phosphors. Ceram. Inter. 2021, 47, 13100–13106. doi:10.1016/j.ceramint.2021.01.174
  • Lohe, P. P.; Nandanwar, D. V.; Belsare, P. D.; Moharil, S. V. Colour Tuning of Garnet Phosphor through Codoping. J. Lumin. 2021, 235, 118017. doi:10.1016/j.jlumin.2021.118017
  • Levchuk, I.; Osvet, A.; Brabec, C. J.; Batentschuk, M.; Shakhno, A.; Zorenko, T.; Zorenko, Y. Micro-Powder Ca3Sc2Si3O12:Ce Silicate Garnets as Efficient Light Converters for WLEDs. Opt. Mater. 2020, 107, 109978. doi:10.1016/j.optmat.2020.109978
  • Wang, B.; Mi, R.; Liu, Y.; Yu, M.; Huang, Z.; Fang, M. Identification of Dual Luminescence Centers from a Single Site in a Novel Blue-Pumped Ca3Sc2Ge3O12:Ce3+ Phosphor. Dalton Trans. 2019, 48, 11791–11802. doi:10.1039/c9dt01252d
  • Kalaji, A.; Saines, P. J.; George, N. C.; Cheetham, A. K. Photoluminescence of Cerium-Doped (Ca1-xSrx)3RE2Ge3O12 Garnet Phosphors for Solid State Lighting: Relating Structure to Emission. Chem. Phys. Lett. 2013, 586, 91–96. doi:10.1016/j.cplett.2013.09.007
  • Luo, H.; Ning, L.; Dong, Y.; Bos, A. J. J.; Dorenbos, P. Electronic Structure and Site Occupancy of Lanthanides Doped (Sr,Ca)3(Y, Lu)2Ge3O12 Garnets: A Spectroscopic and First-Principles Study. J. Phys. Chem. C 2016, 120(50), 28743–28752. doi:10.1021/acs.jpcc.6b09077
  • Pasiński, D.; Zych, E.; Sokolnicki, J. Relationship between Structure and Luminescence Properties in Ce3+ or Ce3+, Mn2+-Doped Garnet Phosphors for Use in White LEDs. J. Lumin. 2016, 169, 862–867. doi:10.1016/j.jlumin.2015.02.044
  • Huang, C.-H.; Luo, L.; Yeh, Y.-T.; Jang, S.-M.; Liu, W.-R. Novel Red-Emitting Garnet Na2CaTi2Ge3O12:Pr3+,Na+ Phosphors. RSC Adv. 2014, 4, 5513–5517. doi:10.1039/c3ra45119d
  • Chi, F.; Wei, X.; Zhou, S.; Chen, Y.; Duan, C.; Yin, M. Enhanced 5D0 → 7F4 Transition and Optical Thermometry of Garnet Type Ca3Ga2Ge3O12:Eu3+ Phosphors. Inorg. Chem. Front. 2018, 5, 1288–1293. doi:10.1039/C8QI00199E
  • Hussain, S. K.; Yu, J. S. Broad Red-Emission of Sr3Y2Ge3O12:Eu2+ Garnet Phosphors under Blue Excitation for Warm WLED Applications. RSC Adv. 2017, 7, 13281–13288. doi:10.1039/C6RA28069B
  • Jiang, Z.; Gou, J.; Min, Y.; Huang, C.; Lv, W.; Yu, X.; Su, X.; Duan, L. Crystal Structure and Luminescence Properties of a Novel Non-Rare-Earth Activated Blue-Emitting Garnet Phosphor Ca4ZrGe3O12: Bi3+ for n-UV Pumped Light-Emitting Diodes. J. Alloy. Compd. 2017, 727, 63–68. doi:10.1016/j.jallcom.2017.08.109
  • Pasiński, D.; Zych, E.; Sokolnicki, J. Ce3+ to Mn2+ Energy Transfer in Sr3Y2Ge3O12:Ce3+, Mn2+ Garnet Phosphor. J. Alloy. Compd. 2015, 653, 636–642. doi:10.1016/j.jallcom.2015.08.277
  • Wu, Q.; Li, Y.; Wang, Y.; Liu, H.; Ye, S.; Zhao, L.; Ding, J.; Zhou, J. A Novel Narrow-Band Blue-Emitting Phosphor of Bi3+-Activated Sr3Lu2Ge3O12 Based on a Highly Symmetrical Crystal Structure Used for WLEDs and FEDs. Chem. Eng. J. 2020, 401, 126130. doi:10.1016/j.cej.2020.126130
  • Hussain, S. K.; Bharat, L. K.; Kim, D. H.; Yu, J. S. Facile Pechini Synthesis of Sr3Y2Ge3O12:Bi3+/Eu3+ Phosphors with Tunable Emissions and Energy Transfer for WLEDs. J. Alloys Compd. 2017, 703, 361–369. doi:10.1016/j.jallcom.2017.01.345
  • Gao, Z.; Xue, N.; Jeon, J. H.; Yu, R. Spectroscopic Properties of a Novel Garnet-Type Tellurate Orange Red Emitting Li3Gd3Te2O12: Sm3+ Phosphor. J. Mater. Sci.: Mater. Electron. 2017, 28, 12640–12645. doi:10.1007/s10854-017-7088-y
  • Deng, H.; Gao, Z.; Xue, N.; Jeong, J. H.; Yu, R. A Novel Eu3+-Doped Garnet-Type Tellurate Red-Emitting Phosphor with High Thermal Stability and Color Purity. J. Lumin. 2017, 192, 684–689. doi:10.1016/j.jlumin.2017.07.063
  • Zhang, W.; Seo, H. J. Luminescence and Structure of a Novel Red-Emitting Phosphor Eu3+-Doped Tellurate Garnet Li3Y3Te2O12. J. Alloys Compd. 2013, 553, 183–187. doi:10.1016/j.jallcom.2012.11.118
  • Liu, S.; He, J.; Wu, Z.; Jeong, J. H.; Deng, B.; Yu, R. Preparation and Study on the Spectral Properties of Garnet-Type Li3Gd3Te2O12:Dy3+ Single-Phase Full-Color Phosphor. J. Lumin. 2018, 200, 164–168. doi:10.1016/j.jlumin.2018.03.089
  • Deng, B.; Zhou, C.; Liu, H.; Chen, J. Preparation and Investigation of Tm3+-Doped Li3Gd3Te2O12 Blue-Emitting Phosphor. Mater. Sci. Forum 2018, 921, 111–118. doi:10.4028/www.scientific.net/MSF.921.111
  • Qu, M.; Zhang, X.; Mi, X.; Sun, H.; Liu, Q.; Bai, Z. Novel and Wide-Ranging Color Tuning Photoluminescence Properties of Tb3+/Eu3+ Doped Garnet-Type Li3Lu3Te2O12 Phosphor: Energy Transfer and Enhanced Thermal Stability. J. Alloys Compd. 2021, 872, 159506. doi:10.1016/j.jallcom.2021.159506
  • Zhang, X.; Meng, F.; Wei, H.; Seo, H. J. Eu3+ Luminescence in Novel Garnet-Type Li5La3Nb2O12 Ceramics. Ceram. Int. 2013, 39, 4063–4067. doi:10.1016/j.ceramint.2012.10.259
  • Liu, F.; Fang, Y.; Hou, J.; Zhang, N.; Ma, Z. Garnet-Based Red Emitting Phosphors Li6MLa2Nb2O12: Eu3+ (M = Ca, Sr, Ba):Photoluminescence Improvement by Changing Crystal Lattice. Ceram. Int. 2014, 40, 3237–3241. doi:10.1016/j.ceramint.2013.09.113
  • Du, P.; Meng, Q.; Wang, X.; Zhu, Q.; Li, X.; Sun, X.; Li, J. G. Sol-Gel Processing of Eu3+ Doped Li6CaLa2Nb2O12 Garnet for Efficient and Thermally Stable Red Luminescence Under Near-Ultraviolet/Blue Light Excitation. Chem. Eng. J. 2019, 375, 121937. doi:10.1016/j.cej.2019.121937
  • Zhong, J.; Chen, D.; Zhao, W.; Zhou, Y.; Yu, H.; Chen, L.; Jia, Z. Garnet-Based Li6CaLa2Sb2O12:Eu3+ Red Phosphors: A Potential Color-Converting Material for Warm White Light-Emitting Diodes. J. Mater. Chem. C 2015, 3, 4500–4510. doi:10.1039/C5TC00708A
  • Han, Y.; Wang, S.; Liu, H.; Shi, L.; Dong, X.; Fan, R.; Liu, C.; Mao, Z.; Wang, D.; Zhang, Z.; Zhao, Y. A Novel Al3+ Modified Li6CaLa2Sb2O12:Mn4+ Far-Red-Emitting Phosphor with Garnet Structure for Plant Cultivation. J. Lumin. 2020, 221, 117031. doi:10.1016/j.jlumin.2020.117031
  • Zhang, S.; Zhang, P.; Liu, X.; Yang, Z.; Huang, Y.; Seo, H. J. A Red-Emitting Phosphor of Li5La3Ti2O12:Eu3+ with Garnet-like Structure and near-UV/Blue Light Excitation. J. Lumin. 2018, 203, 152–159.
  • Pires, A. M.; Davolos, M. R. Luminescence of Europium (III) and Manganese (II) in Barium and Zinc Orthosilicate. Chem. Mater. 2001, 13, 21–27. doi:10.1021/cm000063g
  • Chen, L.; Chen, X.; Liu, F.; Chen, H.; Wang, H.; Zhao, E.; Jiang, Y.; Chan, T. S.; Wang, C. H.; Zhang, W.; et al. Charge Deformation and Orbital Hybridization: Intrinsic Mechanisms on Tunable Chromaticity of Y3Al5O12:Ce3+ Luminescence by Doping Gd3+ for Warm White LEDs. Sci. Rep. 2015, 5, 11514.
  • Bettinelli, M.; Speghini, A.; Piccinelli, F.; Neto, A. N. C.; Malta, O. L. Luminescence Spectroscopy of Eu3+ in Ca3Sc2Si3O12. J. Lumin. 2011, 131, 1026–1028. doi:10.1016/j.jlumin.2011.01.016
  • Loiko, P. A.; Rachkovskaya, G. E.; Zakharevich, G. B.; Kornienko, A. A.; Dunina, E. B.; Yasukevich, A. S.; Yumashev, K. V. Cooperative Up-Conversion in Eu3+, Yb3+-Doped SiO2–PbO–PbF2–CdF2 Oxyfluoride Glass. J. Non-Cryst. Solids 2014, 392–393, 39–44. doi:10.1016/j.jnoncrysol.2014.04.004
  • Chen, D.; Zhou, Y.; Xu, W.; Zhong, J.; Ji, Z.; Xiang, W. Enhanced Luminescence of Mn4+: Y3Al5O12 Red Phosphor via Impurity Doping. J. Mater. Chem. C 2016, 4, 1704–1712. doi:10.1039/C5TC04133C
  • Ronde, H.; Snijder, J. G. The Position of the VO43- Charge-Transfer Transition as a Function of the V-O Distance. Chem. Phys. Lett. 1977, 50, 282–283. doi:10.1016/0009-2614(77)80182-6
  • Sayer, M. Luminescence in the Alkali Metavanadates. Phys. Stat. Sol. (A) 1970, 1, 269–277. doi:10.1002/pssa.19700010209
  • Zhang, Y.; Li, X.; Li, K.; Lian, H.; Shang, M.; Lin, J. Interplay between Local Environments and Photoluminescence of Eu2+ in Ba2Zr2Si3O12: Blue Shift Emission, Optimal Bond Valence and Luminescence Mechanisms. J. Mater. Chem. C 2015, 3, 3294–3303. doi:10.1039/C5TC00152H
  • Zhou, Y. H.; Lin, J.; Yu, M.; Han, S. M.; Wang, S. B.; Zhang, H. J. Morphology Control and Luminescence Properties of YAG:Eu Phosphors Prepared by Spray Pyrolysis. Mater. Res. Bull. 2003, 38, 1289–1299. doi:10.1016/S0025-5408(03)00141-7
  • Ji, H.; Wang, L.; Molokeev, M. S.; Hirosaki, N.; Huang, Z.; Xia, Z.; Kate, O. M.; Liu, L.; Xie, R. New Garnet Structure Phosphors, Lu3-xYxMgAl3SiO12: Ce3+ (x = 0–3), Developed by Solid Solution Design. J. Mater. Chem. C 2016, 4, 2359–2366. doi:10.1039/C6TC00089D
  • Hsu, C.; Powell, R. C. Energy Transfer in Europium Doped Yttrium Vanadate Crystals. J. Lumin. 1975, 10, 273–293. doi:10.1016/0022-2313(75)90051-4
  • Li, C.; Hou, Z.; Zhang, C.; Yang, P.; Li, G.; Xu, Z.; Fan, Y.; Lin, J. Controlled Synthesis of Ln3+ (Ln = Tb, Eu, Dy) and V5+ Ion DopedYPO4 Nano-/Microstructures with Tunable Luminescent Colors. Chem. Mater. 2009, 21, 4598–4607. doi:10.1021/cm901658k
  • Burstein, E. Anomalous Optical Absorption Limit in InSb. Phys. Rev. 1954, 93, 632–633. doi:10.1103/PhysRev.93.632
  • Moss, T. S. Theory of the Spectral Distribution of Recombination Radiation from InSb. Proc. Phys.Soc. Sec. London 1964, B67, 775.
  • Roth, A. P.; Webb, J. B.; Williams, D. F. Absorption Edge Shift in ZnO Thin Films at High Carrier Densities. Solid State Commun. 1981, 39, 1269–1271. doi:10.1016/0038-1098(81)90224-6
  • Han, J.; Pan, F.; Molokeev, M. S.; Dai, J.; Peng, M.; Zhou, W.; Wang, J. Redefinition of Crystal Structure and Bi3+ Yellow Luminescence with Strong NUV Excitation in La3BWO9:Bi3+ Phosphor for WLEDs. ACS Appl. Mater. Interfaces. 2018, 10, 13660–13668. doi:10.1021/acsami.8b00808
  • Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. A 1976, 32, 751–767. doi:10.1107/S0567739476001551
  • Blasse, G. Optical Electron Transfer Between Metal Ions and its Consequences, Struct. Bond. 1991, 76, 153–187.
  • Fischer, S.; Baur, F.; Jüstel, T. Suppression of Metal-to-Metal Charge Transfer Quenching in Ce3+ and Eu3+ Comprising Garnets by Core-Shell Structure. J. Lumin. 2018, 203, 467–472. doi:10.1016/j.jlumin.2018.07.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.