4,352
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Structure and synthesis of MAX phase materials: a brief review

&

References

  • Nowotny, H. Strukturchemie Einiger Verbindungen Der Bergangsmetalle Mit Den Elementen C,Si,Ge,Sn. Prog. Solid State Chem. 1971, 5, 27–70. [Database] doi:10.1016/0079-6786(71)90016-1
  • Lis, J.; Pampuch, R.; Piekarczyk, J.; Stobierski, L. New Ceramics Based on Ti3SiC2. Ceram. Int. 1993, 19, 219–222. doi:10.1016/0272-8842(93)90052-S
  • Barsoum, M. W.; El‐Raghy, T. Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2. J. Am. Ceram. Soc. 1996, 79, 1953–1956. [Database] doi:10.1111/j.1151-2916.1996.tb08018.x
  • Barsou, M. W. The MN+1AXN Phases: A New Class of Solids: Thermodynamically Stable Nanolaminate. Prog. Solid State Chem. 2000, 28, 201–281.
  • Hu, W. Q.; Huang, Z. Y.; Wang, Y. B.; L, X.; Zhai, H. X.; Zhou, Y.; Chen, C. Layered Ternary MAX Phases and Their MX Particulate Derivative Reinforced Metal Matrix Composite: A Review. J. Alloy Compd. 2021, 856, 157313. doi:10.1016/j.jallcom.2020.157313
  • Sun, Z. M. Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds. Int. Mater. Rev. 2011, 56, 143–166. [Database] doi:10.1179/1743280410Y.0000000001
  • Fang, X. M.; Wang, X. H.; Zhang, H.; Zhou, Y. C. Electrically Conductive Honeycomb Monolith of Nanolaminated Ti3AlC2: Preparation and Characterization. J. Mater. Sci. Technol. 2015, 31, 125–128. doi:10.1016/j.jmst.2014.04.004
  • Jing, J.; Li, J.; He, Z.; He, J.; Guo, H. High-Temperature CMAS Resistance Performance of Ti2AlC Oxide Scales. Corros. Sci. 2020, 174, Article Number 108832. doi:10.1016/j.corsci.2020.108832
  • Shamsipoor, A.; Farvizi, M.; Razavi, M.; Keyvani, A.; Mousavi, B.; Pan, W. Hot Corrosion Behavior of Cr2AlC MAX Phase and CoNiCrAlY Compounds at 950 °C in Presence of Na2SO4+V2O5 Molten Salts. Ceram. Int. 2021, 47, 2347–2357. doi:10.1016/j.ceramint.2020.09.077
  • Farle, A. S. M.; Stikkelman, J.; van der Zwaag, S.; Sloof, W. G. Oxidation and Self-Healing Behaviour of Spark Plasma Sintered Ta2AlC. J. Eur. Ceram. Soc. 2017, 37, 1969–1974. doi:10.1016/j.jeurceramsoc.2017.01.004
  • Liu, Y.; Zhu, D.; Grasso, S.; Hu, C. F. Microstructure and Mechanical Properties of Gel Casted Ti3AlC2. Ceram. Int. 2018, 44, 23254–23258. doi:10.1016/j.ceramint.2018.08.269
  • Galvin, T.; Hyatt, N. C.; Rainforth, W. M.; Reaney, I. M.; Shepherd, D. Slipcasting of MAX Phase Tubes for Nuclear Fuel Cladding Applications. Nucl. Mater. Energy 2020, 22, Article Number 100725. doi:10.1016/j.nme.2020.100725
  • Tallman, D. J.; Hoffman, E. N.; Caspi, E. N.; Garcia-Diaz, B. L.; Kohse, G.; Sindelar, R. L.; Barsoum, M. W. Effect of Neutron Irradiation on Select MAX Phases. Acta Mater. 2015, 85, 132–143. doi:10.1016/j.actamat.2014.10.068
  • Zhang, H. L.; Su, R. R.; Szlufarska, L.; Shi, L. Q.; Wen, H. M. Helium Effects and Bubbles Formation in Irradiated Ti3SiC2. J. Eur. Ceram. Soc. 2021, 41, 252–258. doi:10.1016/j.jeurceramsoc.2020.08.015
  • Bugnet, M.; Mauchamp, V.; Eklund, P.; Jaouen, M.; Cabioc’h, T. Contribution of Core-Loss Fine Structures to the Characterization of Ion Irradiation Damages in the Nanolaminated Ceramic Ti3AlC2. Acta Mater. 2013, 61, 7348–7363. doi:10.1016/j.actamat.2013.08.041
  • Nappé, J. C.; Monnet, I.; Grosseau, P.; Audubert, F.; Guilhot, B.; Beauvy, M.; Benabdesselam, M.; Thomé, L. Structural Changes Induced by Heavy Ion Irradiation Intitanium Silicon Carbide. J. Nucl. Mater. 2011, 409, 53–61. doi:10.1016/j.jnucmat.2010.12.235
  • Whittle, K. R.; Blackford, M. G.; Aughterson, R. D.; Moricca, S.; Lumpkin, G. R.; Riley, D. P.; Zaluzec, N. J. Radiation Tolerance of Mn+1AXn Phases, Ti3AlC2 and Ti3SiC2. Acta Mater. 2010, 58, 4362–4368. doi:10.1016/j.actamat.2010.04.029
  • Qarra, H. H.; Knowles, K. M.; Vickers, M. E.; Solvas, E. Z.; Akhmadaliev, S. Heavy Ion Irradiation Damage in Zr3(Al0.9Si0.1)C2 MAX Phase. J. Nucl. Mater. 2020, 540, Article Number 152360. doi:10.1016/j.jnucmat.2020.152360
  • Hanson, W. A.; Patel, M. K.; Crespillo, M. L.; Zhang, F.; Zinkle, S. J.; Zhang, Y. Z.; Weber, W. J. Ionizing vs Collisional Radiation Damage in Materials: Separated. Competing, and Synergistic Effects in Ti3SiC2. Acta Mater. 2019, 173, 195–205. doi:10.1016/j.actamat.2019.05.015
  • Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Database] doi:10.1002/adma.201102306
  • Liu, R.; Bie, Y. C.; Wang, Y.; Liu, T. Preparation and Research Progress of Two-Dimensional Crystal MXene. Chem. Adhes. 2018, 40, 294–297.
  • Mallakpour, S.; Behranvand, V.; Hussain, C. M. MXenes-Based Materials: Structure, Synthesis, and Various Applications. Ceram. Int. https://doi.org/10.1016/j.eramint.2021.06.107
  • Cui, W.; Hu, Z. Y.; Unocic, R. R.; Van, T. G.; Sang, X. H. Atomic Defects, Functional Groups and Properties in MXenes. Chin. Chem. Lett. 2021, 32, 339–344. doi:10.1016/j.cclet.2020.04.024
  • Hong, L. F.; Guo, R. T.; Yuan, Y. Y.; Ji, X. Y.; Li, Z. S.; Lin, Z. D.; Pan, W. G. Recent Progress of Two-Dimensional MXenes in Photocatalytic Applications: A Review. Mater. Today Energy 2020, 18, Article Number 100521. doi:10.1016/j.mtener.2020.100521
  • Kshetri, T.; Tran, D. T.; Le, H. T.; Nguyen, D. C.; Hoa, H. V.; Kim, N. H.; Lee, J. H. Recent Advances in Mxene-Based Nanocomposites for Electrochemical Energy Storage Applications. Prog. Mater. Sci. 2021, 117, Article Number 100733. doi:10.1016/j.pmatsci.2020.100733
  • Yin, T.; Li, Y.; Wang, R. H.; Al-Hartomy, O. A.; Al-Ghamdi, A.; Wageh, S.; Luo, X. L.; Tang, X.; Zhang, H. Synthesis of Ti3C2Fx MXene with Controllable Fluorination by Electrochemical Etching for Lithium-Ion Batteries Applications. Ceram. Int. 2021, 10.1016/j.ceramint.2021.07.023.
  • Shekhirev, M.; Shuck, C. E.; Sarycheva, A.; Gogotsi, Y. Characterization of MXenes at Every Step, from Their Precursors to Single Flakes and Assembled Films. Prog. Mater. Sci. 2021, 120, Article Number 100757. doi:10.1016/j.pmatsci.2020.100757
  • Zhang, P.; Liu, Y.; Ding, J.; Zhang, Y. M.; Yan, J. L.; An, B.; Iijima, T.; Sun, Z. M. Controllable Growth of Ga Wires From Cr2GaC-Ga and Its Mechanism. Phys. B. 2015, 475, 90–98. doi:10.1016/j.physb.2015.07.005
  • Gai, J.; Chen, J.; Zhang, H.; Liu, Z. M.; Li, M. S.; Zho, Y. C. Fabrication of TiO2 Nanowhiskers by the Heat Treatment of Bulk Ti3Si0.9Al0.9C2 in Rough Vacuum. Ceram. Int. 2016, 42, 6868–6873. doi:10.1016/j.ceramint.2016.01.070
  • Goossens, N.; Tunca, A. B.; Lapauw, T.; Konstantina, L.; Vleugels, J. MAX Phases, Structure, Processing, and Properties. Elsevier Ref. Collect. Mater. Sci. Mater. Eng. 2021, 2, 182–199.
  • Lin, Z. J.; Zhuo, M. J.; Zhou, Y. C.; Li, M. S.; Wang, J. Y. Structural Characterization of a New Layered-Ternary Ta4AlC3 Ceramic. J. Mater. Res. 2006, 21, 2587–2592. doi:10.1557/jmr.2006.0310
  • Zheng, Y. L.; Zhou, Y. C.; Feng, Z. H. Preparation, Structural Featrures, Properties and Prospective of MAX Phases. Aerospace Mater. Technol. 2013, 43, 1–23.
  • Istomin, P.; Istomina, E.; Nadutkin, A.; Grass, V.; Leonov, A.; Kaplan, M.; Presniakov, M. Fabrication of Ti3SiC2 and Ti4SiC3 MAX Phase Ceramics through Reduction of TiO2 with SiC. Ceram. Int. 2017, 43, 16128–16135. doi:10.1016/j.ceramint.2017.08.180
  • Hu, C.; He, L.; Zhang, J.; Bao, Y.; Wang, Z.; Li, M.; Zhou, Y. Microstructure and Properties of Bulk Ta2AlC Ceramic Synthesized by an in Situ Reaction/Hot Pressing Method. J. Eur. Ceram. Soc. 2008, 28, 1679–1685. doi:10.1016/j.jeurceramsoc.2007.10.006
  • Zhang, H.; Hu, T.; Wang, X.; Zhou, Y. C. Structural Defects in MAX Phases and Their Derivative MXenes: A Look Forward. J. Mater. Sci. Technol. 2020, 38, 205–220. doi:10.1016/j.jmst.2019.03.049
  • Barsoum, M. W. MAX Phases Properties of Machinable Ternary Carbides and Nitrides. John Wiley and Sons, Singapore, 2013, pp. 399–415.
  • Sokol, M.; Natu, V.; Kota, S.; Barsoum, M. W. On the Chemical Diversity of the MAX Phases. Trends Chem. 2019, 1, 210–223. doi:10.1016/j.trechm.2019.02.016
  • Palmquist, J. P.; Li, S.; Persson, P. O. Å.; Emmerlich, J.; Wilhelmsson, O.; Högberg, H.; Katsnelson, M. I.; Johansson, B.; Ahuja, R.; Eriksson, O.; et al. Mn+1AXn Phases in the Ti-Si-C System Studied by Thin-Film Synthesis and ab Initio Calculations. Phys. Rev. B. 2004, 70, Article Number 165401. doi:10.1103/PhysRevB.70.165401
  • Chen, L.; Dahlqvist, M.; Lapauw, T.; Tunca, B.; Wang, F.; Lu, J.; Meshkian, R.; Lambrinou, K.; Blanpain, B.; Vleugels, J.; Rosen, J. Theoretical Prediction and Synthesis of (Cr2/3Zr1/3)2AlC i-MAX Phase. Inorg. Chem. 2018, 57, 6237–6244. doi:10.1021/acs.inorgchem.8b00021
  • Tunca, B.; Lapauw, T.; Delville, R.; Neuville, D. R.; Hennet, L.; Thiaudière, D.; Ouisse, T.; Hadermann, J.; Vleugels, T.; Lambrinou, K. Synthesis and Characterization of Double Solid Solution (Zr,Ti)2(Al,Sn)C MAX Phase Ceramics. Inorg. Chem. 2019, 58, 6669–6683. doi:10.1021/acs.inorgchem.9b00065
  • Khazaei, M.; Mishra, A.; Venkataramanan, N. S.; Singh, A. K.; Yunoki, S. J. Recent Advances in MXenes: From Fundamentals to Applications. Curr. Opin. Solid St. Mater. 2019, 23, 164–178. doi:10.1016/j.cossms.2019.01.002
  • Dahlqvist, M.; Petruhins, A.; Lu, J.; Hultman, L.; Rosen, J. Origin of Chemically Ordered Atomic Laminates ( i-MAX): Expanding the Elemental Space by a Theoretical/Experimental Approach. ACS Nano 2018, 12, 7761–7770. doi:10.1021/acsnano.8b01774
  • Alnoor, H.; Elsukova, A.; Palisaitis, J.; Persson, I.; Tseng, E.; Lu, J.; Hultman, L.; Persson, P. O. A. Exploring MXenes and Their MAX Phase Precursors by Electron Microscopy. Mater. Today Adv. 2021, 9, Article Number 100123. doi:10.1016/j.mtadv.2020.100123
  • Khazaei, M.; Ranjbar, A.; Esfarjani, K.; Bogdanovski, D.; Dronskowski, R.; Yunoki, S. J. Insights into Exfoliation Possibility of MAX Phases to MXenes. Phys. Chem. Chem. Phys. 2018, 20, 8579–8592. doi:10.1039/C7CP08645H
  • Zhou, Y. C.; Sun, Z. M. Electronic Structure and Bonding Properties in Layered Ternary Carbide Ti3SiC2. J. Phys.: Condensed Matter 2000, 12, L457– L462.
  • Hadi, M. A.; Kelaidis, N.; Naqib, S. H.; Chroneos, A.; Islam, A. K. M. A. Electronic Structures, Bonding Natures and Defect Processes in Sn-Based 211 MAX Phases. Comp. Mater. Sci. 2019, 168, 203–212. doi:10.1016/j.commatsci.2019.06.008
  • Gonzalez-Julian, J.; Go, T.; Mack, D. E.; Vaßen, R. Thermal Cycling Testing of TBCs on Cr2AlC MAX Phase Substrates. Surf. Coat. Technol. 2018, 340, 17–24. doi:10.1016/j.surfcoat.2018.02.035
  • Wang, Q.; Hu, C.; Cai, S.; Sakka, Y.; Grasso, S.; Huang, Q. Synthesis of High‐Purity Ti3SiC2 by Microwave Sintering. Int. J. Appl. Ceram. Technol. 2014, 11, 911–918. doi:10.1111/ijac.12065
  • Zhang, Y.; Mao, Z.; Han, Q.; Li, Y. B.; Li, M.; Du, S. Y.; Chai, Z. F.; Huang, Q. The Role of Hume-Rothery's Rules Play in the MAX Phases Formability. Materialia 2020, 12, Article Number 100810. doi:10.1016/j.mtla.2020.100810
  • Azzouz-Rached, A.; Babu, M. M. H.; Rached, H.; Hadji, T.; Rached, D. Prediction of a New Sn-Based MAX Phases for Nuclear Industry Applications: DFT Calculations. Mater. Today Commun. 2021, 27, Article Number 102233. doi:10.1016/j.mtcomm.2021.102233
  • Daoudi, B.; Yakoubi, A.; Beldi, L.; Bouhafs, B. Full-Potential Electronic Structure of Hf2AlC and Hf2AlN. Acta Mater. 2007, 55, 4161–4165. doi:10.1016/j.actamat.2007.03.011
  • Bowden, D.; Ward, J.; Middleburgh, S.; de Moraes Shubeita, S.; Zapata-Solvas, E.; Lapauw, T.; Vleugels, J.; Lambrinou, K.; Lee, W. E.; Preuss, M.; Frankel, P. The Stability of Irradiation-Induced Defects in Zr3AlC2, Nb4AlC3 and (Zr0.5,Ti0.5)3AlC2 MAX Phase-Based Ceramics. Acta Mater. 2020, 183, 24–35. doi:10.1016/j.actamat.2019.10.049
  • Istomina, E. I.; Istomin, P. V.; Nadutkin, A. V.; Grass, V. E.; Bogdanova, A. S. Optimization of the Carbosilicothermic Synthesis of the Ti4SiC3 MAX Phase. Inorg. Mater. 2018, 54, 528–536. doi:10.1134/S0020168518060055
  • Akter, K.; Parvin, F.; Hadi, M. A.; Islam, K. M. A. Insights into the Predicted Hf2SN in Comparison with the Synthesized MAX Phase Hf2SC: A Comprehensive Study. Comput. Condens. Matter. 2020, 24, Article Number e00485. doi:10.1016/j.cocom.2020.e00485
  • Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P.; et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737. doi:10.1021/jacs.9b00574
  • Ingason, A. S.; Petruhins, A.; Dahlqvist, M.; Magnus, F.; Mockute, A.; Alling, B.; Hultman, L.; Abrikosov, I. A.; Persson, P. O. Å.; Rosen, J. Nanolaminated Magnetic Phase: Mn2GaC. Mater. Res. Lett. 2014, 2, 89–93. doi:10.1080/21663831.2013.865105
  • Bai, Y.; He, X.; Li, Y.; Zhu, C. C.; Li, M. W. An ab Initio Study of the Electronic Structure and Elastic Properties of the Newly Discovered Ternary Carbide Ti4GaC3. Solid State Commun. 2009, 149, 2156–2159. doi:10.1016/j.ssc.2009.09.024
  • Jiao, Z. Y.; Ma, S. H.; Wang, T. X. High-Pressure Phase Stability, Mechanical Properties and Bonding Characteristics of Ti4GeC3 Compound. Solid State Sci. 2015, 39, 97–104. doi:10.1016/j.solidstatesciences.2014.12.003
  • Cuskelly, D. T.; Richards, E. R.; Kisi, E. H.; Keast, V. J. Ti3GaC2 and Ti3InC2: First Bulk Synthesis, DFT Stability Calculations and Structural Systematics. J. Solid St. Chem. 2015, 230, 418–425. doi:10.1016/j.jssc.2015.07.028
  • Lapauw, T.; Tunca, B.; Cabioc’h, T.; Vleugels, J.; Lambrinou, K. Reactive Spark Plasma Sintering of Ti3SnC2, Zr3SnC2 and Hf3SnC2 Using Fe, Co or Ni Additives. J. Eur. Ceram. Soc. 2017, 37, 4539–4545. doi:10.1016/j.jeurceramsoc.2017.06.041
  • Hadi, M. A.; Kelaidis, N.; Naqib, S. H.; Chroneos, A.; Islam, A. K. M. A. Mechanical Behaviors, Lattice Thermal Conductivity and Vibrational Properties of a New MAX Phase Lu2SnC. J. Phys. Chem. Solids 2019, 129, 162–171. doi:10.1016/j.jpcs.2019.01.009
  • Lai, C. C.; Fashandi, H.; Lu, J.; Palisaitis, J.; Persson, P.; Hultman, L.; Eklund, P.; Rosen, J. Phase Formation of Nanolaminated Mo2AuC and Mo2(Au1-xGax)2C by a substitutional reaction Within Au-capped Mo2GaC and Mo2Ga2C thin films. Nanoscale 2017, 9, 17681–17687. doi:10.1039/c7nr03663a
  • Fashandi, H.; Dahlqvist, M.; Lu, J.; Palisaitis, J.; Simak, S. I.; Abrikosov, I. A.; Rosen, J.; Hultman, L.; Andersson, M.; Lloyd Spetz, A.; Eklund, P. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by Noble Metal Substitution Reaction in Ti3SiC2 for High-Temperature-Stable Ohmic Contacts to SiC. Nat. Mater. 2017, 16, 814–818. doi:10.1038/nmat4896
  • Lapauw, T.; Tunca, B.; Cabioc’h, T.; Cabioc’h, T.; Lu, J.; Persson, P. O. A.; Lambrinou, K.; Vleugels, J. Synthesis of MAX Phases in the Hf-Al-C System. Inorg. Chem. 2016, 55, 10922–10927. doi:10.1021/acs.inorgchem.6b01398
  • Scabarozi, T. H.; Hettinger, J. D.; Lofland, S. E.; Lu, J.; Hultman, L.; Jensen, J.; Eklund, P. Epitaxial Growth and Electrical-Transport Properties of Ti7Si2C5 Thin Films Synthesized by Reactive Sputter-Deposition. Scr. Mater. 2011, 65, 811–814. doi:10.1016/j.scriptamat.2011.07.038
  • Hamm, C. M.; Dürrschnabel, M.; Molina-Luna, L.; Salikhov, R.; Spoddig, D.; Farle, M.; Wiedwald, U.; Birkel, C. S. Structural, Magnetic and Electrical Transport Properties of Non-Conventionally Prepared MAX Phases V2AlC and (V/Mn)2AlC. Mater. Chem. Front. 2018, 2, 483–490. doi:10.1039/C7QM00488E
  • Horlait, D.; Middleburgh, S. C.; Chroneos, A.; Lee, W. E. Synthesis and DFT Investigation of New Bismuth-Containing MAX Phases. Sci. Rep. 2016, 6, 18829[Database] doi:10.1038/srep18829
  • Radovic, M.; Ganguly, A.; Barsoum, M. W. Elastic Properties and Phonon Conductivities of Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5) Solid Solutions. J. Mater. Res. 2008, 23, 1517–1521. doi:10.1557/JMR.2008.0200
  • Mockute, A.; Tao, Q.; Dahlqvist, M.; Lu, J.; Calder, S.; Caspi, E. N.; Hultman, L.; Rosen, J. Materials Synthesis, Neutron Powder Diffraction, and First-Principles Calculations of (MoxSc1−x)2AlC i-MAX Phase Used as Parent Material for MXene Derivation. Phys. Rev. Mater. 2019, 3, Article Number 113607.
  • Dahlqvist, M.; Lu, J.; Meshkian, R.; Tao, Q.; Hultman, L.; Rosen, J. Prediction and Synthesis of a Family of Atomic Laminate Phases with Kagomé-like and in-plane chemical ordering. Sci. Adv. 2017, 3, Article Number e1700642. doi:10.1126/sciadv.1700642
  • Meshkian, R.; Dahlqvist, M.; Lu, J.; Wickman, B.; Halim, J.; Thörnberg, J.; Tao, Q.; Li, S. X.; Intikhab, S.; Snyder, J.; et al. W-Based Atomic Laminates and Their 2D Derivative W1.33C MXene with Vacancy Ordering. Adv. Mater. 2018, 30, Article Number 1706409. doi:10.1002/adma.201706409
  • Lu, J.; Thore, A.; Meshkian, R.; Tao, Q.; Hultman, L.; Rosen, J. Theoretical and Experimental Exploration of a Novel in-Plane Chemically Ordered (Cr2/3M1/3)2AlC i-MAX Phase with M = Sc and Y. Cryst. Growth Des. 2017, 17, 5704–5711. doi:10.1021/acs.cgd.7b00642
  • Tao, Q.; Lu, J.; Dahlqvist, M.; Qian, Y.; Mockute, D.; Calder, S.; Petruhins, A.; Meshkian, R.; Rivin, O.; Potashnikov, D.; et al. Atomically Layered and Ordered Rare-Earth i-MAX Phases: A New Class of Magnetic Quaternary Compounds. Chem. Mater. 2019, 31, 2476–2485. doi:10.1021/acs.chemmater.8b05298
  • Liu, Z.; Wu, E.; Wang, J.; Qian, Y.; Xiang, H.; Li, X.; Jin, Q.; Sun, G.; Chen, X.; Wang, J.; Li, M. Crystal Structure and Formation Mechanism of (Cr2/3Ti1/3)3AlC2 MAX Phase. Acta Mater. 2014, 73, 186–193. doi:10.1016/j.actamat.2014.04.006
  • Caspi, E. N.; Chartier, P.; Porcher, F.; Damay, F.; Cabioch, T. Ordering of (Cr,V) Layers in Nanolamellar (Cr0.5V0.5)n+1AlCn Compounds. Mater. Res. Lett. 2015, 3, 100–106. doi:10.1080/21663831.2014.975294
  • Meshkian, R.; Tao, Q.; Dahlqvist, M.; Lu, J.; Hultman, L.; Rosen, J. Theoretical Stability and Materials Synthesis of a Chemically Ordered MAX Phase, Mo2ScAlC2, and Its Two-Dimensional Derivate Mo2ScC2 MXene. Acta Mater. 2017, 125, 476–480. doi:10.1016/j.actamat.2016.12.008
  • Anasori, B.; Dahlqvist, M.; Halim, J.; Moon, E.; Lu, J.; Hosler, B.; Caspi, E.; May, S.; Hultman, L.; Eklund, P.; Rosén, J.; et al. Experimental and Theoretical Characterization of Ordered MAX Phases Mo2TiAlC2 and Mo2Ti2AlC3. J. Appl. Phys. 2015, 118, 094304. doi:10.1063/1.4929640
  • Shi, P. R.; Fa, T. MAX Research Progress of Preparation Technology of MAX Phase Film. Hot Work. Technol. 2018, 47, 30–33.
  • Haemers, J.; Gusmão, R.; Sofer, Z. Synthesis Protocols of the Most Common Layered Carbide and Nitride MAX Phases. Small Methods 2020, 4, Article Number 1900780. doi:10.1002/smtd.201900780
  • Nickl, J. J.; Schweitzer, K. K.; Luxenberg, P. Gasphasena-Bscheidung im System Ti-Si-C. J. Less-Common Metals 1972, 26, 335–353. doi:10.1016/0022-5088(72)90083-5
  • Goto, T.; Hirai, T. . Chemically Vapour Deposited Ti3SiC2. Mater. Res. Bull. 1987, 22, 1195–1201. doi:10.1016/0025-5408(87)90128-0
  • Racault, C.; Langlais, F.; Naslain, R.; Kihn, Y. On the Chemical Vapour Deposition of Ti3SiC2 From TiCl4-SiCl4-CH4-H2 Gas Mixtures. J. Mater. Sci. 1994, 29, 3941–3948. doi:10.1007/BF00355952
  • Yang, G. Y.; ; Li, G. D.; Neng, X.; Wang, Y. L.; Wang, J. Effect of Temperature on the Formation Law of Ti3SiC2 in CVD Prepared Ti-Si-C Codeposited Coating. Mater. Sci. Eng. Powder Metall. 2014, 19, 797–804.
  • Pickering, E.; Lackey, W. J.; Crain, S. CVD of Ti3SiC2. Chem. Vap. Deposit. 2000, 6, 289–295. doi:10.1002/1521-3862(200011)6:6<289::AID-CVDE289>3.0.CO;2-4
  • Fakih, H.; Jacques, S.; Berthet, M. P.; Bosselet, F.; Dezellus, O.; Viala, J. C. The Growth of Ti3SiC2 Coatings onto SiC by Reactive Chemical Vapor Deposition Using H2 and TiCl4. Surf. Coat. Technol. 2006, 201, 3748–3755. doi:10.1016/j.surfcoat.2006.09.040
  • Bakardjieva, S.; Horak, P.; Vacik, J.; Cannavò, A.; Lavrentiev, V.; Torrisi, A.; Michalcova, A.; Klie, R.; Rui, X.; Calcagno, L.; et al. Effect of Ar+ Irradiation of Ti3InC2 at Different Ion Beam Fluences. Surf. Coat. Technol. 2020, 394, Article Number 125834. doi:10.1016/j.surfcoat.2020.125834
  • Eklund, P.; Murugaiah, A.; Emmerlich, J.; Czigàny, Z. S.; Frodelius, J.; Barsoum, M. W.; Högberg, H.; Hultman, L. Homoe Pitaxial Growth of Ti-Si-C MAX-Phase Thin Films on Bulk Ti3SiC2 Substrates. J. Cryst. Growth 2007, 304, 264–269. doi:10.1016/j.jcrysgro.2007.02.014
  • Wilhelmsson, O.; Palmquist, J. P.; Lewin, E.; Emmerlich, J.; Eklun, P.; Persson, P. O. Å.; Högberg, H.; Li, S.; Ahuja, R.; Eriksson, O.; et al. Deposition and Characterization of Ternary Thin Films within the Ti-Al-C System by DC Magnetron Sputtering. J. Cryst. Growth 2006, 291, 290–300. doi:10.1016/j.jcrysgro.2006.03.008
  • Mertens, R.; Sun, Z.; Music, D.; Schneider, J. M. Effect of the Composition on the Structure of Cr-Al-C Investigated by Combinatorial Thin Film Synthesis and ab Calculations. Adv. Eng. Mater. 2004, 6, 903–907. doi:10.1002/adem.200400096
  • Schneider, J. M.; Mertens, R.; Music, D. Structure of V2AlC Studied by Theory and Experiment. J. Appl. Phys. 2006, 99, 83–87.
  • Frodelius, J.; Eklund, P.; Beckers, M.; Persson, P. O. A.; Högberg, H.; Hultman, L. Sputter Deposition from a Ti2AlC Target: Process Characterization and Conditions for Growth of Ti2AlC. Thin Solid Films 2010, 518, 1621–1626. doi:10.1016/j.tsf.2009.11.059
  • Walter, C.; Martinez, C.; El-Raghy, T.; Schneider, J. M. Towards Large Area MAX Phase Coatings on Steel. Steel Res. Int. 2005, 76, 225–228. doi:10.1002/srin.200506000
  • Clio, A.; Bensu, T.; Andrejs, P.; Binbin, X.; Melike, Y.; Per, O. Å. P.; Jozef, F.; Konstantina, F.; Johanna, R.; Per, E. Deposition of MAX Phase-Containing Thin Films from a (Ti,Zr)2AlC Compound Target. Appl. Surf. Sci. 2021, 551, Acticle Number 149370.
  • Abbas, N.; Qin, X.; Ali, S.; Zhu, G.; Lu, J.; Alam, F.; Wattoo, A.; Zeng, X.; Gu, K.; Tang, J. Direct Deposition of Extremely Low Interface-Contact-Resistant Ti2AlC MAX-Phase Coating on Stainless-Steel by Mid-Frequency Magnetron Sputtering Method. J. Eur. Ceram. Soc. 2020, 40, 3338–3342. doi:10.1016/j.jeurceramsoc.2020.02.033
  • Sanders, D. M.; Anders, A. Review of Cathodic Arc Deposition Technology at the Start of the New Millennium. Surf. Coat. Technol. 2000, 133, 78–90.
  • Anders, A. Cathodic Arcs: From Fractal Spots to Energetic Condensation. Springer Science and Business Media, New York, NY, USA, 2009, pp. 436–441
  • Rosén, J.; Ryves, L.; Persson, P. O. Å.; Bilek, M. M. M. Deposition of Epitaxial Ti2AlC Thin Films by Pulsed Cathodic Arc. J. Appl. Phys. 2007, 101, Article Number 056101. doi:10.1063/1.2709571
  • Guenette, M. C.; Tucker, M. D.; Ionescu, M.; Bilek, M. M. M.; McKenzie, D. R. Cathodic Arc Co-Deposition of Highly Oriented Hexagonal Ti and Ti2AlC MAX Phase Thin Films. Thin Solid Films 2010, 519, 766–769. doi:10.1016/j.tsf.2010.09.007
  • Mahmoudi, Z.; Tabaian, S. H.; Rezaie, H. R.; Mahboubi, F.; Ghazali, M. J. Synthesis of Ti2AlC and Ti3AlC2 MAX Phases by Arc-PVD Using Ti-Al Target in C2H2/Ar Gas Mixture and Subsequent Annealing. Ceram. Int. 2020, 46, 4968–4975. doi:10.1016/j.ceramint.2019.10.235
  • Gouldstone, A.; Choi, W.B.; Chi, W.; Wu, Y.; Sampath, S. Mechanical, Thermal and Electrical Pproperties of Cold Sprayed Coatings in The Cold Spray Materials Deposition Process: Fundamentals and Applications, edited by Champagne,Victor K. Woodhead Publishing, Abington Cambridge, England, 2007, pp. 245–246.
  • Chen, Y.; Chu, M. Y.; Wang, L. J.; Shi, Z. X.; Wang, X. M.; Zhang, B. T. Microstructure and Performance of Cr2AlC Coatings Deposited by HVOF Spraying. Rare Met. 2012, 36, 568–573.
  • Frodelius, J.; Sonestedt, M.; Björklund, B.; Palmquist, J. P.; Stiller, K.; Högberg, H.; Hultman, L. Ti2AlC Coatings Deposited by High Velocity Oxy-Fuel Spraying. Surf. Coat. Technol. 2008, 202, 5976– 5981. doi:10.1016/j.surfcoat.2008.06.184
  • Stoltenhoff, T.; Kreye, H.; Richter, H. J. An Analysis of the Cold Spray Process and Its Coatings. J. Therm. Spray Technol. 2002, 11, 542–550. doi:10.1361/105996302770348682
  • Assadi, H.; Kreye, H.; Gärtner, F.; Klassen, T. Cold Spraying-A Materials Perspective. Acta Mater. 2016, 116, 382–407. doi:10.1016/j.actamat.2016.06.034
  • Lee, K.; Lee, M.; Yu, J.; Kim, H. Effect of Powder Preheating Temperature on the Properties of Titanium Coating Layers Manufactured by Kinetic Spraying. Mater. Trans. 2014, 55, 622–628. doi:10.2320/matertrans.M2013367
  • Gutzmann, H.; Gärtner, F.; Höche, D.; Blawert, C.; Klassen, T. Cold Spraying of Ti2AlC MAX-Phase Coatings. J. Therm. Spray Technol. 2013, 22, 406–412. doi:10.1007/s11666-012-9843-1
  • Rech, S.; Surpi, A.; Vezzù, S.; Patelli, A.; Trentin, A.; Glor, J.; Frodelius, J.; Hultman, L.; Eklund, P. Cold-Spray Deposition of Ti2AlC Coatings. Vacuum 2013, 94, 69–73. doi:10.1016/j.vacuum.2013.01.023
  • Maier, B. R.; Garcia-Diaz, B. L.; Hauch, B. J.; Olson, L. C.; Sindelar, R. L.; Sridharan, K. Cold Spray Deposition of Ti2AlC Coatings for Improver Nuclear Fuel Cladding. J. Nucl. Mater. 2015, 466, 712–717. doi:10.1016/j.jnucmat.2015.06.028
  • Go, T.; Sohn, Y. J.; Mauer, G.; Vaßen, R.; Gonzalez-Julian, J. Cold Spray Deposition of Cr2AlC MAX Phase for Coatings and Bond-Coat Layers. J. Eur. Ceram. Soc. 2019, 39, 860–867. doi:10.1016/j.jeurceramsoc.2018.11.035
  • Smith, M. F. Comparing Cold Spray with Thermal Spray Coating Technologies in The Cold Spray Materials Deposition Process: Fundamentals and Applications, edited by Champagne,Victor K. Woodhead Publishing, Abington Cambridge, England, 2007, pp.43–61.
  • Eklund, P.; Rosen, J.; Persson, P. O. Å. Layered Ternary Mn+1AXn Phases and Their 2D Derivative MXene: An Overview from a Thin-Film Perspective. Appl. Phys. 2017, 50, Article Number 113001.
  • Eklund, P.; Beckers, M.; Jansson, U. H.; Hogberg, H.; Hultman, L. The Mn+1AXn Phases: Materials Science and Thin-Film Processing. Thin Solid Films 2010, 518, 1851–1878. doi:10.1016/j.tsf.2009.07.184
  • Song, P. F.; Jiang, F. L.; Wang, Y. L.; Wang, R. Research Progress of High Entropy Alloy Coatings Prepared by Laser Cladding: Strengthening of Mechanism and Performance. J. Qingdao Univer. Technol. 2020, 41, 106–114.
  • Pu, Y.; Guo, B.; Zhou, J.; Zhang, S.; Zhou, H.; Chen, J. Microstructure and Tribological Properties of in Situ Synthesized TiC, TiN, and SiC Reinforced Ti3Al Intermetallic Matrix Composite Coatings on Pure Ti by Laser Cladding. Appl. Surf. Sci. 2008, 255, 2697–2703. doi:10.1016/j.apsusc.2008.07.180
  • Das, M.; Bysakh, S.; Basu, D.; Kumar, T. S.; Balla, V. K.; Bose, S.; Bandyopadhyay, A. Microstructure, Mechanical and Wear Properties of Laser Processed SiC Particle Reinforced Coatings on Titanium. Surf. Coat. Technol. 2011, 205, 4366–4373. doi:10.1016/j.surfcoat.2011.03.027
  • Yang, Y.; Guo, N.; Li, J. Synthesizing, Microstructure and Microhardness Distribution of Ti-Si-C-N/TiCN Composite Coating on Ti-6Al-4V by Laser Cladding. Surf. Coat. Technol. 2013, 219, 1–7. doi:10.1016/j.surfcoat.2012.12.038
  • Li, S. N.; Xiong, H. P.; Li, N.; Chen, B. Q.; Gao, C.; Zou, W. J.; Ren, H. S. Mechanical Properties and Formation Mechanism of Ti/SiC System Gradient Materials Fabricated by in-Situ Reaction Laser Cladding. Ceram. Int. 2017, 43, 961–967. doi:10.1016/j.ceramint.2016.10.026
  • Zhang, H. X.; Dai, J. J.; Sun, C. X.; Ma, Z. W.; Wang, X. Y.; Du, J. J. Fabrication of TiC/TiB/Ti3AlC2 Phases Reinforced Coatings on Ti-6Al-4V Substrate. Mater. Manuf. Process. 2018, 33, 1037–1042. doi:10.1080/10426914.2017.1376078
  • Richardson, P.; Cuskelly, D.; Brandt, M.; Kisi, E. Microstructural Analysis of in-Situ Reacted Ti2AlC MAX Phase Composite Coating by Laser Cladding. Surf. Coat. Technol. 2020, 385, Article Number 125360. doi:10.1016/j.surfcoat.2020.125360
  • Li, B.; Zhu, H.; Qiu, C.; Gong, X. Laser Cladding and in-Situ Nitriding of Martensitic Stainless Steel Coating with Striking Performance. Mater. Lett. 2020, 259, Article Number 126829. doi:10.1016/j.matlet.2019.126829
  • Li, B. C.; Zhu, H. M.; Qiu, C. J.; Zhang, D. K. Development of High Strength and Ductile Martensitic Stainless Steel Coatings with Nb Addition Fabricated by Laser Cladding. J. Alloy Compd. 2020, 832, Article Number 154985. doi:10.1016/j.jallcom.2020.154985
  • Zhou, Y. C.; Sun, Z. M. Crystallographic Relations between Ti3SiC2 and TiC. Mater. Res. Innov. 2000, 3, 286–291. doi:10.1007/PL00010876
  • Riley, D. P.; Kisi, E. H. The Design of Crystalline Precursors for the Synthesis of Mn+1AXn Phases and Their Application to Ti3AlC2. J. Am. Ceram. Soc. 2007, 90, 2231–2235. doi:10.1111/j.1551-2916.2007.01728.x
  • Wang, Z.; Liu, J.; Wang, L.; Li, X.; Ke, P.; Wang, A. Dense and High-Stability Ti2AlN MAX Phase Coatings Prepared by the Combined Cathodic Arc/Sputter Technique. Appl. Surf. Sci. 2017, 396, 1435–1442. doi:10.1016/j.apsusc.2016.11.183
  • Wang, Z.; Li, W.; Liu, Y.; Shuai, J.; Ke, P.; Wang, A. Diffusion-Controlled Intercalation Approach to Synthesize the Ti2AlC MAX Phase Coatings at Low Temperature of 550 °C. Appl. Surf. Sci. 2020, 502, Article Number 144130. doi:10.1016/j.apsusc.2019.144130
  • Abdulkadhim, A.; Takahashi, T.; Music, D.; Munnik, F.; Schneider, J. M. MAX Fhase Formation by Intercalation upon Annealing of TiCx/Al (0.4 ≤ x ≤ 1) Bilayer Thin Films. Acta Mater. 2011, 59, 6168–6175. doi:10.1016/j.actamat.2011.06.029
  • Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth. Phys. Rev. Lett. 2017, 118, Article Number 016101. doi:10.1103/PhysRevLett.118.016101
  • Levin, A. A.; Meyer, D. C.; Gorbunov, A.; Mensch, A.; Pompe, W.; Paufler, P. Phase Transformations after Long-Time Annealing in Metastable Fe-Cr Alloy Films Prepared by Pulsed Laser Deposition. J. Alloy Compd. 2003, 360, 107–117. doi:10.1016/S0925-8388(03)00322-0
  • Vishnyakov, V.; Lu, J.; Eklund, P.; Hultman, L.; Colligon, J. Ti3SiC2-Formation during Ti-C-Si Multilayer Deposition by Magnetron Sputtering at 650 °C. Vacuum 2013, 93, 56–59. doi:10.1016/j.vacuum.2013.01.003
  • Bahiraei, M.; Mazaheri, Y.; Sheikhi, M.; Heidarpour, A. A New Approach to Synthesis Ti2AlC MAX Phase Using PVD Coating and Post-Laser Treatment. Surf. Coat. Technol. 2020, 385, Article Number 125314. doi:10.1016/j.surfcoat.2019.125314
  • Nicolaï, J.; Furgeaud, C.; Fonrose, B. W.; Bail, C.; Beaufort, M. F. Formation Mechanisms of Ti2AlC MAX Phase on SiC-4H Using Magnetron Sputtering and Post-Annealing. Mater. Design 2018, 144, 209–213. doi:10.1016/j.matdes.2018.02.046
  • Torres, C.; Quispe, R.; Calderón, N. Z.; Eggert, L.; Hopfeld, M.; Rojas, C.; Camargo, M.; Bund, A.; Schaaf, P.; Grieseler, R. Development of the Phase Composition and the Properties of Ti2AlC and Ti3AlC2 MAX-Phase Thin Films-A Multilayer Approach Towards High Phase Purity. Appl. Surf. Sci. 2021, 537, Article Number 147864. doi:10.1016/j.apsusc.2020.147864
  • Wang, Z.; Sun, J.; Xu, B.; Liu, Y.; Ke, P.; Wang, A. Reducing the Self-Healing Temperature of Ti2AlC MAX Phase Coating by Substituting Al with Sn. J. Eur. Ceram. Soc. 2020, 40, 197–201. doi:10.1016/j.jeurceramsoc.2019.09.009
  • Zhang, F.; Yan, S.; Li, C.; Ding, Y.; He, J.; Yin, F. Synthesis and Characterization of MAX Phase Cr2AlC Based Composite Coatings by Plasma Spraying and Post Annealing. J. Eur. Ceram. Soc. 2019, 39, 5132–5139. doi:10.1016/j.jeurceramsoc.2019.08.039
  • Dae, H. S.; Sagar, M. D.; Colleen, M.; Rider, A. N.; Thostenson, E. K. Electrophoretic Deposition: Novel in Situ Film Growth Mechanism of Carbon Nanocomposite Films within Non-Conductive Fabrics for Multi-Scale Hybrid Composites. Compos. Sci. Technol. 2020, 200, Article Number 108415. doi:10.1016/j.compscitech.2020.108415
  • Galvin, T.; Hyatt, N. C.; Rainforth, W. M.; Reaney, I. M.; Shepherd, D. Laser Sintering of Electrophoretically Deposited (EPD) Ti3SiC2 MAX Phase Coatings on Titanium. Surf. Coat. Technol. 2019, 366, 199–203. doi:10.1016/j.surfcoat.2019.03.031
  • Wang, M. Z.; Liang, M. Y.; Han, X. Study on Mechanism of Synthesis of Ti3AlC2 by Mechanically Induced Self-Propagating Reaction. J. Yanshan Univ. 2009, 33, 1–3.
  • Lv, Z. L.; Zhang, C.; Xie, H.; Jia, L.; Fang, J.; Wang, H. J. Friction and Wear Properties of Self-Propagating High Temperature Ti3AlC2 Composites. Ordnance Mater. Sci. Eng. 2013, 36, 14–17.
  • Hossein-Zadeh, M.; Ghasali, E.; Mirzaee, O.; Mohammadian-Semnani, H.; Alizadeh, M.; Orooji, Y.; Ebadzadeh, T. An Investigation into the Microstructure and Mechanical Properties of V2AlC MAX Phase Prepared by Microwave Sintering. J. Alloy Compd. 2019, 795, 291–303. doi:10.1016/j.jallcom.2019.05.029
  • Liu, J.; Yang, J.; Yi, G.; Ma, J.; Yu, Y.; Qiao, Z.; Hu, B.; Liu, W. Effect of High-Temperature Oxidation on Si3N4 Containing Ti3AlC2. Ceram. Int. 2020, 46, 14697–14705. doi:10.1016/j.ceramint.2020.02.273
  • Magnus, C.; Cooper, D.; Sharp, J.; Rainforth, W. M. Microstructural Evolution and Wear Mechanism of Ti3AlC2-Ti2AlC Dual MAX Phase Composite Consolidated by Spark Plasma Sintering (SPS). Wear 2019, 438–439, Article Number 203013. doi:10.1016/j.wear.2019.203013
  • Shamsipoor, A.; Farvizi, M.; Razavi, M.; Keyvani, A. Influences of Processing Parameters on the Microstructure and Wear Performance of Cr2AlC MAX Phase Prepared by Spark Plasma Sintering Method. J. Alloy Compd. 2020, 815, Article Number 152345. doi:10.1016/j.jallcom.2019.152345
  • Xia, T.; Sun, S.; Ou, F. Effects of Sintering Temperature on Frictional Properties of Ti3SiC2. Chem. Enterp. Manag. 2018, 25, 55–56.
  • Zhao, Z. L.; Feng, X.; Ai, T. Preparation and High-Temperature Oxidation Behavior of Ti3AlC2 Material. B. Chin. Ceram. Soc. 2011, 1, 65–68.
  • Tunca, B.; Lapauw, T.; Callaert, C.; Hadermann, C.; Delville, R.; Caspi, E.; Dahlqvist, M.; Rosén, J.; Marshal, A.; Pradeep, K.; et al. Compatibility of Zr2AlC MAX Phase-Based Ceramics with Oxygen-Poor, Static Liquid Lead-Bismuth Eutectic. Corros. Sci. 2020, 171, Article Number 108704. doi:10.1016/j.corsci.2020.108704
  • Griseri, M.; Tunca, B.; Huang, S.; Dahlqvist, M.; Rosén, J.; Lu, J.; Persson, P. O. Å.; Popescu, L.; Vleugels, J.; Lambrinou, K. Ta-Based 413 and 211 MAX Phase Solid Solutions with Hf and Nb. J. Eur. Ceram. Soc. 2020, 40, 1829–1838. doi:10.1016/j.jeurceramsoc.2019.12.052
  • Liu, Z.; Yang, J.; Qian, Y.; Xu, J. J.; Zuo, J.; Li, M. S. In-Situ Reaction Synthesis and Mechanical Properties of Quaternary MAX Phase (Cr2/3Ti1/3)3AlC2. Ceram. Int. 2020, 46, 22854–22860. doi:10.1016/j.ceramint.2020.06.055
  • Yao, P.; Qian, Y.; Li, W.; Li, C.; Zuo, J.; Xu, J. J.; Li, M. S. Exploration of Dielectric and Microwave Absorption Properties of Quaternary MAX Phase Ceramic (Cr2/3Ti1/3)3AlC2. Ceram. Int. 2020, 46, 22919–22926. doi:10.1016/j.ceramint.2020.06.065
  • Pampuch, R.; Lis, J.; Stobierski, L.; Tymkiewicz, M. Solid Combustion Synthesis of Ti3SiC2. J. Eur. Ceram. Soc. 1989, 5, 283–287. doi:10.1016/0955-2219(89)90022-8
  • Sun, Z. M.; Yang, S. L.; Hashimoto, H.; Tada, S. J.; Abe, T. Synthesis and Consolidation of Ternary Compound Ti3SiC2 from Green Compact of Mixed Powders. Mater. Trans. 2004, 45, 373–375. doi:10.2320/matertrans.45.373
  • Li, X.; Gonzalez-Julian, J.; Malzbender, J. Fabrication and Mechanical Performance of Ti2AlN Prepared by FAST/SPS. J. Eur. Ceram. Soc. 2020, 40, 4445–4453. doi:10.1016/j.jeurceramsoc.2020.05.017
  • Karimi, S.; Go, T.; Vaßen, R.; Gonzalez-Julian, J. Cr2AlC MAX Phase Foams by Replica Method. Mater. Lett. 2019, 240, 271–274. doi:10.1016/j.matlet.2019.01.026
  • Zhou, Y.; Sun, Z.; Chen, S.; Zhang, Y. In-Situ Hot Pressing Solidliquid Reaction Synthesis of Dense Ti3SiC2 Bulk Ceramics. Mater. Res. Innov. 1998, 2, 142–146. doi:10.1007/s100190050076
  • Li, L.; Zhou, A. G.; Xu, L.; Li, Z.; Wang, L. Synthesis of High Pure Ti3AlC2 and Ti2AlC Powders from TiH2 Powerder as Ti Source by Tube Furnace. J. Wuhan Univ. Technol-Mat. Sci. Edit. 2013, 28, 882–887. doi:10.1007/s11595-013-0786-2
  • Rackl, T.; Johrendt, D. The MAX Phase Borides Zr2SB and Hf2SB. Solid State Sci. 2020, 106, Article Number 106316.
  • Chen, D.; Tian, X.; Wang, H.; Huang, Z. Rapid Synthesis of Bulk Ti3AlC2 by Laser Melting. Mater. Lett. 2014, 129, 98–100. doi:10.1016/j.matlet.2014.05.023
  • Sobolev, K. V.; Kolincio, K. K.; Emelyanov, A.; Mielewczyk-Gryń, A.; Gazda, M.; Roman, M.; Pazniak, A.; Rodionova, V. Evolution of Magnetic and Transport Properties in (Cr1-xMnx)2AlC MAX-Phase Synthesized by Arc Melting Technique. J. Magn. Magn. Mater. 2020, 493, Article Number 165642. doi:10.1016/j.jmmm.2019.165642
  • Arunajatesan, S.; Carim, A. H. Synthesis of Titanium Silicon Carbide. J. Am. Ceram. Soc. 1995, 78, 667–672. doi:10.1111/j.1151-2916.1995.tb08230.x
  • Feng, A.; Orling, T.; Munir, Z. A. Field-Activated Pressure-Assisted Combustion Synthesis of Polycrystalline Ti3SiC2. J. Mater. Res. 1999, 14, 925–939. doi:10.1557/JMR.1999.0124
  • Tabares, E.; Jiménez-Morales, A.; Tsipas, S. A. Study of the Synthesis of MAX Phase Ti3SiC2 Powders by Pressureless Sintering. Bol. Soc. Esp. Ceram. V 2021, 60, 41–52. doi:10.1016/j.bsecv.2020.01.004
  • Biesuz, M.; Grasso, S.; Sglavo, V. M. What’s New in Ceramics Sintering? A Short Report on the Latest Trends and Future Prospects. Curr. Opin. Solid State Mater. Sci. 2020, 24, Article Number 100868. doi:10.1016/j.cossms.2020.100868
  • Rajkumar, Y.; Panigrahi, B. B. Sintering Mechanisms of Ultrafine Cr2AlC MAX Phase Powder. Mater. Today Commun. 2016, 8, 46–52. doi:10.1016/j.mtcomm.2016.05.002
  • Mane, R. B.; Haribabu, A.; Panigrahi, B. B. Synthesis and Sintering of Ti3GeC2 MAX Phase Powders. Ceram. Int. 2018, 44, 890–893. doi:10.1016/j.ceramint.2017.10.017
  • Barsoum, M. W.; El-Raghy, T.; Ali, M. Processing and Characterization of Ti2AlC, Ti2AlN and Ti2AlC0.5N0.5. Metall. Mat. Trans. A. 2000, 31, 1857–1865. [Database] doi:10.1007/s11661-006-0243-3
  • Kota, S.; Zapata-Solvas, E.; Ly, A.; Lu, J.; Elkassabany, O.; Huon, A.; Lee, W. E.; Hultman, L. May, S. J. Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB. Sci. Rep. 2016, 6, Article Number 26475.
  • Kimura, T. Molten Salt Synthesis of Ceramic Powders in the Advances in Ceramics-Synthesis and Characterization, Processing and Specific Applications, edited by Sikalidis, C. IntechOpen Limited, London, United Kingdom, 2011, pp. 75–100.
  • Dash, A.; Vaßen, R.; Guillon, O.; Gonzalez-Julian, J. Molten Salt Shielded Synthesis of Oxidation Prone Materials in Air. Nat. Mater. 2019, 18, 465–470. doi:10.1038/s41563-019-0328-1
  • Roy, C.; Banerjee, P.; Bhattacharyya, S. Molten Salt Shielded Synthesis (MS3) of Ti2AlN and V2AlC MAX Phase Powders in Open Air. J. Eur. Ceram. Soc. 2020, 40, 923–929. doi:10.1016/j.jeurceramsoc.2019.10.020
  • Jin, H.; Gu, Q.; Chen, B.; Tang, C.; Zheng, Y.; Zhang, H.; Jaroniec, M.; Qiao, S. Molten Salt-Directed Catalytic Synthesis of 2D Layered Transition-Metal Nitrides for Efficient Hydrogen Evolution. Chemistry 2020, 6, 2382–2394. doi:10.1016/j.chempr.2020.06.037
  • Schwandt, C.; Doughty, G. R.; Fray, D. J. The FFC-Cambridge Process for Titanium Metal Winning. Key Eng. Mater. 2010, 436, 13–25. doi:10.4028/www.scientific.net/KEM.436.13
  • Abdelkader, A. M.; Fray, D. J. Electrochemical Synthesis of Hafnium Carbide Powder in Molten Chloride Bath and Its Densification. J. Eur. Ceram. Soc. 2012, 32, 4481–4487. doi:10.1016/j.jeurceramsoc.2012.07.010
  • Hyslop, D. J. S.; Abdelkader, A. M.; Cox, A.; Fray, D. J. Electrochemical Synthesis of a Biomedically Important Co-Cr Alloy. Acta Mater. 2010, 58, 3124–3130. doi:10.1016/j.actamat.2010.01.053
  • Jiao, H.; Song, W. L.; Chen, H.; Wang, M.; Jiao, S.; Fang, D. Sustainable Recycling of Titanium Scraps and Purity Titanium Production via Molten Salt Electrolysis. J. Clean. Prod. 2020, 261, Article Number 121314. doi:10.1016/j.jclepro.2020.121314
  • Liu, P.; Hu, M.; Hu, L.; Yin, M.; Wu, H.; Hu, M. Fabrication of Cr2AlC Powder by Molten Salt Electrolysis at 850 °C with Good Oxidation Resistance. J. Alloy Compd. 2020, 826, Article Number 154003. doi:10.1016/j.jallcom.2020.154003
  • Chen, G. Z.; Fray, D. J.; Farthing, T. W. Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride. Nature 2000, 407, 361–364. doi:10.1038/35030069
  • Cuskelly, D. T.; Kisi, E. H. Single-Step Carbothermal Synthesis of High-Purity MAX Phase Powders. J. Am. Ceram. Soc. 2016, 99, 1137–1140. doi:10.1111/jace.14170
  • Liang, B. Y.; Wang, Y. Z.; Zhang, W. X.; Xu, S. S. Synthesis of Ternary Titanium Aluminum Carbides Using Microwave Synthesis Technique. J. Ceram. 2015, 36, 476–480.
  • Li, F.; Zhang, H.; Wang, Q.; Qu, D.; Zhou, T.; Kim, B.; Sakka, Y.; Hu, Y.; Huang, Q. Microwave Sintering of Ti3Si(Al)C2 Ceramic. J. Am. Ceram. Soc. 2014, 97, 2731–2735. doi:10.1111/jace.13037
  • Hajalilou, A.; Hashim, M.; Ebrahimi-Kahizsangi, R.; Ismail, I.; Sarami, N. Synthesis of Titanium Carbide and TiC-SiO2 Nanocomposite Powder Using Rutile and Si by Mechanically Activated Sintering. Adv. Powder Technol. 2014, 25, 1094–1102. doi:10.1016/j.apt.2014.02.008
  • Zhang, J. C. Hot Press Mechanical Alloying Powders of Ti-Si-C to Synthesize Ti3SiC2. J. Heilongjiang Univer. Sci. Technol. 2009, 19, 113–116.
  • Yembadi, R.; Panigrahi, B. B. Thermodynamic Assessments and Mechanically Activated Synthesis of Ultrafine Cr2AlC MAX Phase Powders. Adv. Powder. Technol. 2017, 28, 732–739. doi:10.1016/j.apt.2016.11.020
  • Dine, S.; Aïd, S.; Ouaras, K.; Malard, V.; Odorico, M.; Herlin-Boime, N.; Habert, A.; Margueron, A.; Grisolia, C.; Chêne, J.; et al. Synthesis of Tungsten Nanopowders: Comparison of Milling, SHS, MASHS and Milling-Induced Chemical Processes. Adv. Powder. Technol. 2015, 26, 1300–1305. doi:10.1016/j.apt.2015.07.004
  • Wang, Y.; Liu, X. B.; Liu, Y. F.; Luo, Y. S.; Meng, Y. Microstructure and Tribological Performance of Ni60-Based Composite Coatings on Ti6Al4V Alloy with Different Ti3SiC2 Ceramic Additions by Laser Cladding. Ceram. Int. 2020, 46, 28996–29010. doi:10.1016/j.ceramint.2020.08.071
  • Go, T.; Vaßen, R.; Guillon, O.; Julian, J. G. Processing and Oxidation Response of Cr2AlC MAX-Phase Composites Containing Ceramic Fibers. Open Ceram. 2021, 6, Article Number 100090. doi:10.1016/j.oceram.2021.100090
  • Zhou, J.; Kong, D. Friction–Wear Performances and Oxidation Behaviors of Ti3AlC2 Reinforced Co–Based Alloy Coatings by Laser Cladding. Surf. Coat. Technol. 2021, 408, Article Number 126816. doi:10.1016/j.surfcoat.2020.126816
  • Heidarpour, A.; Mousavi, Z. S.; Karimi, S.; Hosseini, S. M. On the Corrosion Behavior and Microstructural Characterization of Al2024 and Al2024/Ti2SC MAX Phase Surface Composite through Friction Stir Processings. J. Appl. Electrochem. 2021, 51, 1123–1136.
  • Liu, Y. F.; Zhuang, S. G.; Liu, X. B.; Ou-Yang, C. S.; Zhu, Y.; Meng, Y. Microstructure Evolution and High-Temperature Tribological Behavior of Ti3SiC2 Reinforced Ni60 Composite Coatings on 304 Stainless Steel by Laser Cladding. Surf. Coat. Technol. 2021, 420, Article Number 127335. doi:10.1016/j.surfcoat.2021.127335
  • Lee, G. W.; Kim, T. W.; Sloof, W. G.; Lee, K. S. Self-Healing Capacity of Mullite-Yb2SiO5 Environmental Barrier Coating Material with Embedded Ti2AlC MAX Phase Particles. Ceram. Int. 2021, 47, 22478–22486. doi:10.1016/j.ceramint.2021.04.257

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.