609
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Centrifugal spinning for biomedical use: a review

&

References

  • PICK, E.; Und, V. Vorrichtung zur Herstellung von Glasfäden. Austrian Patent Office, (AT50878B), 1909.
  • Ratner, D.; Buddy, R.; Buddy, D. Properties of Materials: A History of Biomaterials. In Biomaterials Science: An Introduction to Materials in Medicine, 2nd. ed.; Elsevier Academic Press: San Diego, CA., 2004; Chapter. 1. pp 10–10.
  • Eichhorn, S.; Hearle, J. W. S.; Jaffe, M.; Kikutani, T., Handbook of Textile Fibre Structure: Volume 2: Natural, Regenerated, Inorganic and Specialist Fibres,1st ed.; Woodhead Publishing: Sawston, 2009; Chapter. 9. pp. 322–326.
  • Zhang, X.; Lu, Y. Centrifugal Spinning: An Alternative Approach to Fabricate Nanofibers at High Speed and Low Cost. Polym. Rev. 2014, 54, 677–701. doi:10.1080/15583724.2014.935858
  • Ji, L.; Lin, Z.; Li, Y.; Li, S.; Liang, Y.; Toprakci, O.; Shi, Q.; Zhang, X. Formation and Characterization of Core-Sheath Nanofibers through Electrospinning and Surface-Initiated Polymerization. Polymer 2010, 51, 4368–4374. doi:10.1016/j.polymer.2010.07.042
  • Kameoka, J.; Craighead, H. G. Fabrication of Oriented Polymeric Nanofibers on Planar Surfaces by Electrospinning. Appl. Phys. Lett. 2003, 83, 371–373. doi:10.1063/1.1592638
  • Hell, A. F.; Simbara, M. M. O.; Rodrigues, P.; Kakazu, D. A.; Malmonge, S. M. Production of Fibrous Polymer Scaffolds for Tissue Engineering Using an Automated Solution Blow Spinning System. Res. Biomed. Eng. 2018, 34, 273–278. doi:10.1590/2446-4740.180039
  • Daristotle, J. L.; Behrens, A. M.; Sandler, A. D.; Kofinas, P. A Review of the Fundamental Principles and Applications of Solution Blow Spinning. ACS Appl Mater Interfaces. 2016, 8, 34951–34963. doi:10.1021/acsami.6b12994.
  • Zou, W.; Chen, R. Y.; Zhang, G. Z.; Zhang, H. C.; Qu, J. P. Recent Advances in Centrifugal Spinning Preparation of Nanofibers. Adv. Mater. Res. 2014, 1015, 170–176. doi:10.4028/www.scientific.net/AMR.1015.170
  • Badrossamay, M. R.; McIlwee, H. A.; Goss, J. A.; Parker, K. K. Nanofiber Assembly by Rotary Jet-Spinning. Nano Lett. 2010, 10, 2257–2261. doi:10.1021/nl101355x.
  • Loordhuswamy, A. M.; Krishnaswamy, V. R.; Korrapati, P. S.; Thinakaran, S.; Rengaswami, G. D. V. Fabrication of Highly Aligned Fibrous Scaffolds for Tissue Regeneration by Centrifugal Spinning Technology. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 42, 799–807. doi:10.1016/j.msec.2014.06.011.[pubmedMismatch]
  • Wang, L.; Shi, J.; Liu, L.; Secret, E.; Chen, Y. Fabrication of Polymer Fiber Scaffolds by Centrifugal Spinning for Cell Culture Studies. Microelectron. Eng. 2011, 88, 1718–1721. doi:10.1016/j.mee.2010.12.054
  • Elsivier. Scopus. SciVerse Scopus. n.d. https://www.scopus.com/search/form.uri?display=basic#basic (November 23, 2021).
  • Xu, H.; Chen, H.; Li, X.; Liu, C.; Yang, B. A Comparative Study of Jet Formation in Nozzle- and Nozzle-Less Centrifugal Spinning Systems. J. Polym. Sci. Part B: Polym. Phys. 2014, 52, 1547–1559. doi:10.1002/polb.23596
  • Weitz, R. T.; Harnau, L.; Rauschenbach, S.; Burghard, M.; Kern, K. Polymer Nanofibers via Nozzle-Free Centrifugal Spinning. Nano Lett. 2008, 8, 1187–1191. doi:10.1021/nl080124q.
  • Merchiers, J.; Meurs, W.; Deferme, W.; Peeters, R.; Buntinx, M.; Reddy, N. K. Influence of Polymer Concentration and Nozzle Material on Centrifugal Fiber Spinning. Polymers 2020, 12, 575. doi:10.3390/polym12030575
  • Meerman, J. J.; Roelof, J. Centrifugal Spinning Process for Spinnable Solutions. European Patent Office EP0813622B1, 1996.
  • Kilic, A. K., Yalcin, H. Y., Akgul, Y. A., Gumus, T. G., Erol, M. E., Kurtulus, M. K., Pampal, E. S. P., Calisir, M. D. C., Canbay, E. C., & Polat, Y. P. (2015). A centrifugal spinning device used for nanofiber/microfiber production (WO2016111656A1). World Intellectual Property Organization. https://patentimages.storage.googleapis.com/5e/20/c6/a13d2b4213d51f/WO2016111656A1.pdf
  • Shamsipur, M.; Pourmortazavi, S. M.; Beigi, A. A. M.; Heydari, R.; Khatibi, M. Thermal Stability and Decomposition Kinetic Studies of Acyclovir and Zidovudine Drug Compounds. AAPS PharmSciTech 2013, 14, 287–293. doi:10.1208/s12249-012-9916-y.
  • Madorsky, S. L.; Straus, S. S. L. Thermal Degradation of Polymers at High Temperatures. J. Res. Natl Bureau Std Section A Phys. Chem. 1959, 63, 261–268. https://doi.org/10.6028/jres.063a.020
  • Skorupska, E.; Jeziorna, A.; Potrzebowski, M. J. Thermal Solvent-Free Method of Loading of Pharmaceutical Cocrystals into the Pores of Silica Particles: A Case of Naproxen/Picolinamide Cocrystal. J. Phys. Chem. C 2016, 120, 13169–13180. doi:10.1021/acs.jpcc.6b05302
  • Rihova, M.; Ince, A. E.; Cicmancova, V.; Hromadko, L.; Castkova, K.; Pavlinak, D.; Vojtova, L.; Macak, J. M. Water‐Born 3D Nanofiber Mats Using Cost‐Effective Centrifugal Spinning: comparison with Electrospinning Process: A Complex Study. J. Appl. Polym. Sci. 2021, 138, 49975. doi:10.1002/app.49975
  • Lu, Y.; Li, Y.; Zhang, S.; Xu, G.; Fu, K.; Lee, H.; Zhang, X. Parameter Study and Characterization for Polyacrylonitrile Nanofibers Fabricated via Centrifugal Spinning Process. Eur. Polym. J. 2013, 49, 3834–3845. doi:10.1016/j.eurpolymj.2013.09.017
  • Dalton, P. D.; Grafahrend, D.; Klinkhammer, K.; Klee, D.; Möller, M. Electrospinning of Polymer Melts: Phenomenological Observations. Polymer 2007, 48, 6823–6833. doi:10.1016/j.polymer.2007.09.037
  • Marques, D. R. Fibras De Poli (Ácido Láctico-Co-Glicólico)/Poliisopreno Para Aplicação Em Engenharia De Tecidos, 146 f. PhD Thesis, Metallurgical and Materials Engineering Course, School of Engineering, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2015.
  • Nicponski, D. R.; Ramachandran, P. V. The Role of Solvent Selection at Exploratory and Production Stages in the Pharmaceutical Industry. Future Med. Chem. 2011, 3, 1469–1473. doi:10.4155/fmc.11.123.
  • Ahmad, I.; Anwar, Z.; Ahmed, S.; Sheraz, M. A.; Bano, R.; Hafeez, A. Solvent Effect on the Photolysis of Riboflavin. AAPS PharmSciTech 2015, 16, 1122–1128. doi:10.1208/s12249-015-0304-2.
  • Zander, N. E. Formation of Melt and Solution Spun Polycaprolactone Fibers by Centrifugal Spinning. J. Appl. Polym. Sci. 2014, 132. doi:10.1002/app.41269.
  • Duan, Y.; Zhang, Z.; Lu, B.; Chen, B.; Lai, Z. The Movement and Forces of Spinning Solution in the Nozzle during High-Speed Centrifugal Spinning. J. Eng. Fibers Fabr. 2019, 14, 155892501982820. doi:10.1177/1558925019828207
  • Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E. Role of Chain Entanglements on Fiber Formation during Electrospinning of Polymer Solutions: Good Solvent, Non-Specific Polymer–Polymer Interaction Limit. Polymer 2005, 46, 3372–3384. doi:10.1016/j.polymer.2005.03.011
  • A.; Mary, L.; Senthilram, T.; Suganya, S.; Nagarajan, L.; Venugopal, J.; Ramakrishna, S.; Giri Dev, V. R. Centrifugal Spun Ultrafine Fibrous Web as a Potential Drug Delivery Vehicle. Express Polym. Lett. 2013, 7, 238–248. doi:10.3144/expresspolymlett.2013.22
  • Yang, Y.; Zheng, N.; Zhou, Y.; Shan, W.; Shen, J. Mechanistic Study on Rapid Fabrication of Fibrous Films via Centrifugal Melt Spinning. Int. J. Pharm. 2019, 560, 155–165. doi:10.1016/j.ijpharm.2019.02.005
  • Li, Z.; Mei, S.; Dong, Y.; She, F.; Kong, L. High Efficiency Fabrication of Chitosan Composite Nanofibers with Uniform Morphology via Centrifugal Spinning. Polymers 2019, 11, 1550. doi:10.3390/polym11101550
  • Ciocca, B. E.; Munhoz, A. L. J.; Cardoso, G. B. C.; Rodigues, A. A.; Pattaro, A. F.; Kaasi, A.; Maciel Filho, R. Viability Assays of PLLA Fibrous Membranes Produced by Rotary Jet Spinning for Application in Tissue Engineering. Braz. Arch. Biol. Technol. 2019, 62. doi:10.1590/1678-4324-2019170775, http://old.scielo.br/scielo.php?pid=S1516-89132019000100604&script=sci_abstract&tlng=en
  • Padilla, Gainza, V.; Morales, G.; Rodríguez, Tobías, H.; Lozano, K. ‐ Forcespinning Technique for the Production of Poly (d, l ‐Lactic Acid) Submicrometer Fibers: Process–Morphology–Properties Relationship. J. Appl. Polym. Sci. 2019, 136, 47643. doi:10.1002/app.47643
  • Muniz, N. O.; Vechietti, F. A.; Anesi, G. R.; Guinea, G. V.; dos Santos, L. A. L. Blend-Based Fibers Produced via Centrifugal Spinning and Electrospinning Processes: Physical and Rheological Properties. J. Mater. Res. 2020, 35, 2905–2916. doi:10.1557/jmr.2020.189
  • O’Haire, T.; Russell, S. J.; Carr, C. M. Centrifugal Melt Spinning of Polyvinylpyrrolidone (PVP)/Triacontene Copolymer Fibres. J. Mater. Sci. 2016, 51, 7512–7522. doi:10.1007/s10853-016-0030-5
  • Chen, H.; Xu, H.; Sun, J.; Liu, C.; Yang, B. Effective Method for High‐Throughput Manufacturing of Ultrafine Fibres via Needleless Centrifugal Spinning. Micro Nano Lett. 2015, 10, 81–84. doi:10.1049/mnl.2014.0479
  • Noguchi, H.; Kang, C. W.; Murakawa, M. Study on Nanofiber Spinning Using Centrifugal Force - Rotational Speed of Spinning Disk vs Nanofiber/Microfiber Diameter When Disk Speed is Increased via Gears. Sens. Mater. 2018, 30, 2833. doi:10.18494/SAM.2018.2034
  • Ellison, C. J.; Phatak, A.; Giles, D. W.; Macosko, C. W.; Bates, F. S. Melt Blown Nanofibers: Fiber Diameter Distributions and Onset of Fiber Breakup. Polymer 2007, 48, 3306–3316. doi:10.1016/j.polymer.2007.04.005
  • Zhiming, Z.; Jun, S.; Yaoshuai, D.; Binbin, L. Research on Modeling, Simulation and Experiment Based on Centrifugal Spinning Method. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 40. doi:10.1007/s40430-018-1407-y
  • Zhang, Z.; Sun, J. Research on the Development of the Centrifugal Spinning. MATEC Web Conf. 2017, 95, 07003. doi:10.1051/matecconf/20179507003
  • de la Garza, D.; de Santiago, F.; Materon, L.; Chipara, M.; Alcoutlabi, M. Fabrication and Characterization of Centrifugally Spun Poly(Acrylic Acid) Nanofibers. J. Appl. Polym. Sci. 2019, 136, 47480. doi:10.1002/app.47480
  • Malkin, A. Y.; Patlazhan, S. Wall Slip for Complex Liquids - Phenomenon and its causes. Adv. Colloid Interface Sci. 2018, 257, 42–57. doi:10.1016/j.cis.2018.05.008.
  • Zhiming, Z.; Boya, C.; Zilong, L.; Jiawei, W.; Yaoshuai, D. Spinning Solution Flow Model in the Nozzle and Experimental Study of Nanofibers Fabrication via High Speed Centrifugal Spinning. Polymer 2020, 205, 122794. doi:10.1016/j.polymer.2020.122794
  • de Vrieze, S.; van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; de Clerck, K. The Effect of Temperature and Humidity on Electrospinning. J. Mater. Sci. 2009, 44, 1357–1362. doi:10.1007/s10853-008-3010-6
  • TenWolde, A.; Kaskel, B. S.; Kudder, R. J.; Mitchell, M. R.; Link, R. E. A Review of ASHRAE Standard 160—Criteria for Moisture Control Design Analysis in Buildings. J. Test. Eval. 2011, 39, 102896. doi:10.1520/JTE102896
  • Haider, A.; Haider, S.; Rao Kummara, M.; Kamal, T.; Alghyamah, A. A. A.; Iftikhar, J.; Bano, F.; Khan, B.; Amjid Afridi, N.; Soo Han, M.; et al. R., Advances in the Scaffolds Fabrication Techniques Using Biocompatible Polymers and Their Biomedical Application: A Technical and Statistical Review. J. Saudi Chem. Soc. 2020, 24, 186–215. doi:10.1016/j.jscs.2020.01.002
  • Graziano, A.; d'Aquino, R.; Angelis, M. G. C.-D.; De Francesco, F.; Giordano, A.; Laino, G.; Piattelli, A.; Traini, T.; De Rosa, A.; Papaccio, G. Scaffold’s Surface Geometry Significantly Affects Human Stem Cell Bone Tissue Engineering. J. Cell. Physiol. 2008, 214, 166–172. doi:10.1002/jcp.21175
  • Jo, A. R.; Hong, M. W.; Cho, Y. S.; Song, K. M.; Lee, J. H.; Sohn, D.; Kim, Y. Y.; Cho, Y. S. Assessment of Cell Proliferation in Knitting Scaffolds with Respect to Pore-Size Heterogeneity, Surface Wettability, and Surface Roughness. J. Appl. Polym. Sci. 2015, 132, n/a–n/a. doi:10.1002/app.42566
  • Joly, P.; Duda, G. N.; Schöne, M.; Welzel, P. B.; Freudenberg, U.; Werner, C.; Petersen, A. Geometry-Driven Cell Organization Determines Tissue Growths in Scaffold Pores: Consequences for Fibronectin Organization. PLoS One. 2013, 8, e73545. doi:10.1371/journal.pone.0073545.
  • Li, J.; Stayshich, R. M.; Meyer, T. Y. Exploiting Sequence to Control the Hydrolysis Behavior of Biodegradable PLGA Copolymers. J. Am. Chem. Soc. 2011, 133, 6910–6913. doi:10.1021/ja200895s.
  • Sun, W.; Liu, W.; Wu, Z.; Chen, H. Chemical Surface Modification of Polymeric Biomaterials for Biomedical Applications. Macromol. Rapid Commun. 2020, 41, 1900430. doi:10.1002/marc.201900430
  • Hou, Y.; Deng, X.; Xie, C. Biomaterial Surface Modification for Underwater Adhesion. Smart Mater. Med. 2020, 1, 77–91. doi:10.1016/j.smaim.2020.07.003
  • Amani, H.; Arzaghi, H.; Bayandori, M.; Dezfuli, A. S.; Pazoki, Toroudi, H.; Shafiee, A.; Moradi, L. Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Adv. Mater. Interfaces 2019, 6, 1900572. doi:10.1002/admi.201900572
  • Lin, S. Y.; Chen, K. S.; Run-Chu, L. Design and Evaluation of Drug-Loaded Wound Dressing Having Thermoresponsive, Adhesive, Absorptive and Easy Peeling Properties. Biomaterials 2001, 22, 2999–3004. doi:10.1016/s0142-9612(01)00046-1.
  • Stojanovska, E.; Kurtulus, M.; Abdelgawad, A.; Candan, Z.; Kilic, A. Developing Lignin-Based Bio-Nanofibers by Centrifugal Spinning Technique. Int. J. Biol. Macromol. 2018, 113, 98–105. doi:10.1016/j.ijbiomac.2018.02.047.
  • Poláková, L.; ŠIrc, J.; Hobzová, R.; Cocârță, A. I.; Heřmánková, E. Electrospun Nanofibers for Local Anticancer Therapy: Review of in Vivo Activity. Int. J. Pharm. 2019, 558, 268–283. doi:10.1016/j.ijpharm.2018.12.059.
  • Cavo, M.; Serio, F.; Kale, N. R.; D'Amone, E.; Gigli, G.; Del Mercato, L. L. Electrospun Nanofibers in Cancer Research: From Engineering of in Vitro 3D Cancer Models to Therapy. Biomater. Sci. 2020, 8, 4887–4905. doi:10.1039/d0bm00390e.
  • Horne, J.; McLoughlin, L.; Bridgers, B.; Wujcik, E. K. Recent Developments in Nanofiber-Based Sensors for Disease Detection, Immune Sensing, and Monitoring. Sens. Actuat. Rep. 2020, 2, 100005. doi:10.1016/j.snr.2020.100005
  • Jin, T.; Pan, Y.; Jeon, G. J.; Yeom, H. I.; Zhang, S.; Paik, K. W.; Park, S. H. K. Ultrathin Nanofibrous Membranes Containing Insulating Microbeads for Highly Sensitive Flexible Pressure Sensors. ACS Appl. Mater. Interfaces. 2020, 12, 13348–13359. doi:10.1021/acsami.0c00448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.