360
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

A revisit to solution-processed zirconia and its stabilized derivatives as protective coatings for base-stainless steel

, , & ORCID Icon

References

  • Lo, K. H.; Shek, C. H.; Lai, J. K. L. Recent Developments in Stainless Steels. Mater. Sci. Eng. R 2009, 65, 39–104. doi:10.1016/j.mser.2009.03.001
  • Baddoo, N. R. Stainless Steel in Construction: A Review of Research, Applications, Challenges and Opportunities. J. Constr. Steel Res. 2008, 64, 1199–1206. doi:10.1016/j.jcsr.2008.07.011
  • Ryan, M. P.; Williams, D. E.; Chater, R. J.; Hutton, B. M.; McPhail, D. S. Why Stainless Steel Corrodes. Nature 2002, 415, 770–774. doi:10.1038/415770a.
  • Resnik, M.; Benčina, M.; Levičnik, E.; Rawat, N.; Iglič, A.; Junkar, I. Strategies for Improving Antimicrobial Properties of Stainless Steel. Materials 2020, 13, 2944. doi:10.3390/ma13132944
  • Kaliaraj, G. S.; Muthaiah, B.; Alagarsamy, K.; Vishwakarma, V.; Kirubaharan, A. M. K. Role of Bovine Serum Albumin in the Degradation of Zirconia and Its Allotropes Coated 316L SS for Potential Bioimplants. Mater. Chem. Phys. 2021, 258, 123859. doi:10.1016/j.matchemphys.2020.123859
  • Tiwari, S. K.; Adhikary, J.; Singh, T. B.; Singh, R. Preparation and Characterization of Sol-Gel Derived Yttria Doped Zirconia Coatings on AISI 316L. Thin Solid Films 2009, 517, 4502–4508. doi:10.1016/j.tsf.2008.12.025
  • Zhang, W.; Ji, G.; Bu, A.; Zhang, B. Corrosion and Tribological Behavior of ZrO2 Films Prepared on Stainless Steel Surface by the Sol-Gel Method. ACS Appl. Mater. Interfaces. 2015, 7, 28264–28272. doi:10.1021/acsami.5b07915.
  • Piconi, C.; Maccauro, G. Zirconia as a Ceramic Biomaterial. Biomaterials 1999, 20, 1–25. doi:10.1016/S0142-9612(98)00010-6
  • Manicone, P. F.; Iommetti, P. R.; Raffaelli, L. An Overview of Zirconia Ceramics: Basic Properties and Clinical Applications. J. Dent. 2007, 35, 819–826. doi:10.1016/j.jdent.2007.07.008.
  • Shane, M.; Mecartney, M. L. Sol-Gel Synthesis of Zirconia Barrier Coatings. J. Mater. Sci. 1990, 25, 1537–1544. doi:10.1007/BF01045347
  • Cristache, C. M.; Burlibaşa, M.; Cristache, G.; Drafta, S.; Popovici, I. A.; Iliescu, A. A.; Zisi, S.; Burlibaşa, L. Zirconia and Its Biomedical Applications. Metal. Int. 2011, 16, 18–23. https://www.proquest.com/openview/b85851a868139512157031762006c473/1?pq-origsite=gscholar&cbl=886383
  • Atik, M.; Zarzycki, J.; R'Kha, C. Protection of Ferritic Stainless Steel against Oxidation by Zirconia Coatings. J. Mater. Sci. Lett. 1994, 13, 266–269. doi:10.1007/BF00571772
  • Chevalier, J.; Gremillard, L. Zirconia as a Biomaterial; Elsevier: Amsterdam, Netherlands, 2011; Vol. 95.
  • Soon, G.; Pingguan-Murphy, B.; Lai, K. W.; Akbar, S. A Review of Zirconia-Based Bioceramic: Surface Modification and Cellular Response. Ceram. Int. 2016, 42, 12543–12555. doi:10.1016/j.ceramint.2016.05.077
  • Chen, L. B. Yttria-Stabilized Zirconia Thermal Barrier coatings - A Review. Surf. Rev. Lett. 2006, 13, 535–544. doi:10.1142/S0218625X06008670
  • Di Giampaolo, A. R.; Gonz’lez, Y.; Gutiérrez-Campos, D. Corrosion Behavior of Aerosol Thermal Sprayed ZrO2 Coatings. Adv. Perform. Mater. 1999, 6, 39–51. doi:10.1023/A:1008721928204
  • Ruiz, H.; Vesteghem, H.; Di Giampaolo, A. R.; Lira, J. Zirconia Coatings by Spray Pyrolysis. Surf. Coat. Technol. 1997, 89, 77–81. doi:10.1016/S0257-8972(96)02934-9
  • Atik, M.; Messaddeq, S. H.; Luna, F. P.; Aegerter, M. A. Zirconia Sol-Gel Coatings Deposited on 304 and 316L Stainless Steel for Chemical Protection in Acid Media. J. Mater. Sci. Lett. 1996, 15, 2051–2054. doi:10.1007/BF00278619
  • Priyadarshini, B.; Rama, M.; Vijayalakshmi, U. Bioactive Coating as a Surface Modification Technique for Biocompatible Metallic Implants: A Review. J. Asian Ceram. Soc. 2019, 7, 397–406. doi:10.1080/21870764.2019.1669861
  • Zhao, S.; Ma, F.; Xu, K. W.; Liang, H. F. Optical Properties and Structural Characterization of Bias Sputtered ZrO2 Films. J. Alloys Compd. 2008, 453, 453–457. doi:10.1016/j.jallcom.2006.11.134
  • Hojabri, A.; Pourmohammad, S. Optical Properties of Nano-Crystalline Zirconia Thin Films Prepared at Different Post-Oxidation Annealing Times. Acta Phys. Pol. A 2016, 129, 647–649. doi:10.12693/APhysPolA.129.647
  • Waghmare, M. A.; Naushad, M.; Alothman, Z. A.; Ubale, A. U.; Pathan, H. M. Zirconium Oxide Films: Deposition Techniques and Their Applications in Dye-Sensitized Solar Cells. J. Solid State Electrochem. 2017, 21, 2531–2545. doi:10.1007/s10008-017-3565-8
  • Mehner, A.; Datchary, W.; Bleil, N.; Zoch, H. W.; Klopfstein, M. J.; Lucca, D. A. The Influence of Processing on Crack Formation, Microstructure, Density and Hardness of Sol-Gel Derived Zirconia Films. J. Sol-Gel Sci. Technol. 2005, 36, 25–32. doi:10.1007/s10971-005-4792-5
  • Darolia, R. Thermal Barrier Coatings Technology: Critical Review, Progress Update, Remaining Challenges and Prospects. Int. Mater. Rev 2013, 58, 315–348. doi:10.1179/1743280413Y.0000000019
  • Park, S. Y.; Kim, J. H.; Kim, M. C.; Song, H. S.; Park, C. G. Microscopic Observation of Degradation Behavior in Yttria and Ceria Stabilized Zirconia Thermal Barrier Coatings under Hot Corrosion. Surf. Coat. Technol 2005, 190, 357–365. doi:10.1016/j.surfcoat.2004.04.065
  • Maggio, R. D.; Rossi, S.; Fedrizzi, L.; Scardi, P. ZrO2-CeO2 Films as Protective Coatings against Dry and Wet Corrosion of Metallic Alloys. Surf. Coat. Technol. 1997, 89, 292–298. doi:10.1016/S0257-8972(96)03014-9
  • Tabatabaeian, M. R.; Rahmanifard, R.; Jalili, Y. S. The Study of Phase Stability and Thermal Shock Resistance of a Scandia–Ceria Stabilized Zirconia as a New TBC Material. Surf. Coat. Technol. 2019, 374, 752–762. doi:10.1016/j.surfcoat.2019.06.069
  • Cahill, J. T.; Ruppert, J. N.; Wallis, B.; Liu, Y.; Graeve, O. A. Development of Mesoporosity in Scandia-Stabilized Zirconia: Particle Size, Solvent, and Calcination Effects. Langmuir 2014, 30, 5585–5591. doi:10.1021/la4049743.
  • Quinson, J. F.; Chino, C.; De Becdelievre, A. M.; Guizard, C.; Brunel, M. Deformation Capability and Protective Role of Zirconia Coatings on Stainless Steel. J. Mater. Sci. 1996, 31, 5179–5184. doi:10.1007/BF00355922
  • Yu, X.; Marks, T. J.; Facchetti, A. Metal Oxides for Optoelectronic Applications. Nat. Mater. 2016, 15, 383–396. doi:10.1038/nmat4599.
  • Izumi, K.; Murakami, M.; Deguchi, T.; Morita, A.; Tohge, N.; Minami, T. Zirconia Coating on Stainless Steel Sheets from Organozirconium Compounds. J. Am. Ceram. Soc. 1989, 72, 1465–1468. doi:10.1111/j.1151-2916.1989.tb07677.x
  • Kirk, P. B.; Pilliar, R. M. Deformation Response of Sol-Gel-Derived Zirconia Thin Films on 316L Stainless Steel Substrates Using a Substrate Straining Test. J. Mater. Sci. 1999, 34, 3967–3975. doi:10.1023/A:1004695427839
  • Kelly, J. R.; Denry, I. Stabilized Zirconia as a Structural Ceramic: An Overview. Dent. Mater. 2008, 24, 289–298. doi:10.1016/j.dental.2007.05.005.
  • Materlik, R.; Kunneth, C.; Kersch, A. The Origin of Ferroelectricity in Hf1-xZrxO2: A Computational Investigation and a Surface Energy Model. J. Appl. Phys. 2015, 117, 1–15. doi:10.1063/1.4916707
  • Lee, J.-S.; Matsubara, T.; Sei, T.; Tsuchiya, T. Preparation and Properties of Y2O3-Doped ZrO2 Films by the Sol–Gel Process. J. Mater. Sci. 1997, 32, 5249–5256. doi:10.1023/A:1018650424335
  • Ram, S.; Singh, G. P. Advanced ZrO2-Based Ceramic Nanocomposites for Optical and Other Engineering Applications. Compos. Mater. 2017, 497-570. doi:10.1007/978-3-662-49514-8_15
  • Brandon, J. R.; Taylor, R. Thermal Properties of Ceria and Yttria Partially Stabilized Zirconia Thermal Barrier Coatings. Surf. Coat. Technol. 1989, 39–40, 143–151. doi:10.1016/0257-8972(89)90049-2
  • Duwez, P.; Odell, F.; Brown, F. H. Stabilization of Zirconia with Calcia and Magnesia. J. Am. Ceram. Soc. 1952, 35, 107–113. doi:10.1111/j.1151-2916.1952.tb13081.x
  • Jones, R. L.; Mess, D. India as a Hot Corrosion‐Resistant Stabilizer for Zirconia. J. Am. Ceram. Soc. 1992, 75, 1818–1821. doi:10.1111/j.1151-2916.1992.tb07202.x
  • Islam, Q. A.; Raja, M.; Satra, C.; Basu, R. N. Low Temperature Synthesis of Nanocrystalline Scandia-Stabilized Zirconia by Aqueous Combustion Method and Its Characterizations. Bull. Mater. Sci. 2015, 38, 1473–1478. doi:10.1007/s12034-015-0977-x
  • Bashir, M.; Riaz, S.; Naseem, S. Fe3O4 Stabilized Zirconia: Structural, Mechanical and Optical Properties. J. Sol-Gel Sci. Technol. 2015, 74, 281–289. doi:10.1007/s10971-014-3415-4
  • Tiwari, S. K.; Tripathi, M.; Singh, R. Electrochemical Behavior of Zirconia Based Coatings on Mild Steel Prepared by Sol-Gel Method. Corros. Sci. 2012, 63, 334–341. doi:10.1016/j.corsci.2012.06.026
  • Nazeri, A.; Qadri, S. B. Alumina-Stabilized Zirconia Coatings for High-Temperature Protection of Turbine Blades. Surf. Coat. Technol. 1996, 86–87, 166–169. doi:10.1016/S0257-8972(96)03025-3
  • Arachi, Y.; Sakai, H.; Yamamoto, O.; Takeda, Y.; Imanishai, N. Electrical Conductivity of the ZrO2-Ln2O3 (Ln = Lanthanides) System. Solid State Ionics 1999, 121, 133–139. doi:10.1016/S0167-2738(98)00540-2
  • Khor, K. A.; Yang, J. Plasma Sprayed ZrO2-Sm2O3 Coatings: Lattice Parameters, Tetragonality (c/a) and Transformability of Tetragonal Zirconia Phase. J. Mater. Sci. Lett. 1997, 16, 1002–1004. doi:10.1023/A:1018597802063
  • Tsipas, S. A. Effect of Dopants on the Phase Stability of Zirconia-Based Plasma Sprayed Thermal Barrier Coatings. J. Eur. Ceram. Soc. 2010, 30, 61–72. doi:10.1016/j.jeurceramsoc.2009.08.008
  • Vardhan, R. V.; Manjunatha, M.; Mandal, S. Stoichiometric Redox Reaction-Controlled, Combustion Assisted Spray Pyrolyzed Zirconia Films on Stainless Steel. IOPSciNotes. 2020, 1, 024806. doi:10.1088/2633-1357/abaa54
  • Vidya, Y. S.; Anantharaju, K. S.; Nagabhushana, H.; Sharma, S. C.; Nagaswarupa, H. P.; Prashantha, S. C.; Shivakumara, C. Combustion Synthesized Tetragonal ZrO2: Eu3+ Nanophosphors: Structural and Photoluminescence Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 135, 241–251. doi:10.1016/j.saa.2014.06.151.
  • Foschini, C. R.; Souza, D. P. F.; Paulin Filho, P. I.; Varela, J. A. AC Impedance Study of Ni, Fe, Cu, Mn Doped Ceria Stabilized Zirconia Ceramics. J. Eur. Ceram. Soc. 2001, 21, 1143–1150. doi:10.1016/S0955-2219(00)00339-3
  • Wang, J.; Zheng, X. H.; Stevens, R. Fabrication and Microstructure-Mechanical Property Relationships in Ce-TZPs. J. Mater. Sci. 1992, 27, 5348–5356. doi:10.1007/BF02403843
  • Sriubas, M.; Kainbayev, N.; Virbukas, D.; Bočkutė, K.; Rutkūnienė, Ž.; Laukaitis, G. Structure and Conductivity Studies of Scandia and Alumina Doped Zirconia Thin Films. Coatings 2019, 9, 317. doi:10.3390/coatings9050317
  • Pasquarelli, R. M.; Ginley, D. S.; O’Hayre, R. Solution Processing of Transparent Conductors: From Flask to Film. Chem. Soc. Rev. 2011, 40, 5406–5441. doi:10.1039/c1cs15065k.
  • Pujar, P.; Gandla, S.; Gupta, D.; Kim, S.; Kim, M. G. Trends in Low-Temperature Combustion Derived Thin Films for Solution-Processed Electronics. Adv. Electron. Mater. 2020, 6, 2000464. doi:10.1002/aelm.202000464
  • Mitzi, D. B. Solution Processing of Inorganic Materials. John Wiley & Sons: Hoboken,  NJ, 2009; Vol. 1.
  • Du Ahn, B.; Jeon, H. J.; Sheng, J.; Park, J.; Park, J. S. A Review on the Recent Developments of Solution Processes for Oxide Thin Film Transistors. Semicond. Sci. Technol. 2015, 30, 064001. doi:10.1088/0268-1242/30/6/064001
  • Hodes, G. Semiconductor and Ceramic Nanoparticle Films Deposited by Chemical Bath Deposition. Phys. Chem. Chem. Phys. 2007, 9, 2181–2196. doi:10.1039/b616684a.
  • Sahu, N.; Parija, B.; Panigrahi, S. Fundamental Understanding and Modeling of Spin Coating Process: A Review. Indian J. Phys. 2009, 83, 493–502. doi:10.1007/s12648-009-0009-z
  • Brinker, C. J.; Frye, G. C.; Hurd, A. J.; Ashley, C. S. Fundamentals of Sol-Gel Dip Coating. Thin Solid Films 1991, 201, 97–108. doi:10.1016/0040-6090(91)90158-T
  • Yang, H.; Jiang, P. Large-Scale Colloidal Self-Assembly by Doctor Blade Coating. Langmuir 2010, 26, 13173–13182. doi:10.1021/la101721v.
  • Shim, E. Coating and Laminating Processes and Techniques for Textiles. In Smart Textile Coatings and Laminates; Elsevier: Amsterdam, Netherlands, 2018; Vol. 11.
  • Patidar, R.; Burkitt, D.; Hooper, K.; Richards, D.; Watson, T. Slot-Die Coating of Perovskite Solar Cells: An Overview. Mater. Today Commun. 2020, 22, 100808. doi:10.1016/j.mtcomm.2019.100808
  • Perednis, D.; Gauckler, L. J. Thin Film Deposition Using Spray Pyrolysis. J. Electroceram. 2005, 14, 103–111. doi:10.1007/s10832-005-0870-x
  • Lorenzetto, G. E.; Lefebvre, A. H. Measurements of Drop Size on a Plain-Jet Airblast Atomizer. AIAA J. 1977, 15, 1006–1010. doi:10.2514/3.60742
  • Mansour, A.; Chigier, N. Air-Blast Atomization of non-Newtonian Liquids. J. Non-Newtonian. Fluid Mech. 1995, 58, 161–194. doi:10.1016/0377-0257(95)01356-Z
  • Mooney, J. B.; Radding, S. B. Spray Pyrolysis Processing. Annu. Rev. Mater. Sci. 1982, 12, 81–101. doi:10.1146/annurev.ms.12.080182.000501
  • Patil, P. S. Versatility of Chemical Spray Pyrolysis Technique. Mater. Chem. Phys. 1999, 59, 185–198. doi:10.1016/S0254-0584(99)00049-8
  • Riemer, D. E. The Theoretical Fundamentals of the Screen Printing Process. Microelectron. Int 1989, 6, 8–17. doi:10.1108/eb044350
  • Calvert, P. Inkjet Printing for Materials and Devices. Chem. Mater. 2001, 13, 3299–3305. doi:10.1021/cm0101632
  • Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet Printing-Process and Its Applications. Adv. Mater. 2010, 22, 673–685. doi:10.1002/adma.200901141.
  • Secor, E. B. Principles of Aerosol Jet Printing. Flex. Print. Electron. 2018, 3, 035002. doi:10.1088/2058-8585/aace28
  • Baron, Y. S.; Ruiz, A.; Navas, G. High Temperature Oxidation Resistance of 1.25cr-0.5mo wt.% Steels by Zirconia Coating. Surf. Coat. Technol. 2008, 202, 2616–2622. doi:10.1016/j.surfcoat.2007.09.038
  • Pujar, P.; Gandla, S.; Singh, M.; Gupta, B.; Tarafder, K.; Gupta, D.; Noh, Y.; Mandal, S. Development of Low Temperature Stoichiometric Solution Combustion Derived Transparent Conductive Ternary Zinc Tin co-Doped Indium Oxide Electrodes. RSC Adv. 2017, 7, 48253–48262. doi:10.1039/C7RA09189C
  • Pujar, P.; Vardhan, R. V.; Gupta, D.; Mandal, S. A Balancing between Super Transparency and Conductivity of Solution Combustion Derived Titanium Doped Indium Oxide: Effect of Charge Carrier Density and Mobility. Thin Solid Films 2018, 660, 267–275. doi:10.1016/j.tsf.2018.06.031
  • Scriven, L. E. Physics and Applications of Dip Coating and Spin Coating. MRS Proc. 1988, 121, 717. doi:10.1557/PROC-121-717
  • Schneller, T.; Waser, R.; Kosec, M.; Payne, D. Chemical Solution Deposition of Functional Oxide Thin Films; Springer: New York, NY: 2013; Vol. 1.
  • Neto, PdL.; Atik, M.; Avaca, L. A.; Aegerter, M. A. Sol-Gel Coatings for Chemical Protection of Stainless Steel. J. Sol-Gel Sci. Technol. 1994, 2, 529–534. doi:10.1007/BF00486303
  • Mehner, A.; Klümper-Westkamp, H.; Hoffmann, F.; Mayr, P. Crystallization and Residual Stress Formation of Sol-Gel-Derived Zirconia Films. Thin Solid Films 1997, 308–309, 363–368. doi:10.1016/S0040-6090(97)00579-8
  • Atik, M.; Aegerter, M. Corrosion Resistant Sol-Gel ZrO2 Coatings on Stainless Steel. J. Non. Cryst. Solids 1992, 147–148, 813–819. doi:10.1016/S0022-3093(05)80722-7
  • Atik, M.; Kha, C. R.; Neto, PdL.; Avaca, L. A.; Aegerter, M. A.; Zarzycki, J. Protection of 316L Stainless Steel by Zirconia Sol-Gel Coatings in 15% H2SO4 Solutions. J. Mater. Sci. Lett. 1995, 14, 178–181. doi:10.1007/BF00318248
  • Atik, M.; Messaddeq, S. H.; Aegerter, M. A.; Zarzycki, J. Mechanical Properties of Zirconia-Coated 316L Austenitic Stainless Steel. J. Mater. Sci. Lett. 1996, 15, 1868–1871. https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/24295/1/aeg199606.pdf
  • Lucca, D. A.; Klopfstein, M. J.; Ghisleni, R.; Gude, A.; Mehner, A.; Datchary, W. Investigation of Sol-Gel Derived ZrO2 Thin Films by Nanoindentation. CIRP Ann. - Manuf. Technol. 2004, 53, 475–478. doi:10.1016/S0007-8506(07)60743-4
  • Perdomo, F. L.; Neto, PdL.; Aegerter, M. A.; Avaca, L. A. Sol-Gel Deposition of ZrO2 Films in Air and in Oxygen-Free Atmospheres for Chemical Protection of 304 Stainless Steel: A Comparative Corrosion Study. J. Sol-Gel Sci. Technol. 1999, 15, 87–91. doi:10.1023/A:1008769231899
  • Li, H.; Liang, K.; Mei, L.; Gu, S.; Wang, S. Corrosion Protection of Mild Steel by Zirconia Sol-Gel Coatings. Mater. Lett. 2001, 20, 1081–1083. doi:10.1023/A:1010918224936
  • Li, H.; Liang, K.; Mei, L.; Gu, S.; Wang, S. Oxidation Protection of Mild Steel by Zirconia Sol-Gel Coatings. Mater. Lett. 2001, 51, 320–324. doi:10.1016/S0167-577X(01)00311-1
  • Quinson, J.; Chino, C.; Becdelievre, A. D.; Guizard, C. Interphase Study by XPS of Sol-Gel ZrO2 Coatings on Stainless Steel. Mat. Res. Soc. Symp. Proc. 1994, 346, 703–708. https://link.springer.com/article/10.1557/PROC-346-703
  • Luna, F. P.; Atik, M.; Avaca, L. S.; Aegerter, M. A. Zirconia Sol-Gel Coatings Deposited on 304 Stainless Steel for Chemical Protection in Acid Media. Acta Microsc. 1995, 29, 367–374. https://www.osti.gov/etdeweb/biblio/329715
  • Neto, P. L.; Atik, M.; Avaca, L. A.; Aegerter, M. A. Sol-Gel ZrO2 Coatings for Chemical Protection of Stainless Steel. J. Sol-Gel Sci. Technol. 1994, 1, 177–184. doi:10.1007/BF00490247
  • Li, H.; Liang, K.; Mei, L.; Gu, S. Oxidation Resistance of Mild Steel by Zirconia Sol-Gel Coatings. Mater. Sci. Eng. A 2003, 341, 87–90. doi:10.1016/S0921-5093(02)00200-9
  • Luna, F. P.; Avaca, L. A.; Aegerter, M. A.; Neto, PdL Oxygen-Free Deposition of ZrO2 Sol-Gel Films on Mild Steel for Corrosion Protection in Acid Medium. J. Mater. Sci. Lett. 1998, 17, 295–298. https://publikationen.sulb.uni-saarland.de/bitstream/20.500.11880/24299/1/aeg199816.pdf
  • Paterson, M. J.; Ben-Nissan, B. Multilayer Sol-Gel Zirconia Coatings on 316 Stainless Steel. Surf. Coat. Technol. 1996, 86–87, 153–158. doi:10.1016/S0257-8972(96)03029-0
  • Balamurugan, A.; Kannan, S.; Rajeswari, S. Structural and Electrochemical Behaviour of Sol-Gel Zirconia Films on 316L Stainless-Steel in Simulated Body Fluid Environment. Mater. Lett. 2003, 57, 4202–4205. doi:10.1016/S0167-577X(03)00290-8
  • Lee, W. G.; Cho, K. H.; Lee, S. B.; Park, S. B.; Jang, H. Electrochemical Response of Zirconia-Coated 316L Stainless-Steel in a Simulated Proton Exchange Membrane Fuel Cell Environment. J. Alloys Compd. 2009, 474, 268–272. doi:10.1016/j.jallcom.2008.06.093
  • Ruhi, G.; Modi, O. P.; Singh, I. B. Hot Corrosion Behavior of Sol-Gel Nano Structured Zirconia Coated 9Cr1Mo Ferritic Steel in Alkali Metal Chlorides and Sulphates Deposit Systems at High Temperatures. JSEMAT. 2013, 03, 55–60. doi:10.4236/jsemat.2013.31A008
  • Singh, I. B.; Ruhi, G.; Modi, O. P.; Singh, M. Oxidation Behviour of Sol-Gel Zirconia Coated 9Cr-1Mo Ferritic Steel in Air Atmosphere. Indian J. Chem. Technol. 2016, 23, 533–537.
  • Nouri, E.; Shahmiri, M.; Rezaie, H. R.; Talayian, F. Investigation of Structural Evolution and Electrochemical Behaviour of Zirconia Thin Films on the 316L Stainless Steel Substrate Formed via Sol-Gel Process. Surf. Coat. Technol. 2011, 205, 5109–5115. doi:10.1016/j.surfcoat.2011.05.024
  • Mei, L.; Liang, K.; Li, H. The Effect of Zirconia Sol-Gel Coatings on Mild Steel Oxidation Resistance. Key Eng. Mater. 2007, 280–283, 1005–1008. doi:10.4028/www.scientific.net/KEM.280-283.1005
  • Nouri, E.; Shahmiri, M.; Rezaie, H. R.; Talayian, F. A Comparative Study of Heat Treatment Temperature Influence on the Thickness of Zirconia Sol-Gel Thin Films by Three Different Techniques: SWE, SEM and AFM. Surf. Coatings Technol 2012, 206, 3809–3815. doi:10.1016/j.surfcoat.2011.11.030
  • Jafari, M.; Kalantar, M. Fabrication and Characterization of Zirconia Coating on the API5L Steel. Prot. Met. Phys. Chem. Surf. 2020, 56, 1008–1014. doi:10.1134/S2070205120050159
  • Kazazi, M.; Haghighi, M.; Yarali, D.; Zaynolabedini, M. H. Improving Corrosion Resistance of 316L Austenitic Stainless Steel Using ZrO2 Sol-Gel Coating in Nitric Acid Solution. J. Mater. Eng. Perform. 2018, 27, 1093–1102. doi:10.1007/s11665-018-3202-4
  • Bhagyanathan, C.; Karuppuswamy, P.; Krishnaraj, C. Investigation of Zirconium Coating by Sol–Gel Processes on A216 Steel. Int. J. Adv. Manuf. Technol. 2018, 99, 2647–2657. doi:10.1007/s00170-018-2627-0
  • Nagarajan, S.; Rajendran, N. Sol-Gel Derived Porous Zirconium Dioxide Coated on 316L SS for Orthopedic Applications. J. Sol-Gel Sci. Technol. 2009, 52, 188–196. doi:10.1007/s10971-009-2024-0
  • Miyazawa, K.; Suzuki, K.; Wey, M. Y. Microstructure and Oxidation‐Resistant Property of Sol‐Gel‐Derived ZrO2‐Y2O3 Films Prepared on Austenitic Stainless Steel Substrates. J. Am. Ceram. Soc. 1995, 78, 347–355. doi:10.1111/j.1151-2916.1995.tb08807.x
  • Baron, Y. S.; Ruiz, A. Sol-Gel Coating to Reduce 1.25Cr-0.5Mo Steel Oxidation at 700 °C: Catalyst Type Effect. Corros. Sci. 2011, 53, 1060–1065. doi:10.1016/j.corsci.2010.11.043
  • Ivankovic, H.; Macan, J.; Ivankovic, M.; Grilec, K. Abrasion Resistant Thin Partially Stabilised Zirconia Coatings by Sol-Gel Dip-Coating. Chem. Biochem. Eng. Q. 2005, 19, 31–37. http://silverstripe.fkit.hr/cabeq/assets/Uploads/Cabeq-2005-01-5.pdf
  • Bačić, I.; Ćurković, H. O.; Ćurković, L.; Mandić, V.; Šokčević, Z. Corrosion Protection of AISI 316L Stainless Steel with the Sol-Gel Yttria Stabilized ZrO2 Films: Effects of Sintering Temperature and Doping. Int. J. Electrochem. Sci. 2016, 11, 9192–9192. doi:10.20964/2016.11.04
  • Crespo, M. A. D.; Murillo, A. G.; Torres-Huerta, A. M.; Yañez-Zamora, C.; Carrillo-Romo, FdJ Electrochemical Behaviour of Ceramic Yttria Stabilized Zirconia on Carbon Steel Synthesized via Sol-Gel Process. J. Alloys Compd. 2009, 483, 437–441. doi:10.1016/j.jallcom.2008.08.086
  • Maggio, R. D. I.; Scardi, P.; Tomasio, A. Characterization of Ceria Stabilized Zirconia Coatings on Metal Substrates. Mat. Res. Soc. Symp. Proc. 1990, 180, 481–484. https://link.springer.com/article/10.1557/PROC-180-481
  • Maggio, R. D.; Fedrizzi, L.; Rossi, S.; Scardi, P. Dry and Wet Corrosion Behaviour of AISI 304 Stainless Steel Coated by Sol-Gel ZrO2-CeO2 Films. Thin Solid Films 1996, 286, 127–135. doi:10.1016/S0040-6090(95)08515-7
  • Maggio, R. D.; Tomasi, A.; Scardi, P. Characterisation of Thin Ceramic Coatings on Metal Substrates. Mater. Lett. 1997, 31, 345–349. doi:10.1016/S0167-577X(96)00298-4
  • Stelzer, N. H. J.; Schoonman, J. Synthesis of Terbia-Doped Yttria-Stabilized Zirconia Thin Films by Electrostatic Spray Deposition (ESD). J. Mater. Synth. Process 1996, 4, 429–438. https://www.researchgate.net/profile/Joop-Schoonman/publication/27345169_Synthesis_of_Terbia-doped_Yttria-Stabilized_Zirconia_thin_films_by_Electrostatic_Spray_Deposition_ESD/links/546f4aa70cf24af340c081b6/Synthesis-of-Terbia-doped-Yttria-Stabilized-Zirconia-thinfilms-by-Electrostatic-Spray-Deposition-ESD.pdf
  • Neagu, R.; Perednis, D.; Princivalle, A.; Djurado, E. Zirconia Coatings Deposited by Electrostatic Spray Deposition. Influence of the Process Parameters. Surf. Coatings Technol. 2006, 200, 6815–6820. doi:10.1016/j.surfcoat.2005.10.014
  • Huang, H. J.; Yuan, X. Z. Recent Progress in the Direct Liquefaction of Typical Biomass. Prog. Energy Combust. Sci. 2015, 49, 59–80. doi:10.1016/j.pecs.2015.01.003
  • Liu, G.; Liu, A.; Zhu, H.; Shin, B.; Fortunato, E.; Martins, R.; Wang, Y.; Shan, F. Low-Temperature, Nontoxic Water-Induced Metal-Oxide Thin Films and Their Application in Thin-Film Transistors. Adv. Funct. Mater. 2015, 25, 2564–2572. doi:10.1002/adfm.201500056
  • Branquinho, R.; Salgueiro, D.; Santos, L.; Barquinha, P.; Pereira, L.; Martins, R.; Fortunato, E. Aqueous Combustion Synthesis of Aluminum Oxide Thin Films and Application as Gate Dielectric in GZTO Solution-Based TFTs. ACS Appl. Mater. Interfaces. 2014, 6, 19592–19599. doi:10.1021/am503872t.
  • Neagu, R.; Djurado, E.; Ortega, L.; Pagnier, T. ZrO2-Based Thin Films Synthesized by Electrostatic Spray Deposition: Effect of Post-Deposition Thermal Treatments. Solid State Ionics 2006, 177, 1443–1449. doi:10.1016/j.ssi.2006.06.024
  • Neagu, R.; Perednis, D.; Princivalle, A.; Djurado, E. Zirconia Coatings Deposited by Electrostatic Spray Deposition a Chemical Approach. Solid State Ionics 2006, 177, 1451–1460. doi:10.1016/j.ssi.2006.07.027
  • Ardekani, S. R.; Aghdam, A. S. R.; Nazari, M.; Bayat, A.; Yazdani, E.; Saievar-Iranizad, E. A Comprehensive Review on Ultrasonic Spray Pyrolysis Technique: Mechanism, Main Parameters and Applications in Condensed Matter. J. Anal. Appl. Pyrolysis 2019, 141, 104631. doi:10.1016/j.jaap.2019.104631
  • Jordan, E. H.; Jiang, C.; Gell, M. The Solution Precursor Plasma Spray (SPPS) Process: A Review with Energy Considerations. J. Therm. Spray Tech. 2015, 24, 1153–1165. doi:10.1007/s11666-015-0272-9
  • Fan, W.; Bai, Y. Review of Suspension and Solution Precursor Plasma Sprayed Thermal Barrier Coatings. Ceram. Int. 2016, 42, 14299–14312. doi:10.1016/j.ceramint.2016.06.063
  • Viscusi, A.; Astarita, A.; Gatta, R. D.; Rubino, F. A Perspective Review on the Bonding Mechanisms in Cold Gas Dynamic Spray. Surf. Eng. 2019, 35, 743–771. doi:10.1080/02670844.2018.1551768
  • Gatta, R. D.; Viscusi, A.; Perna, A. S.; Caraviello, A.; Astarita, A. Cold Spray Process for the Production of AlSi10Mg Coatings on Glass Fibers Reinforced Polymers. Mater. Manuf. Process 2021, 36, 106–121. doi:10.1080/10426914.2020.1813895
  • Viscusi, A.; Astarita, A.; Carrino, L.; D'Avino, G.; De Nicola, C.; Maffettone, P. L.; Reina, G. P.; Russo, S.; Squillace, A. Experimental Study and Numerical Investigation of the Phenomena Occurring during Long Duration Cold Spray Deposition. IREMOS 2018, 11, 84. doi:10.15866/iremos.v11i2.13619
  • Gatta, R. D.; Perna, A. S.; Viscusi, A.; Pasquino, G.; Astarita, A. Cold Spray Deposition of Metallic Coatings on Polymers: A Review. J. Mater. Sci. 2022, 57, 27–57. doi:10.1007/s10853-021-06561-2
  • Moridi, A.; Hassani-Gangaraj, S. M.; Guagliano, M.; Dao, M. Cold Spray Coating: Review of Material Systems and Future Perspectives. Surf. Eng. 2014, 30, 369–395. doi:10.1179/1743294414Y.0000000270
  • Carlos, E.; Martins, R.; Fortunato, E.; Branquinho, R. Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides. Chemistry 2020, 26, 9099–9125. doi:10.1002/chem.202000678.
  • Pujar, P.; Gupta, D.; Mandal, S. High-Performance Low Voltage Operation of Indium Zinc Tin Oxide Thin Film Transistors Using Chemically Derived Sodium β-Alumina Dielectric. J. Mater. Sci: Mater. Electron. 2019, 30, 9097–9105. doi:10.1007/s10854-019-01238-8
  • Kim, M. G.; Kanatzidis, M. G.; Facchetti, A.; Marks, T. J. Low-Temperature Fabrication of High-Performance Metal Oxide Thin-Film Electronics via Combustion Processing. Nat. Mater. 2011, 10, 382–388. doi:10.1038/nmat3011.
  • Gupta, B.; Pujar, P.; Mal, S. S.; Gupta, D.; Mandal, S. Retention of High Dielectric Constant Sodium Beta Alumina via Solution Combustion: Role of Aluminum Ions Complexation with Fuel. Ceram. Int. 2018, 44, 1500–1511. doi:10.1016/j.ceramint.2017.10.061
  • Vardhan, R. V.; Manjunath, G.; Mandal, S. Fabrication of Solution Combustion Based Transparent Semiconducting Titanium and Zinc co-Doped Indium Oxide (ITiZO) Films. Mater. Sci. Forum. 2019, 969, 260–265. doi:10.4028/www.scientific.net/MSF.969.260
  • Varma, A.; Mukasyan, A. S.; Rogachev, A. S.; Manukyan, K. V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev. 2016, 116, 14493–14586. doi:10.1021/acs.chemrev.6b00279.
  • Wang, B.; Yu, X.; Guo, P.; Huang, W.; Zeng, L.; Zhou, N.; Chi, L.; Bedzyk, M. J.; Chang, R. P. H.; Marks, T. J.; Facchetti, A. Solution-Processed All-Oxide Transparent High-Performance Transistors Fabricated by Spray-Combustion Synthesis. Adv. Electron. Mater. 2016, 2, 1500427. doi:10.1002/aelm.201500427
  • Yu, X.; Smith, J.; Zhou, N.; Zeng, L.; Guo, P.; Xia, Y.; Alvarez, A.; Aghion, S.; Lin, H.; Yu, J.; et al. Spray-Combustion Synthesis: Efficient Solution Route to High-Performance Oxide Transistors. Proc. Natl. Acad. Sci. USA 2015, 112, 3217–3222. doi:10.1073/pnas.1501548112.
  • Cubillos, G. I.; Olaya, J. J.; Bethencourt, M.; Cifredo, G.; Blanco, G. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel. J. Therm. Spray Tech. 2013, 22, 1242–1252. doi:10.1007/s11666-013-9956-1
  • Jordan, E. H.; Jiang, C.; Roth, J.; Gell, M. Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process. J. Therm. Spray Tech. 2014, 23, 849–859. doi:10.1007/s11666-014-0082-5
  • Chen, D.; Gell, M.; Jordan, E. H.; Cao, E.; Ma, X. Thermal Stability of Air Plasma Spray and Solution Precursor Plasma Spray Thermal Barrier Coatings. J. Am. Ceram. Soc. 2007, 90, 3160–3166. doi:10.1111/j.1551-2916.2007.01864.x
  • Joulia, A.; Bolelli, G.; Gualtieri, E.; Lusvarghi, L.; Valeri, S.; Vardelle, M.; Rossignol, S.; Vardelle, A. Comparing the Deposition Mechanisms in Suspension Plasma Spray (SPS) and Solution Precursor Plasma Spray (SPPS) Deposition of Yttria-Stabilised Zirconia (YSZ). J. Eur. Ceram. Soc. 2014, 34, 3925–3940. doi:10.1016/j.jeurceramsoc.2014.05.024
  • Xie, L.; Ma, X.; Jordan, E. H.; Padture, N. P.; Xiao, D. T.; Gell, M. Deposition Mechanisms of Thermal Barrier Coatings in the Solution Precursor Plasma Spray Process. Surf. Coat. Technol. 2004, 177–178, 103–107. doi:10.1016/j.surfcoat.2003.06.013
  • Xie, L.; Ma, X.; Jordan, E. H.; Padture, N. P.; Xiao, D. T.; Gell, M. Deposition of Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process. J. Mater. Sci. 2004, 39, 1639–1646. doi:10.1023/B:JMSC.0000016163.81534.19
  • Xie, L.; Ma, X.; Jordan, E. H.; Padture, N. P.; Xiao, D. T.; Gell, M. Identification of Coating Deposition Mechanisms in the Solution-Precursor Plasma-Spray Process Using Model Spray Experiments. Mater. Sci. Eng. A 2003, 362, 204–212. doi:10.1016/S0921-5093(03)00617-8
  • Bhatia, T.; Ozturk, A.; Xie, L.; Jordan, E. H.; Cetegen, B. M.; Gell, M.; Ma, X.; Padture, N. P. Mechanisms of Ceramic Coating Deposition in Solution-Precursor Plasma Spray. J. Mater. Res. 2002, 17, 2363–2372. doi:10.1557/JMR.2002.0346
  • Ksapabutr, B.; Chalermkiti, T.; Wongkasemjit, S.; Panapoy, M. Fabrication of Scandium Stabilized Zirconia Thin Film by Electrostatic Spray Deposition Technique for Solid Oxide Fuel Cell Electrolyte. Thin Solid Films 2010, 518, 6518–6521. doi:10.1016/j.tsf.2010.03.167
  • Xu, X.; Xia, C.; Huang, S.; Peng, D. YSZ Thin Films Deposited by Spin-Coating for IT-SOFCs. Ceram. Int. 2005, 31, 1061–1064. doi:10.1016/j.ceramint.2004.11.005
  • Birnie, D. P. Rational Solvent Selection Strategies to Combat Striation Formation during Spin Coating of Thin Films. J. Mater. Res. 2001, 16, 1145–1154. doi:10.1557/JMR.2001.0158
  • Zhang, L.; Dorjpalam, S.; Ji, G.; Peng, J. Corrosion of Stainless Steel Coated with a ZrO2 Film in a Hydrogen Sulfide Gas Environment. SN Appl. Sci. 2020, 2, 1. doi:10.1007/s42452-020-2718-z
  • Yu, J.; Ji, G.; Shi, Z.; Wang, X. Corrosion Resistance of ZrO2 Films under Different Humidity Coal Gas Conditions at High Temperature. J. Alloys Compd. 2019, 783, 371–378. doi:10.1016/j.jallcom.2018.12.322
  • Paterson, M. J.; McCulloch, D. G.; Paterson, P. J. K.; Ben-Nissan, B. The Morphology and Structure of Sol-Gel Derived Zirconia Films on Stainless Steel. Thin Solid Films 1997, 311, 196–206. doi:10.1016/S0040-6090(97)00723-2
  • Zhang, Z.; Ji, G.; Shi, Z. Tribological Properties of ZrO2 Nanofilms Coated on Stainless Steel in a 5% NaCl Solution, Distilled Water and a Dry Environment. Surf. Coat. Technol. 2018, 350, 128–135. doi:10.1016/j.surfcoat.2018.07.028
  • Lee, H.; Der Liao, J.; Shao, P. L.; Yao, C. K.; Lin, Y. H.; Juang, Y. D. Sol–Gel-Based Zirconia Biocoatings on Metal Structurally Enhanced by Polyethylene Glycol. J. Sol-Gel Sci. Technol. 2016, 77, 574–584. doi:10.1007/s10971-015-3885-z
  • Kim, S. G.; Hong, M. Z.; Yoon, S. P.; Han, J.; Nam, S. W.; Lim, T. H.; Hong, S. A. Preparation of YSZ Coated AISI-Type 316L Stainless Steel by the Sol-Gel Coating Method and Its Corrosion Behavior in Molten Carbonate. J. Sol-Gel Sci. Technol. 2003, 28, 297. doi:10.1023/A:1027466113372
  • Hansen, D. C. Metal Corrosion in the Human Body: The Ultimate Bio-Corrosion Scenario. Electrochem. Soc. Interface 2008, 17, 31–34. doi:10.1149/2.F04082IF
  • Mahajan, A.; Sidhu, S. S. Surface Modification of Metallic Biomaterials for Enhanced Functionality: A Review. Mater. Technol. 2018, 33, 93–105. doi:10.1080/10667857.2017.1377971
  • Kamachi Mudali, U.; Sridhar, T. M.; Raj, B. Corrosion of Bio Implant. Sadhana. 2003, 28, 601–637. doi:10.1007/BF02706450
  • Talha, M.; Behera, C. K.; Sinha, O. P. A Review on Nickel-Free Nitrogen Containing Austenitic Stainless Steels for Biomedical Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 3563–3575. doi:10.1016/j.msec.2013.06.002.
  • Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical Implants: Corrosion and Its prevention - A Review. Recent Pat. Corros. Sci. 2010, 2, 40–54. doi:10.2174/1877610801002010040
  • Sivakumar, M.; Dhanadurai, K. S. K.; Rajeswari, S.; Thulasiraman, V. Failures in Stainless Steel Orthopaedic Implant Devices: A Survey. J. Mater. Sci. Lett. 1995, 14, 351–354. doi:10.1007/BF00592147
  • Lai, G. Y. High-Temperature Corrosion and Materials Applications; ASM International: Almere, ‎Netherlands, 2007; Vol. 3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.