539
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Recent progress in particulate reinforced aluminum composites fabricated via spark plasma sintering: Microstructure and properties

, ORCID Icon, , , &

Reference

  • Zhang, X.; Xu, Y.-X.; Wang, M. C.; Liu, E.-Z.; Zhao, N.-Q.; Shi, C.-S.; Lin, D.; Zhu, F.-L.; He, C.-N. A Powder-Metallurgy-Based Strategy toward Three-Dimensional Graphene-like Network for Reinforcing Copper Matrix Composites. Nat. Commun. 2020, 11, 1–13. doi: 10.1038/s41467-020-16490-4.
  • Zhang, S.; Ma, Y.; Suresh, L.; Hao, A.; Bick, M.; Tan, S.-C.; Chen, J. Carbon Nanotube Reinforced Strong Carbon Matrix Composites. ACS Nano 2020, 14, 9282–9319. doi: 10.1021/acsnano.0c03268.
  • Yusupov, K. U.; Corthay, S.; Bondarev, A. V.; Kovalskii, A. M.; Matveev, A. T.; Arkhipov, D.; Golberg, D. V.; Shtansky, D. V. Spark Plasma Sintered Al-Based Composites Reinforced with BN Nanosheets Exfoliated under Ball Milling in Ethylene Glycol. Mater. Sci. Eng., A 2019, 745, 74–81. doi: 10.1016/j.msea.2018.12.040.
  • Zheng, Z.; Zhang, X.-X.; Li, J. C.; Geng, L. Achieving Homogeneous Distribution of High-Content Graphene in Aluminum Alloys via High-Temperature Cumulative Shear Deformation. Mater. Des. 2020, 193, 108796. doi: 10.1016/j.matdes.2020.108796.
  • Li, J.-C.; Zhang, X.-X.; Geng, L. Effect of Heat Treatment on Interfacial Bonding and Strengthening Efficiency of Graphene in GNP/Al Composites. Compos. A:Appl. Sci. Manuf. 2019, 121, 487–498. doi: 10.1016/j.compositesa.2019.04.010.
  • Dong, P.; Wang, Z.; Wang, W.-X.; Chen, S.-P.; Zhou, J. Interfacial Characteristics and Fracture Behavior of Spark-Plasma-Sintered TiNi Fiber-Reinforced 2024Al Matrix Composites. Mater. Sci. Eng., A 2017, 691, 141–149. doi: 10.1016/j.msea.2017.03.044.
  • Veeresh Kumar, G. B.; Rao, C. S. P.; Selvaraj, N. Mechanical and Tribological Behavior of Particulate Reinforced Aluminum Metal Matrix Composites–a Review. JMMCE 2011, 10, 59–91. doi: 10.4236/jmmce.2011.101005.
  • Kang, P.-C.; Zhao, Q.-Q.; Guo, S.-Q.; Xue, W.; Liu, H.; Chao, Z.-L.; Jiang, L.-T.; Wu, G.-H. Optimisation of the Spark Plasma Sintering Process for High Volume Fraction SiCp/Al Composites by Orthogonal Experimental Design. Ceram. Int. 2021, 47, 3816–3825. doi: 10.1016/j.ceramint.2020.09.240.
  • Cui, L.; Luo, R.; Ma, D. Carbon Fiber Reinforced carbon-Al-Cu Composite for Friction Material. Materials 2018, 11, 538. doi: 10.3390/ma11040538.
  • Du, Y.; Li, A.-B.; Zhang, X.-X.; Tan, Z.-B.; Su, R.-Z.; Pu, F.; Geng, L. Enhancement of the Mechanical Strength of Aluminum Foams by SiC Nanoparticles. Mater. Lett. 2015, 148, 79–81. doi: 10.1016/j.matlet.2015.02.066.
  • Onat, A. Mechanical and Dry Sliding Wear Properties of Silicon Carbide Particulate Reinforced Aluminium–Copper Alloy Matrix Composites Produced by Direct Squeeze Casting Method. J. Alloys Compd. 2010, 489, 119–124. doi: 10.1016/j.jallcom.2009.09.027.
  • Kumar, N.; Gautam, G.; Mohan, A.; Gautam, R. K.; Mohan, S. Synthesis and Characterization of TiB2 Reinforced Aluminium Matrix Composites: A Review. J. Inst. Eng. India Ser. D 2016, 97, 233–253. doi: 10.1007/s40033-015-0091-7.
  • Al-Salihi, H. A.; Mahmood, A. A.; Alalkawi, H. J. Mechanical and Wear Behavior of AA7075 Aluminum Matrix Composites Reinforced by Al2O3 Nanoparticles. Nanocomposites 2019, 5, 67–73. doi: 10.1080/20550324.2019.1637576.
  • Joshua, K. J.; Vijay, S. J.; Selvaraj, D. P. Effect of Nano TiO2 Particles on Microhardness and Microstructural Behavior of AA7068 Metal Matrix Composites. Ceram. Int. 2018, 44, 20774–20781. doi: 10.1016/j.ceramint.2018.08.077.
  • Abraham, S. J.; Dinaharan, I.; Selvam, J. D. R.; Akinlabi, E. T. Microstructural Characterization and Tensile Behavior of Rutile (TiO2)-Reinforced AA6063 Aluminum Matrix Composites Prepared by Friction Stir Processing. Acta Metall. Sin. (Engl. Lett.) 2019, 32, 52–62. doi: 10.1007/s40195-018-0806-5.
  • Şenel, M. C.; Gürbüz, M.; Koç, E. Fabrication and Characterization of SiC and Si3N4 Reinforced Aluminum Matrix Composites. UJMS 2017, 5, 95–101. doi: 10.1016/S0955-2219(00)00045-5.
  • Mattli, M. R.; Matli, P. R.; Shakoor, A.; Mohamed, A. M. A. Structural and Mechanical Properties of Amorphous Si3N4 Nanoparticles Reinforced Al Matrix Composites Prepared by Microwave Sintering. Ceramics 2019, 2, 126–134. doi: 10.3390/ceramics2010012.
  • Mizuuchi, K.; Inoue, K.; Agari, Y.; Nagaoka, T.; Sugioka, M.; Tanaka, M.; Takeuchi, T.; Tani, J.; Kawahara, M.; Makino, Y.; et al. Processing and Thermal Properties of Al/AlN Composites in Continuous Solid–Liquid co-Existent State by Spark Plasma Sintering. Compos. Part B-Eng. 2012, 43, 1557–1563. doi: 10.1016/j.compositesb.2011.06.017.
  • Chaubey, A.; Dwivedi, R.; Purohit, R.; Rana, R. S.; Choudhary, K. Experimental Inspection of Aluminium Matrix Composites Reinforced with SiC Particles Fabricated through Ultrasonic Assisted Stir Casting Process. Mater. Today: Proc. 2020, 26, 3054–3057. doi: 10.1016/j.matpr.2020.02.634.
  • Tian, W.-S.; Zhao, Q.-L.; Zhang, Q.-Q.; Qiu, F.; Jiang, Q.-C. Enhanced Strength and Ductility at Room and Elevated Temperatures of Al-Cu Alloy Matrix Composites Reinforced with Bimodal-Sized TiCp Compared with Monomodal–Sized TiCp. Mater. Sci. Eng., A 2018, 724, 368–375. doi: 10.1016/j.msea.2018.03.106.
  • Alrobei, H. Effect of Different Parameters and Aging Time on Wear Resistance and Hardness of SiC-B4C Reinforced AA6061 Alloy. J. Mech. Sci. Technol. 2020, 34, 2027–2034. doi: 10.1007/s12206-020-0424-9.
  • Zhang, H.-T.; Liu, L.-S.; Zhai, P.-C.; Fu, Z.-Y.; Zhang, Q.-J. Effect of Fabrication Process on the Microstructure and Dynamic Compressive Properties of SiCp/Al Composites Fabricated by Spark Plasma Sintering. Mater. Lett. 2008, 62, 443–446. doi: 10.1016/j.matlet.2007.04.118.
  • Li, A.-B.; Wang, G.-S.; Zhang, X.-X.; Li, Y.-Q.; Gao, X.; Sun, H.; Qian, M.-F.; Cui, X.-P.; Geng, L.; Fan, G.-H. Enhanced Combination of Strength and Ductility in Ultrafine-Grained Aluminum Composites Reinforced with High Content Intragranular Nanoparticles. Mater. Sci. Eng., A 2019, 745, 10–19. doi: 10.1016/j.msea.2018.12.090.
  • Zhu, J.-W.; Jiang, W.-M.; Li, G.-Y.; Guan, F.; Yu, Y.; Fan, Z.-T. Microstructure and Mechanical Properties of SiCnp/Al6082 Aluminum Matrix Composites Prepared by Squeeze Casting Combined with Stir Casting. J. Mater. Process. Technol. 2020, 283, 116699. doi: 10.1016/j.jmatprotec.2020.116699.
  • Moses, J. J.; Dinaharan, I.; Sekhar, S. J. Prediction of Influence of Process Parameters on Tensile Strength of AA6061/TiC Aluminum Matrix Composites Produced Using Stir Casting. Trans. Nonferrous Metals Soc. China 2016, 26, 1498–1511. doi: 10.1016/S1003-6326(16)64256-5.
  • Gopalakrishnan, S.; Murugan, N. Production and Wear Characterisation of AA 6061 Matrix Titanium Carbide Particulate Reinforced Composite by Enhanced Stir Casting Method. Compos. Part B-Eng. 2012, 43, 302–308. doi: 10.1016/j.compositesb.2011.08.049.
  • Natrayan, L.; Senthil Kumar, M. Study on Squeeze Casting of Aluminum Matrix Composites—A Review. Adv. Manuf. Mater. Sci. 2018, 75–83. doi: 10.1007/978-3-319-76276-0_8.
  • Ipekoglu, M.; Nekouyan, A.; Albayrak, O.; Altintas, S. Mechanical Characterization of B4C Reinforced Aluminum Matrix Composites Produced by Squeeze Casting. J. Mater. Res. 2017, 32, 599–605. doi: 10.1557/jmr.2016.495.
  • Mohamadigangaraj, J.; Nourouzi, S.; Aval, H. J. The Effect of Heat Treatment and Cooling Conditions on Friction Stir Processing of A390-10 wt% SiC Aluminium Matrix Composite. Mater. Chem. Phys. 2021, 263, 124423. doi: 10.1016/j.matchemphys.2021.124423.
  • Sharma, D. K.; Badheka, V.; Patel, V.; Upadhyay, G. Recent Developments in Hybrid Surface Metal Matrix Composites Produced by Friction Stir Processing: A Review. J. Tribol. 2021, 143, 050801. doi: 10.1115/1.4049590.
  • Chak, V.; Chattopadhyay, H.; Dora, T. L. A Review on Fabrication Methods, Reinforcements and Mechanical Properties of Aluminum Matrix Composites. J. Manuf. Process 2020, 56, 1059–1074. doi: 10.1016/j.jmapro.2020.05.042.
  • Rana, H.; Badheka, V.; Kumar, A.; Satyaprasad, A. Strategical Parametric Investigation on Manufacturing of Al–Mg–Zn–Cu Alloy Surface Composites Using FSP. Mater. Manuf. Process 2018, 33, 534–545. doi: 10.1080/10426914.2017.1364752.
  • Dixit, S.; Mahata, A.; Mahapatra, D. R.; Kailas, S. V.; Chattopadhyay, K. Multi-Layer Graphene Reinforced Aluminum–Manufacturing of High Strength Composite by Friction Stir Alloying. Compos. Part B-Eng. 2018, 136, 63–71. doi: 10.1016/j.compositesb.2017.10.028.
  • Zhang, Z.-W.; Liu, Z.-Y.; Xiao, B.-L.; Ni, D.-R.; Ma, Z.-Y. High Efficiency Dispersal and Strengthening of Graphene Reinforced Aluminum Alloy Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing. Carbon 2018, 135, 215–223. doi: 10.1016/j.carbon.2018.04.029.
  • Tosun, G.; Kurt, M. The Porosity, Microstructure, and Hardness of Al-Mg Composites Reinforced with Micro Particle SiC/Al2O3 Produced Using Powder Metallurgy. Compos. Part B-Eng. 2019, 174, 106965. doi: 10.1016/j.compositesb.2019.106965.
  • Toozandehjani, M.; Matori, K. A.; Ostovan, F.; Aziz, S. A.; Mamat, M. S. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy. Materials 2017, 10, 1232. doi: 10.3390/ma10111232.
  • Tayebi, M.; Jozdani, M.; Mirhadi, M. Thermal Expansion Behavior of Al–B4C Composites by Powder Metallurgy. J. Alloys Compd 2019, 809, 151753. doi: 10.1016/j.jallcom.2019.151753.
  • Karakoc, H.; Karabulut, S.; Citak, R. Study on Mechanical and Ballistic Performances of Boron Carbide Reinforced Al 6061 Aluminum Alloy Produced by Powder Metallurgy. Compos. Part B-Eng. 2018, 148, 68–80. doi: 10.1016/j.compositesb.2018.04.043.
  • Che, Z.-F.; Wang, Q.-X.; Wang, L.-H.; Li, J.-W.; Zhang, H.-L.; Zhang, Y.; Wang, X.-T.; Wang, J.-G.; Kim, M.-J. Interfacial Structure Evolution of Ti-Coated Diamond Particle Reinforced Al Matrix Composite Produced by Gas Pressure Infiltration. Compos. Part B-Eng. 2017, 113, 285–290. doi: 10.1016/j.compositesb.2017.01.047.
  • Demirtaş, H.; Yildiz, R.; Çevik, E. Mechanical and Wear Properties of High Rate NiAl Particle-Reinforced Al Composites Produced by Pressure Infiltration Method. Inter. Metalcast 2021, 15, 1340–1347. doi: 10.1007/s40962-020-00564-6.
  • Yu, Z.-H.; Yang, W.-S.; Zhou, C.; Zhang, N.-B.; Chao, Z.-L.; Liu, H.; Cao, Y.-F.; Sun, Y.; Shao, P.-Z.; Wu, G.-H. Effect of Ball Milling Time on Graphene Nanosheets Reinforced Al6063 Composite Fabricated by Pressure Infiltration Method. Carbon 2019, 141, 25–39. doi: 10.1016/j.carbon.2018.09.041.
  • Sun, Y.; Zhou, C.; Zhao, Z.-M.; Wu, G.-H. High Plasticity Achieved by Spark Plasma Sintering Method in Aluminum Matrix Composites Reinforced with Ti2AlC Particles. Mater. Char 2021, 177, 111204. doi: 10.1016/j.matchar.2021.111204.
  • Sadeghi, B.; Cavaliere, P.; Nosko, M.; Trembosova, V.; Nagy, S. Hot Deformation Behaviour of Bimodal Sized Al2O3/Al Nanocomposites Fabricated by Spark Plasma Sintering. J. Microsc. 2021, 281, 28–45. doi: 10.1111/jmi.12947.
  • Gök, M. G. Spark Plasma Sintering of Nano Silicon Carbide Reinforced Alumina Ceramic Composites. Eur. Mech. Sci. 2021, 5, 64–70. doi: 10.26701/ems.841961.
  • Annamalai, A. R.; Srikanth, M.; Muthuchamy, A.; Acharya, S.; Khisti, A.; Agrawal, D. K.; Jen, C. P. Spark Plasma Sintering and Characterization of Al-TiB2 Composites. Metals 2020, 10, 1110. doi: 10.3390/met10091110.
  • Xue, Y.; Jiang, B.; Bourgeois, L.; Dai, P.; Mitome, M.; Zhang, C.; Yamaguchi, M.; Matveev, A.; Tang, C.; Bando, Y.; et al. Aluminum Matrix Composites Reinforced with Multi-Walled Boron Nitride Nanotubes Fabricated by a High-Pressure Torsion Technique. Mater. Des. 2015, 88, 451–460. doi: 10.1016/j.matdes.2015.08.162.
  • Gupta, N.; Ravisankar, B.; Kumaran, S.; Rao, T.-S. Densification of Al-2024 and Al-2024/Al2O3 Powders by Conventional P/M Route and ECAP: A Comparative Study. Trans. Indian Inst. Me.t 2012, 65, 381–386. doi: 10.1007/s12666-012-0149-2.
  • Motevalli, P. D.; Eghbali, B. Microstructure and Mechanical Properties of Laminated Al–Cu–Mg Composite Fabricated by Accumulative Roll Bonding. Bull. Mater. Sci. 2017, 40, 1481–1488. doi: 10.1007/s12034-017-1504-z.
  • Tang, J.-M.; Shen, Y.-F.; Li, J.-P. Influences of Friction Stir Processing Parameters on Microstructure and Mechanical Properties of SiC/Al Composites Fabricated by Multi-Pin Tool. J. Manuf. Process 2019, 38, 279–289. doi: 10.1016/j.jmapro.2019.01.029.
  • Rana, H.; Badheka, V. Influence of Friction Stir Processing Conditions on the Manufacturing of Al-Mg-Zn-Cu Alloy/Boron Carbide Surface Composite. J. Mater. Process. Technol. 2018, 255, 795–807. doi: 10.1016/j.jmatprotec.2018.01.020.
  • Kumar Maurya, N.; Maurya, M.; Srivastava, A. K.; Dwivedi, S. P.; Kumar, A.; Chauhan, S. Investigation of Mechanical Properties of Al 6061/SiC Composite Prepared through Stir Casting Technique. Mater. Today: Proc. 2020, 25, 755–758. doi: 10.1016/j.matpr.2019.09.003.
  • Wu, C.-D.; Zhang, J.; Luo, G.-Q.; Shen, Q.; Gan, Z.-H.; Liu, J.; Zhang, L.-M. Interfacial Segregation and Precipitates Behavior in the Ultrafine Grained Al-Based Metal Matrix Composites. J. Alloys Compd. 2019, 770, 625–630. doi: 10.1016/j.jallcom.2018.08.183.
  • Zhang, Z.-M.; Li, Z.; Tan, Z.-Q.; Zhao, H.-T.; Fan, G.-L.; Xu, Y.-J.; Xiong, D.-B.; Li, Z.-Q. Bioinspired Hierarchical Al2O3/Al Laminated Composite Fabricated by Flake Powder Metallurgy. Compos. A:Appl. Sci. Manuf. 2021, 140, 106187. doi: 10.1016/j.compositesa.2020.106187.
  • Abdo, H. S.; Seikh, A. H.; Fouly, A.; Ragab, S. A. Synergistic Strengthening Effect of Reinforcing Spark Plasma Sintered Al-Zn-TiC Nanocomposites with TiC Nanoparticles. Crystals 2021, 11, 842. doi: 10.3390/cryst11080842.
  • Sadeghi, B.; Cavaliere, P.; Perrone, A. Effect of Al2O3, SiO2 and Carbon Nanotubes on the Microstructural and Mechanical Behavior of Spark Plasma Sintered Aluminum Based Nanocomposites. Particul. Sci. Technol. 2020, 38, 7–14. doi: 10.1080/02726351.2018.1457109.
  • Jafari, F.; Sharifi, H.; Saeri, M. R.; Tayebi, M. Effect of Reinforcement Volume Fraction on the Wear Behavior of Al-SiCp Composites Prepared by Spark Plasma Sintering. Silicon 2018, 10, 2473–2481. doi: 10.1007/s12633-018-9779-2.
  • Sadeghi, B.; Shamanian, M.; Ashrafizadeh, F.; Cavaliere, P.; Rizzo, A. Influence of Al2O3 Nanoparticles on Microstructure and Strengthening Mechanism of Al-Based Nanocomposites Produced via Spark Plasma Sintering. J. Mater. Eng. Perform 2017, 26, 2928–2936. doi: 10.1007/s11665-017-2699-2.
  • Hu, Z.-Y.; Zhang, Z.-H.; Cheng, X.-W.; Wang, F.-C.; Zhang, Y.-F.; Li, S.-L. A Review of Multi-Physical Fields Induced Phenomena and Effects in Spark Plasma Sintering: Fundamentals and Applications. Mater. Des. 2020, 191, 108662. doi: 10.1016/j.matdes.2020.108662.
  • Cavaliere, P. Spark Plasma Sintering of Materials: Advances in Processing and Applications, 1st ed.; Springer Nature: Switzerland, 2019.
  • Liu, J. H.; Fu, Z. Y.; Wang, W. M.; Zhang, J. Y.; Wang, H.; Wang, Y. C.; Lee, S.; Niihara, K. Ultra-High Heating Rate Densification of Nanocrystalline Magnesia at High Pressure and Investigation on Densification Mechanisms. J. Eur. Ceram. Soc. 2014, 34, 3095–3102. doi: 10.1016/j.jeurceramsoc.2014.04.004.
  • Zhang, H. L.; Zhang, F. M.; Fu, L.; Wan, Q. F. Spark Plasma Sintering Assisted Rapid Growth of Titanium Boride Layers on Titanium: Microstructures and Growth Kinetics. Surf. Coat. Tech. 2022, 432, 128083. doi: 10.1016/j.surfcoat.2022.128083.
  • Abedi, M.; Asadi, A.; Vorotilo, S.; Mukasyan, A. S. A Critical Review on Spark Plasma Sintering of Copper and Its Alloys. J. Mater. Sci. 2021, 56, 19739–19766. doi: 10.1007/s10853-021-06556-z.
  • Rodriguez-Rojas, F.; Zamora, V.; Guiberteau, F.; Ortiz, A. L. Solid-State Spark Plasma Sintering of Super Wear Resistant B4C-SiC-TiB2 Triplex-Particulate Composites. Ceram. Int. 2023, 49, 5532–5537. doi: 10.1016/j.ceramint.2022.11.181.
  • Shahbazkhan, A.; Sabet, H.; Abbasi, M. Microstructural and Mechanical Properties of NiCoCrAlSi High Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering. J. Alloys Compd. 2022, 896, 163041. doi: 10.1016/j.jallcom.2021.163041.
  • Zheng, Z.; Zhang, X. X.; Qian, M. F.; Li, J. C.; Imran, M.; Geng, L. Ultra-High Strength GNP/2024Al Composite via Thermomechanical Treatment. J. Mater. Sci. Technol. 2022, 108, 164–172. doi: 10.1016/j.jmst.2021.08.056.
  • Cao, L.; Chen, B.; Wan, J.; Kondoh, K.; Guo, B.; Shen, J.; Li, J. S. Superior High-Temperature Tensile Properties of Aluminum Matrix Composites Reinforced with Carbon Nanotubes. Carbon 2022, 191, 403–414. doi: 10.1016/j.carbon.2022.02.009.
  • Park, K.; Park, J.; Kwon, H. Effect of Intermetallic Compound on the Al-Mg Composite Materials Fabricated by Mechanical Ball Milling and Spark Plasma Sintering. J. Alloys Compd. 2018, 739, 311–318. doi: 10.1016/j.jallcom.2017.12.054.
  • Sadeghi, B.; Shamanian, M.; Ashrafizadeh, F.; Cavaliere, P.; Valerini, D. Nanoindentation Characterization of Al-Matrix Nanocomposites Produced via Spark Plasma Sintering. Int. J. Mater. Res. 2018, 109, 50–62. doi: 10.3139/146.111570.
  • Ghasali, E.; Fazili, A.; Alizadeh, M.; Shirvanimoghaddam, K.; Ebadzadeh, T. Evaluation of Microstructure and Mechanical Properties of Al-TiC Metal Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering Methods. Materials 2017, 10, 1255. doi: 10.3390/ma10111255.
  • Wu, C.-D.; Luo, G.-Q.; Shen, Q.; Gan, Z.-H.; Liu, J.; Zhang, L.-M. Towards Homogeneous Distribution of Coarse Grain in a Tri-Modal Al-Based Composites Utilizing Localized Grain Growth. Powder Technol. 2020, 366, 107–111. doi: 10.1016/j.powtec.2020.02.063.
  • Luo, G.-Q.; Wu, J.-L.; Xiong, S.-Y.; Shen, Q.; Wu, C.-D.; Zhang, J.; Zhang, L.-M. Microstructure and Mechanical Behavior of AA2024/B4C Composites with a Network Reinforcement Architecture. J. Alloys Compd. 2017, 701, 554–561. doi: 10.1016/j.jallcom.2017.01.133.
  • Wu, C.-D.; Lu, Y.-H.; Luo, G.-Q.; Shen, Q.; Gan, Z.-H.; Liu, J. Influence of Particulate B4C Size on Microstructural Evolution and Mechanical Behavior in Nanostructured Al Matrix during Heat Treatment. Powder Technol. 2020, 374, 274–282. doi: 10.1016/j.powtec.2020.07.033.
  • Pakdel, A.; Witecka, A.; Rydzek, G.; Shri, D. N. A. A Comprehensive Microstructural Analysis of Al–WC Micro- and Nano-Composites Prepared by Spark Plasma Sintering. Mater. Des. 2017, 119, 225–234. doi: 10.1016/j.matdes.2017.01.064.
  • Samal, P.; Vundavilli, P. R.; Meher, A.; Mahapatra, M. M. Recent Progress in Aluminum Metal Matrix Composites: A Review on Processing, Mechanical and Wear Properties. J. Manuf. Process 2020, 59, 131–152. doi: 10.1016/j.jmapro.2020.09.010.
  • Carter, C. B.; Norton, M. G. Ceramic Materials: Science and Engineering. New York: Springer, 2007; Vol. 716. doi: 10.1007/978-1-4614-3523-5.
  • Sun, F.; Li, B.; Cai, C.; Cai, Q.-Z. Effects of TiN Nanoparticles on Hot Deformation Behavior of Ultra-Fine Grained Al2024-TiN Nanocomposites Prepared by Spark Plasma Sintering. Mech. Mater. 2019, 138, 103152. doi: 10.1016/j.mechmat.2019.103152.
  • Hadian, M.; Shahrajabian, H.; Rafiei, M. Mechanical Properties and Microstructure of Al/(TiC + TiB2) Composite Fabricated by Spark Plasma Sintering. Ceram. Int. 2019, 45, 12088–12092. doi: 10.1016/j.ceramint.2019.03.106.
  • Huang, L.; An, Q.; Geng, L.; Wang, S.; Jiang, S.; Cui, X.; Zhang, R.; Sun, F.; Jiao, Y.; Chen, X.; Wang, C. Multiscale Architecture and Superior High‐Temperature Performance of Discontinuously Reinforced Titanium Matrix Composites. Adv. Mater 2021, 33, 2000688. doi: 10.1002/adma.202000688.
  • Li, Z.; Guo, Q.; Li, Z.-Q.; Fan, G.-L.; Xiong, D.-B.; Su, Y.-S.; Zhang, J.; Zhang, D. Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure. Nano Lett. 2015, 15, 8077–8083. doi: 10.1021/acs.nanolett.5b03492.
  • Ma, L. S.; Zhang, X.; Pu, B. W.; Zhao, D. D.; He, C. N.; Zhao, N. Q. Achieving the Strength-Ductility Balance of Boron Nitride Nanosheets/Al Composite by Designing the Synergistic Transition Interface and Intragranular Reinforcement Distribution. Compos. Part B-Eng. 2022, 246, 110243. doi: 10.1016/j.compositesb.2022.110243.
  • Liu, K.; Su, Y. S.; Wang, X. Z.; Cai, Y. P.; Cao, H.; Ouyang, Q. B.; Zhang, D. Achieving Simultaneous Enhancement of Strength and Ductility in Al Matrix Composites by Employing the Synergetic Strengthening Effect of Micro- and nano-SiCps. Compos. Part B-Eng. 2023, 248, 110350. doi: 10.1016/j.compositesb.2022.110350.
  • Li, B.; Sun, F.; Cai, Q.-Z.; Cheng, J.-F.; Zhao, B.-Y. Effect of TiN Nanoparticles on Microstructure and Properties of Al2024-TiN Nanocomposite by High Energy Milling and Spark Plasma Sintering. J. Alloys Compd. 2017, 726, 638–650. doi: 10.1016/j.jallcom.2017.08.021.
  • Corthay, S.; Kutzhanov, M. K.; Matveev, A. T.; Bondarev, A. V.; Leybo, D. V.; Shtansky, D. V. Nanopowder Derived Al/h-BN Composites with High Strength and J. Alloys Compd. 2022, 912, 165199. doi: 10.1016/j.jallcom.2022.165199.
  • Luo, K. G.; Xiong, H. Q.; Zhang, Y.; Gu, H.; Li, Z. D.; Kong, C.; Yu, H. L. AA1050 Metal Matrix Composites Reinforced by High-Entropy Alloy Particles via Stir Casting and Subsequent Rolling. J. Alloys Compd. 2022, 893, 162370. doi: 10.1016/j.jallcom.2021.162370.
  • Emiru, A. A.; Sinha, D. K.; Kumar, A.; Yadav, A. Fabrication and Characterization of Hybrid Aluminium (Al6061) Metal Matrix Composite Reinforced with SiC, B4C and MoS2 via Stir Casting. Int. J. Metalcast. 2023, 17, 801–812. doi: 10.1007/s40962-022-00800-1.
  • Wang, Y.; Liu, Q.; Zhang, B.; Zhang, H. Q.; Zhong, Z. X.; Ye, J.; Ren, Y. H.; Shen, L. Y.; Ye, F.; Wang, W. Bioinspired Nacre-like 2024Al/B4C Composites with High Damage Tolerance. Ceram. Int. 2022, 48, 26326–26334. doi: 10.1016/j.ceramint.2022.05.316.
  • Ferraro, C.; Meille, S.; Rethore, J.; Ni, N.; Chevalier, J.; Saiz, E. Strong and Tough Metal/Ceramic Micro-Laminates. Acta. Mater. 2018, 144, 202–215. doi: 10.1016/j.actamat.2017.10.059.
  • Wang, H. J.; Huang, Z. Y.; Yi, J. C.; Li, X.; Zhang, J.; Wang, Y. B.; Zhuang, W. C.; Yu, Q. Microstructure and High-Temperature Mechanical Properties of co-Continuous (Ti3AlC2+ Al3Ti)/2024Al Composite Fabricated by Pressureless Infiltration. Ceram. Int. 2022, 48, 1230–1237. doi: 10.1016/j.ceramint.2021.09.208.
  • Liu, W. C.; Ke, Y. J.; Sugio, K.; Liu, X. A.; Guo, Y.; Sasaki, G. Microstructure and Mechanical Properties of Al2O3-Particle-Reinforced Al-Matrix Composite Sheets Produced by Accumulative Roll Bonding (ARB). Mater. Sci. Eng., A 2022, 850, 143574. doi: 10.1016/j.msea.2022.143574.
  • Fuse, K.; Badheka, V.; Patel, V.; Andersson, J. Dual Sided Composite Formation in Al 6061/B4C Using Novel Bobbin Tool Friction Stir Processing. J. Mater. Res. Technol. 2021, 13, 1709–1721. doi: 10.1016/j.jmrt.2021.05.079.
  • Butola, R.; Tyagi, L.; Singari, R. M.; Murtaza, Q.; Kumar, H.; Nayak, D. Mechanical and Wear Performance of Al/SiC Surface Composite Prepared through Friction Stir Processing. Mater. Res. Express 2021, 8, 016520. doi: 10.1088/2053-1591/abd89d.
  • Sun, H.; Saba, F.; Fan, G. L.; Tan, Z. Q.; Li, Z. Q. Micro/Nano-Reinforcements in Bimodal-Grained Matrix: A Heterostructure Strategy for Toughening Particulate Reinforced Metal Matrix Composites. Scr. Mater. 2022, 217, 114774. doi: 10.1016/j.scriptamat.2022.114774.
  • Zhang, Z. M.; Fan, G. L.; Tan, Z. Q.; Zhao, H. T.; Xu, Y. J.; Xiong, D. B.; Li, Z. Q. Towards the Strength-Ductility Synergy of Al2O3/Al Composite through the Design of Roughened Interface. Compos. Part B-Eng. 2021, 224, 109251. doi: 10.1016/j.compositesb.2021.109251.
  • Yang, Q.; Cheng, D.-L.; Zhang, F.-G.; Shi, Q.-W.; Chen, Z.; Wang, M.-L.; Zhong, S.-Y.; Wu, Y.; Wang, H.-W. Spark Plasma Sintering Mechanisms of the Al-Zn-Mg-Cu Alloys and TiB2/Al-Zn-Mg-Cu Composites. Mater. Char. 2021, 172, 110825. doi: 10.1016/j.matchar.2020.110825.
  • Locci, A. M.; Cincotti, A.; Todde, S.; Orru, R.; Cao, G. A Methodology to Investigate the Intrinsic Effect of the Pulsed Electric Current during the Spark Plasma Sintering of Electrically Conductive Powders. Sci. Technol. Adv. Mater. 2010, 11, 045005. doi: 10.1088/1468-6996/11/4/045005.
  • Munir, Z. A.; Ohyanagi, M. Perspectives on the Spark Plasma Sintering Process. J. Mater. Sci. 2021, 56, 1–15. doi: 10.1007/s10853-020-05186-1.
  • Ghasali, E.; Pakseresht, A. H.; Alizadeh, M.; Shirvanimoghaddam, K.; Ebadzadeh, T. Vanadium Carbide Reinforced Aluminum Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering. J. Alloys Compd. 2016, 688, 527–533. doi: 10.1016/j.jallcom.2016.07.063.
  • Chaim, R. On Densification Mechanisms of Ceramic Particles during Spark Plasma Sintering. Scr. Mater. 2016, 115, 84–86. doi: 10.1016/j.scriptamat.2016.01.010.
  • Zhang, Z.-H.; Liu, Z.-F.; Lu, J.-F.; Shen, X.-B.; Wang, F.-C.; Wang, Y.-D. The Sintering Mechanism in Spark Plasma Sintering–Proof of the Occurrence of Spark Discharge. Scr. Mater. 2014, 81, 56–59. doi: 10.1016/j.scriptamat.2014.03.011.
  • Omori, M. Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System (SPS). Mater. Sci. Eng., A 2000, 287, 183–188. doi: 10.1016/S0921-5093(00)00773-5.
  • Cavaliere, P.; Sadeghi, B.; Shabani, A. Spark Plasma Sintering: Process Fundamentals. in Spark Plasma Sintering of Materials; Cavaliere, P., Eds. Springer: Cham, Switzerland, 2019; pp. 3–20. doi: 10.1007/978-3-030-05327-7_1.
  • Jia, X.-T.; Zhang, Z.-H.; Li, X.-Y.; Xu, T.-H.; Liu, L.-J.; Wang, Q.; Jia, Z.-H.; Cheng, X.-W. Investigation on Mechanical Properties of AlON Ceramics Synthesized by Spark Plasma Sintering. J. Eur. Ceram. Soc. 2023, 43, 889–899. doi: 10.1016/j.jeurceramsoc.2022.10.054.
  • Jin, X. H.; Gao, L.; Sun, J. Preparation of Nanostructured Cr1-xTixN Ceramics by Spark Plasma Sintering and Their Properties. Acta. Mater. 2006, 54, 4035–4041. doi: 10.1016/j.actamat.2006.04.036.
  • Nikitin, P. Y.; Zhukov, I. A.; Vorozhtsov, A. B. Decomposition Mechanism of AlMgB14 during the Spark Plasma Sintering. J. Mater. Res. Technol. 2021, 11, 687–692. doi: 10.1016/j.jmrt.2021.01.044.
  • Shan, Y. C.; Wei, X. L.; Sun, X. N.; Torresani, E.; Olevsky, E. A.; Xu, J. J. Effect of Heating Rate on Properties of Transparent Aluminum Oxynitride Sintered by Spark Plasma Sintering. J. Am. Ceram. Soc. 2019, 102, 662–673. doi: 10.1111/jace.16030.
  • Grasso, S.; Kim, E. Y.; Saunders, T.; Yu, M.; Tudball, A.; Choi, S. H.; Reece, M. Ultra-Rapid Crystal Growth of Textured SiC Using Flash Spark Plasma Sintering Route. Cryst. Growth Des. 2016, 16, 2317–2321. doi: 10.1021/acs.cgd.6b00099.
  • Mohammed, H. G.; Albarody, T. M. B.; Al-Jothery, H. K. M.; Mustapha, M.; Sultan, N. M. A Study of Crystalline - Texture and Anisotropic Properties of Hexagonal BaFe12O19 Sintered by in-Situ Magnetic-Anisotropy Spark Plasma Sintering (MASPS). J. Magn. Magn. Mater. 2022, 553, 169268. doi: 10.1016/j.jmmm.2022.169268.
  • He, X.; Chen, C.; Boda, M. A.; Zhang, F. Q.; Gong, Y. Y.; Zeng, H. R.; Yi, Z. G. Textured Bi4Ti3O12 Ceramics: One-Step Spark Plasma Sintering and Their Single-Crystal-like Polar Anisotropy. Adv. Eng. Mater. 2022, 24, 2200058. doi: 10.1002/adem.202200058.
  • Lim, S.-S.; Jung, S.-J.; Kim, B. K.; Kim, D.-I.; Lee, B.-H.; Won, S. O.; Shin, J.; Park, H.-H.; Kim, S. K.; Kim, J.-S.; Baek, S.-H. Combined Hot Extrusion and Spark Plasma Sintering Method for Producing Highly Textured Thermoelectric Bi2Te3 Alloys. J. Eur. Ceram. Soc. 2020, 40, 3042–3048. doi: 10.1016/j.jeurceramsoc.2020.03.008.
  • Sajjadi, S. A.; Ezatpour, H. R.; Parizi, M. T. Comparison of Microstructure and Mechanical Properties of A356 Aluminum Alloy/Al2O3 Composites Fabricated by Stir and Compo-Casting Processes. Mater. Des. 2012, 34, 106–111. doi: 10.1016/j.matdes.2011.07.037.
  • Chen, F.; Chen, Z. N.; Mao, F.; Wang, T. M.; Cao, Z. Q. TiB2 Reinforced Aluminum Based in Situ Composites Fabricated by Stir Casting. Mater. Sci. Eng., A 2015, 625, 357–368. doi: 10.1016/j.msea.2014.12.033.
  • Akbari, M. K.; Baharvandi, H. R.; Shirvanimoghaddam, K. Tensile and Fracture Behavior of Nano/Micro TiB2 Particle Reinforced Casting A356 Aluminum Alloy Composites. Mater. Des. 2015, 66, 150–161. doi: 10.1016/j.matdes.2014.10.048.
  • Onat, A.; Akbulut, H.; Yilmaz, F. Production and Characterisation of Silicon Carbide Particulate Reinforced Aluminium-Copper Alloy Matrix Composites by Direct Squeeze Casting Method. J. Alloys Compd. 2007, 436, 375–382. doi: 10.1016/j.jallcom.2006.07.057.
  • Jiang, W. M.; Zhu, J. W.; Li, G. Y.; Guan, F.; Yu, Y.; Fan, Z. T. Enhanced Mechanical Properties of 6082 Aluminum Alloy via SiC Addition Combined with Squeeze Casting. J. Mater. Sci. Technol. 2021, 88, 119–131. doi: 10.1016/j.jmst.2021.01.077.
  • Zhou, C. L.; Wu, X. Y.; Ngai, T. L. W.; Li, L. J.; Ngai, S.; Chen, Z. M. Al Alloy/Ti3SiC2 Composites Fabricated by Pressureless Infiltration with Melt-Spun Al Alloy Ribbons. Ceram. Int. 2018, 44, 6026–6032. doi: 10.1016/j.ceramint.2017.12.212.
  • Yao, Y. T.; Chen, L. Q. B4C/Al Composites Processed by Metal-Assisted Pressureless Infiltration Technique and Its Characterization. Mater. Manuf. Process 2016, 31, 1286–1291. doi: 10.1080/10426914.2016.1140192.
  • Guo, H.; Zhang, Z. W.; Zhang, Y.; Cui, Y.; Sun, L. X.; Chen, D. Improving the Mechanical Properties of B4C/Al Composites by Solid-State Interfacial Reaction. J. Alloys Compd. 2020, 829, 154521. doi: 10.1016/j.jallcom.2020.154521.
  • Guo, H.; Li, J.; Liu, N.; Wei, X.; Fan, M.; Shang, Y.; Jiang, W.; Zhang, Y.; Cui, Y.; Sun, L.; et al. Strengthening and Toughening B4C/Al Composites via Optimizing the Al2O3 Distribution during Hot Rolling. J. Alloys Compd. 2022, 902, 163773. doi: 10.1016/j.jallcom.2022.163773.
  • Liu, R.-F.; Wang, W.-X.; Chen, H.-S.; Tan, M.-B.; Zhang, Y.-Y. Microstructure Evolution and Mechanical Properties of Micro-/Nano-Bimodal Size B4C Particles Reinforced Aluminum Matrix Composites Prepared by SPS Followed by HER. Vacuum 2018, 151, 39–50. doi: 10.1016/j.vacuum.2018.01.052.
  • Ghasali, E.; Pakseresht, A.; Safari-Kooshali, F.; Agheli, M.; Ebadzadeh, T. Investigation on Microstructure and Mechanical Behavior of Al–ZrB2 Composite Prepared by Microwave and Spark Plasma Sintering. Mater. Sci. Eng., A 2015, 627, 27–30. doi: 10.1016/j.msea.2014.12.096.
  • Ghasali, E.; Shirvanimoghaddam, K.; Alizadeh, M.; Ebadzadeh, T. Ultra-Low Temperature Fabrication of Vanadium Carbide Reinforced Aluminum Nano Composite through Spark Plasma Sintering. J. Alloys Compd. 2018, 753, 433–445. doi: 10.1016/j.jallcom.2018.04.239.
  • Leszczyńska-Madej, B.; Garbiec, D.; Madej, M. Effect of Sintering Temperature on Microstructure and Selected Properties of Spark Plasma Sintered Al-SiC Composites. Vacuum 2019, 164, 250–255. doi: 10.1016/j.vacuum.2019.03.033.
  • Sweet, G. A.; Brochu, M.; Hexemer, R. L.; Donaldson, I. W.; Bishop, D. P. Consolidation of Aluminum-Based Metal Matrix Composites via Spark Plasma Sintering. Mater. Sci. Eng., A 2015, 648, 123–133. doi: 10.1016/j.msea.2015.09.027.
  • Wu, C.; Wu, J.; Ma, K.; Zhang, D.; Xiong, S.; Zhang, J.; Luo, G.; Chen, F.; Shen, Q.; Zhang, L.; Lavernia, E. J. Synthesis of AA7075-AA7075/B4C Bilayer Composite with Enhanced Mechanical Strength via Plasma Activated Sintering. J. Alloys Compd. 2017, 701, 416–424. doi: 10.1016/j.jallcom.2017.01.065.
  • Wu, C.-D.; Shi, R.-Y.; Zhang, J.; Luo, G.-Q.; Shen, Q.; Gan, Z.-H.; Liu, J.; Zhang, L.-M. Synthesis of Functionally Graded AA7075-B4C Composite with Multi-Level Gradient Structure. Ceram. Int. 2019, 45, 7761–7766. doi: 10.1016/j.ceramint.2019.01.080.
  • Agaogullari, D. Effects of ZrC Content and Mechanical Alloying on the Microstructural and Mechanical Properties of Hypoeutectic Al-7 wt.% Si Composites Prepared by Spark Plasma Sintering. Ceram. Int. 2019, 45, 13257–13268. doi: 10.1016/j.ceramint.2019.04.013.
  • Chu, K.; Jia, C.-C.; Li, W.-S. On CTE of SPS Consolidated SiCp/Al Composites with Various Particle Size Distributions. Mater. Sci. Technol. 2012, 28, 1397–1401. doi: 10.1179/1743284712Y.0000000089.
  • Kvashnin, D. G.; Firestein, K. L.; Popov, Z. I.; Corthay, S.; Sorokin, P. B.; Golberg, D. V.; Shtansky, D. V. Al − BN Interaction in a High-Strength Lightweight Al/BN Metal-Matrix Composite: Theoretical Modelling and Experimental Verification. J. Alloys Compd. 2019, 782, 875–880. doi: 10.1016/j.jallcom.2018.12.261.
  • Firestein, K. L.; Steinman, A. E.; Golovin, I. S.; Cifre, J.; Obraztsova, E. A.; Matveev, A. T.; Kovalskii, A. M.; Lebedev, O. I.; Shtansky, D. V.; Golberg, D. Fabrication, Characterization, and Mechanical Properties of Spark Plasma Sintered Al–BN Nanoparticle Composites. Mater. Sci. Eng., A 2015, 642, 104–112. doi: 10.1016/j.msea.2015.06.059.
  • Hong, Y.; Wang, W. J.; Liu, J. Q.; Tang, W. M.; Wu, Y. C. Effect of Porosity and Interface Structures on Thermal and Mechanical Properties of SiCp/6061Al Composites with High Volume Fraction of SiC. Trans. Nonferrous Metals Soc. China 2019, 29, 941–949. doi: 10.1016/S1003-6326(19)65003-X.
  • Gracio, J. J.; Picu, C. R.; Vincze, G.; Mathew, N.; Schubert, T.; Lopes, A.; Buchheim, C. Mechanical Behavior of Al-SiC Nanocomposites Produced by Ball Milling and Spark Plasma Sintering. Metall. Mater. Trans. A 2013, 44, 5259–5269. doi: 10.1007/s11661-013-1874-9.
  • Babu, N. K.; Kallip, K.; Leparoux, M.; AlOgab, K. A.; Maeder, X.; Dasilva, Y. A. R. Influence of Microstructure and Strengthening Mechanism of AlMg5–Al2O3 Nanocomposites Prepared via Spark Plasma Sintering. Mater. Des. 2016, 95, 534–544. doi: 10.1016/j.matdes.2016.01.138.
  • Saheb, N.; Aliyu, I. K.; Hassan, S. F.; Al-Aqeeli, N. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites. Materials (Basel) 2014, 7, 6748–6767. doi: 10.3390/ma7096748.
  • Saheb, N.; Khan, M. S.; Hakeem, A. S. Effect of Processing on Mechanically Alloyed and Spark Plasma Sintered Al-Al2O3 Nanocomposites. J. Nanomater. 2015, 2015, 1–13. doi: 10.1155/2015/609824.
  • Vintila, R.; Charest, A.; Drew, R. A. L.; Brochu, M. Synthesis and Consolidation via Spark Plasma Sintering of Nanostructured Al-5356/B4C Composite. Mater. Sci. Eng., A 2011, 528, 4395–4407. doi: 10.1016/j.msea.2011.02.079.
  • Bathula, S.; Anandani, R. C.; Dhar, A.; Srivastava, A. K. Microstructural Features and Mechanical Properties of Al 5083/SiCp Metal Matrix Nanocomposites Produced by High Energy Ball Milling and Spark Plasma Sintering. Mater. Sci. Eng., A 2012, 545, 97–102. doi: 10.1016/j.msea.2012.02.095.
  • Bathula, S.; Saravanan, M.; Dhar, A. Nanoindentation and Wear Characteristics of Al5083/SiCp Nanocomposites Synthesized by High Energy Ball Milling and Spark Plasma Sintering. J. Mater. Sci. Technol. 2012, 28, 969–975. doi: 10.1016/s1005-0302(12)60160-1.
  • Tekoğlu, E.; Ağaoğulları, D.; Yürektürk, Y.; Bulut, B.; Lütfi Öveçoğlu, M. Characterization of LaB6 Particulate-Reinforced Eutectic Al-12.6wt% Si Composites Fabricated via Mechanical Alloying and Spark Plasma Sintering. Powder Technol. 2018, 340, 473–483. doi: 10.1016/j.powtec.2018.09.055.
  • Sadeghi, B.; Cavaliere, P.; Pruncu, C. I.; Balog, M.; de Castro, M. M.; Chahal, R. Architectural Design of Advanced Aluminum Matrix Composites: A Review of Recent Developments. Crit. Rev. Solid State 2022, 47, 1–71. doi: 10.1080/10408436.2022.2078277.
  • Li, M. Y.; Guo, Y. H.; Wang, H. L.; Shan, J. F.; Chang, Y. Q. Microstructures and Mechanical Properties of Oxide Dispersion Strengthened CoCrFeNi High-Entropy Alloy Produced by Mechanical Alloying and Spark Plasma Sintering. Intermetallics 2020, 123, 106819. doi: 10.1016/j.intermet.2020.106819.
  • Jafari, M.; Abbasi, M. H.; Enayati, M. H.; Karimzadeh, F. Mechanical Properties of Nanostructured Al2024-MWCNT Composite Prepared by Optimized Mechanical Milling and Hot Pressing Methods. Adv. Powder Technol. 2012, 23, 205–210. doi: 10.1016/j.apt.2011.02.008.
  • Huang, L. J.; Geng, L.; Peng, H. X. Microstructurally Inhomogeneous Composites: Is a Homogeneous Reinforcement Distribution Optimal? Prog. Mater. Sci. 2015, 71, 93–168. doi: 10.1016/j.pmatsci.2015.01.002.
  • Chen, H.-S.; Nie, H.-H.; Wang, W.-X.; Zhou, J.; Liu, R.-F. A Novel Neutron Shielding AA6061/B4C Laminar Composite Fabricated by Powder Metallurgy:“SPS-HER”. J. Alloys Compd. 2019, 806, 1445–1452. doi: 10.1016/j.jallcom.2019.07.133.
  • Ma, K.; Li, X. N.; Liu, K.; Chen, X. G.; Liu, Z. Y.; Xiao, B. L.; Ma, Z. Y. Improving the High-Cycle Fatigue Strength of Heterogeneous Carbon Nanotube/Al-Cu-Mg Composites through Grain Size Design in Ductile-Zones. Compos. Part B-Eng. 2021, 222, 109094. doi: 10.1016/j.compositesb.2021.109094.
  • Tan, Z. Q.; Fu, X. W.; Zheng, Q.; Lin, R. B.; Chen, M. L.; Fan, G. L.; Xiong, D. B.; Li, Z. Q. Toward Strength-Ductility Synergy in Trimodal Grain Structured Metal Composites by Actively Tuning Coarse Domains. Mater. Res. Lett 2023, 11, 462–470. doi: 10.1080/21663831.2023.2183782.
  • Tekoğlu, E.; Ağaoğulları, D.; Mertdinç, S.; Lütfi Öveçoğlu, M. Effects of Reinforcement Content and Sequential Milling on the Microstructural and Mechanical Properties of TiB2 Particulate-Reinforced Eutectic Al-12.6 wt% Si Composites. J. Mater. Sci. 2018, 53, 2537–2552. doi: 10.1007/s10853-017-1687-0.
  • Mertdinç, S.; Tekoğlu, E.; Ağaoğulları, D.; Öveçoğlu, M. L. Influence of the Milling Process on TiB2 Particle Reinforced Al-7 wt.% Si Matrix Composites. Mater. Test. 2018, 60, 719–726. doi: 10.3139/120.111207.
  • Daoush, W.; Francis, A.; Lin, Y.; German, R. An Exploratory Investigation on the in-Situ Synthesis of SiC/AlN/Al Composites by Spark Plasma Sintering. J. Alloys Compd. 2015, 622, 458–462. doi: 10.1016/j.jallcom.2014.10.066.
  • Oke, S. R.; Falodun, O. E.; Mahlatse, M. R.; Ige, O. O.; Olubambi, P. A. Investigation on Densification and Microstructure of Al-TiO2 Composite Produced by Spark Plasma Sintering. Mater. Today: Proc. 2019, 18, 3182–3188. doi: 10.1016/j.matpr.2019.07.194.
  • Mazahery, A.; Abdizadeh, H.; Baharvandi, H. R. Development of High-Performance A356/nano-Al2O3 Composites. Mater. Sci. Eng., A 2009, 518, 61–64. doi: 10.1016/j.msea.2009.04.014.
  • Wu, C.-D.; Ma, K.-K.; Wu, J.-L.; Fang, P.; Luo, G.-Q.; Chen, F.; Shen, Q.; Zhang, L.-M.; Schoenung, J. M.; Lavernia, E. J. Influence of Particle Size and Spatial Distribution of B4C Reinforcement on the Microstructure and Mechanical Behavior of Precipitation Strengthened Al Alloy Matrix Composites. Mater. Sci. Eng., A 2016, 675, 421–430. doi: 10.1016/j.msea.2016.08.062.
  • Zhang, J.-T.; Shi, H.-J.; Cai, M.-C.; Liu, L.-S.; Zhai, P.-C. The Dynamic Properties of SiCp/Al Composites Fabricated by Spark Plasma Sintering with Powders Prepared by Mechanical Alloying Process. Mater. Sci. Eng., A 2009, 527, 218–224. doi: 10.1016/j.msea.2009.08.067.
  • Zeng, W.; Yu, D.-L.; Ma, Y.-L.; Qiu, R.-S.; Cao, X.-L.; Deng, H.-D.; Li, C.-H.; Shao, B.; Guo, D.-L.; Lan, W. Microstructure and Mechanical Properties of Al-TiCN Composites Prepared by Spark Plasma Sintering. Mater. Res. Express 2019, 6, 126514. doi: 10.1088/2053-1591/ab533c.
  • Xiong, B.-W.; Xu, Z.-F.; Yan, Q.-S.; Lu, B.-P.; Cai, C. Effects of SiC Volume Fraction and Aluminum Particulate Size on Interfacial Reactions in SiC Nanoparticulate Reinforced Aluminum Matrix Composites. J. Alloys Compd. 2011, 509, 1187–1191. doi: 10.1016/j.jallcom.2010.09.171.
  • Chen, H.-S.; Wang, W.-X.; Li, Y.-L.; Zhou, J.; Nie, H.-H.; Wu, Q.-C. The Design, Microstructure and Mechanical Properties of B4C/6061Al Neutron Absorber Composites Fabricated by SPS. Mater. Des. 2016, 94, 360–367. doi: 10.1016/j.matdes.2016.01.030.
  • Shen, Q.; Wu, C.-D.; Luo, G.-Q.; Fang, P.; Li, C.-Z.; Wang, Y.-Y.; Zhang, L.-M. Microstructure and Mechanical Properties of Al-7075/B4C Composites Fabricated by Plasma Activated Sintering. J. Alloys Compd. 2014, 588, 265–270. doi: 10.1016/j.jallcom.2013.11.089.
  • Khan, M.; Ud-Din, R.; Syed, W. H.; Akhtar, S.; Aune, R. E. Spark Plasma Sintering of Boron Carbide Reinforced Aluminum Alloy (Al6061) Matrix Composites. IBCAST 2019, 35–41. doi: 10.1109/IBCAST.2019.8667164.
  • Sadeghi, B.; Shamanian, M.; Ashrafizadeh, F.; Cavaliere, P. Effect of Processing Parameters on Microstructural and Mechanical Properties of Aluminum–SiO2 Nanocomposites Produced by Spark Plasma Sintering. Int. J. Mater. Res. 2018, 109, 422–430. doi: 10.3139/146.111625.
  • Ghasali, E.; Shirvanimoghaddam, K.; Pakseresht, A. H.; Alizadeh, M.; Ebadzadeh, T. Evaluation of Microstructure and Mechanical Properties of Al-TaC Composites Prepared by Spark Plasma Sintering Process. J. Alloys Compd. 2017, 705, 283–289. doi: 10.1016/j.jallcom.2017.02.144.
  • Cavaliere, P.; Jahantigh, F.; Shabani, A.; Sadeghi, B. Influence of SiO2 Nanoparticles on the Microstructure and Mechanical Properties of Al Matrix Nanocomposites Fabricated by Spark Plasma Sintering. Compos. Part B-Eng. 2018, 146, 60–68. doi: 10.1016/j.compositesb.2018.03.045.
  • Chen, Z.; Sun, G.-A.; Wu, Y.; Mathon, M.-H.; Borbely, A.; Chen, D.; Ji, G.; Wang, M.-L.; Zhong, S.-Y.; Wang, H.-W. Multi-Scale Study of Microstructure Evolution in Hot Extruded Nano-Sized TiB2 Particle Reinforced Aluminum Composites. Mater. Des. 2017, 116, 577–590. doi: 10.1016/j.matdes.2016.12.070.
  • Dash, K.; Chaira, D.; Ray, B. C. Synthesis and Characterization of Aluminium–Alumina Micro- and Nano-Composites by Spark Plasma Sintering. Mater. Res. Bull. 2013, 48, 2535–2542. doi: 10.1016/j.materresbull.2013.03.014.
  • Wu, C.-D.; Shen, S.; Li, Y.-Y.; Luo, G.-Q.; Shen, Q.; Gan, Z.-H.; Liu, J. Influence of Coarse Grain Particles on Mechanical Properties and Fracture Behavior in Multi-Modal Al-Based Metal Matrix Composites. Powder Technol. 2021, 394, 901–908. doi: 10.1016/j.powtec.2021.09.027.
  • Firestein, K. L.; Corthay, S.; Steinman, A. E.; Matveev, A. T.; Kovalskii, A. M.; Sukhorukova, I. V.; Golberg, D.; Shtansky, D. V. High-Strength Aluminum-Based Composites Reinforced with BN, AlB2 and AlN Particles Fabricated via Reactive Spark Plasma Sintering of Al-BN Powder Mixtures. Mater. Sci. Eng., A 2017, 681, 1–9. doi: 10.1016/j.msea.2016.11.011.
  • Yang, K.; An, L.-N.; Cheng, L.-F. Microstructure and Tribological Behavior of Al2O3 Particle Reinforced Al Matrix Composites Fabricated by Spark Plasma Sintering. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2019, 34, 1013–1017. doi: 10.1007/s11595-019-2152-5.
  • Slipenyuk, A.; Kuprin, V.; Milman, Y.; Goncharuk, V.; Eckert, J. Properties of P/M Processed Particle Reinforced Metal Matrix Composites Specified by Reinforcement Concentration and Matrix-to-Reinforcement Particle Size Ratio. Acta. Mater. 2006, 54, 157–166. doi: 10.1016/j.actamat.2005.08.036.
  • Wang, Z.-W.; Song, M.; Sun, C.; He, Y.-H. Effects of Particle Size and Distribution on the Mechanical Properties of SiC Reinforced Al–Cu Alloy Composites. Mater. Sci. Eng., A 2011, 528, 1131–1137. doi: 10.1016/j.msea.2010.11.028.
  • Wu, C.-D.; Luo, G.-Q.; Zhang, J.; Shen, Q.; Gan, Z.-H.; Liu, J.; Zhang, L.-M. Influence of Length-Scale on Stabilization of Boron Carbide in Al-Based Metal Matrix Composites during Plasma Activated Sintering. Powder Technol. 2018, 339, 809–816. doi: 10.1016/j.powtec.2018.08.073.
  • Ma, G.-N.; Wang, D.; Xiao, B.; Ma, Z.-Y. Effect of Particle Size on Mechanical Properties and Fracture Behaviors of Age-Hardening SiC/Al–Zn–Mg–Cu Composites. Acta Metall. Sin. (Engl. Lett.) 2021, 34, 1447–1459. doi: 10.1007/s40195-021-01254-w.
  • Ma, G.-N.; Wang, D.; Liu, Z.-Y.; Xiao, B.-L.; Ma, Z.-Y. An Investigation on Particle Weakening in T6-Treated SiC/Al–Zn–Mg–Cu Composites. Mater. Char. 2019, 158, 109966. doi: 10.1016/j.matchar.2019.109966.
  • Ghahremani, D.; Ebadzadeh, T.; Maghsodipour, A. Spark Plasma Sintering of Mullite: Relation between Microstructure, Properties and Spark Plasma Sintering (SPS) Parameters. Ceram. Int. 2015, 41, 6409–6416. doi: 10.1016/j.ceramint.2015.01.078.
  • Wu, C.-D.; Fang, P.; Luo, G.-Q.; Chen, F.; Shen, Q.; Zhang, L.-M.; Lavernia, E.-J. Effect of Plasma Activated Sintering Parameters on Microstructure and Mechanical Properties of Al-7075/B4C Composites. J. Alloys Compd. 2014, 615, 276–282. doi: 10.1016/j.jallcom.2014.06.110.
  • Liu, R.-X.; Wu, C.-D.; Zhang, J.; Luo, G.-Q.; Shen, Q.; Zhang, L.-M. Microstructure and Mechanical Behaviors of the Ultrafine Grained AA7075/B4C Composites Synthesized via One-Step Consolidation. J. Alloys Compd. 2018, 748, 737–744. doi: 10.1016/j.jallcom.2018.03.152.
  • Zhang, L.; Shi, G. P.; Kun, X.; Wu, H.; Li, Q. G.; Wu, J. Y.; Wang, Z. Phase Transformation and Mechanical Properties of B4C/Al Composites. J. Mater. Res. Technol. 2020, 9, 2116–2126. doi: 10.1016/j.jmrt.2019.12.047.
  • Ridvan, Y.; Eugene, A. O. Consolidation of Al-nanoSiC Composites by Spark Plasma Sintering. Int. J. Mater. Mech. Manuf. 2015, 4, 119–122. doi: 10.7763/ijmmm.2016.V4.237.
  • Aliyu, I. K.; Saheb, N.; Hassan, S. F.; Al-Aqeeli, N. Microstructure and Properties of Spark Plasma Sintered Aluminum Containing 1wt.% SiC Nanoparticles. Metals 2015, 5, 70–83. doi: 10.3390/met5010070.
  • Jiang, H.; Xu, Z.-G.; Xiu, Z.-Y.; Jiang, L.-T.; Gou, H.-S.; Zhou, C.; Wu, G.-H. Effects of Pulse Conditions on Microstructure and Mechanical Properties of Si3N4/6061Al Composites Prepared by Spark Plasma Sintering (SPS). J. Alloys Compd. 2018, 763, 822–834. doi: 10.1016/j.jallcom.2018.06.024.
  • Liu, R.; Wang, W.; Chen, H.; Zhang, Y.; Wan, S. Hot Deformation and Processing Maps of B4C/6061Al Nanocomposites Fabricated by Spark Plasma Sintering. J. Mater. Eng. Perform. 2019, 28, 6287–6297. doi: 10.1007/s11665-019-04336-0.
  • Li, X.; Liu, C.; Sun, X.; Ma, M.; Liu, R. Hot Deformation Behaviour and Processing Maps of AA6061-10 Vol.% SiC Composite Prepared by Spark Plasma Sintering. Sci. China Technol. Sci. 2016, 59, 980–988. doi: 10.1007/s11431-016-6063-9.
  • Liu, R.-F.; Wang, W.-X.; Chen, H.-S.; Tan, M.-B.; Zhang, Y.-Y. Microstructure and Mechanical Properties of B4C/6061Al Nanocomposites Fabricated by Advanced Powder Metallurgy. Adv. Eng. Mater. 2018, 20, 1701133. doi: 10.1002/adem.201701133.
  • Li, X.-P.; Liu, C.-Y.; Ma, M.-Z.; Liu, R.-P. Microstructures and Mechanical Properties of AA6061–SiC Composites Prepared through Spark Plasma Sintering and Hot Rolling. Mater. Sci. Eng., A 2016, 650, 139–144. doi: 10.1016/j.msea.2015.10.015.
  • Zhang, Y.-H.; Jensen, D.-J.; Zhang, Y.-B.; Lin, F.-X.; Zhang, Z.-Q.; Liu, Q. Three-Dimensional Investigation of Recrystallization Nucleation in a Particle-Containing Al Alloy. Scr. Mater. 2012, 67, 320–323. doi: 10.1016/j.scriptamat.2012.05.006.
  • Humphreys, F. J. Particle Stimulated Nucleation of Recrystallization at Silica Particles in Nickel. Scr. Mater. 2000, 43, 591–596. doi: 10.1016/S1359-6462(00)00442-5.
  • Liu, R.-F.; Wang, W.-X.; Zhao, W. Microstructure and Mechanical Properties of Micro/Nano B4C Particle Reinforced 6061Al Matrix Composites. Acta Metall. Sin. 2021, 38, 8. doi: 10.13801/j.cnki.fhclxb.20201209.002.
  • Humphreys, F. J.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Oxford: Elsevier, 2004.
  • Falodun, O. E.; Obadele, B. A.; Oke, S. R.; Okoro, A. M.; Olubambi, P. A. Titanium-Based Matrix Composites Reinforced with Particulate, Microstructure, and Mechanical Properties Using Spark Plasma Sintering Technique: A Review. Int. J. Adv. Manuf. Technol. 2019, 102, 1689–1701. doi: 10.1007/s00170-018-03281-x.
  • Ye, J.; Han, B.-Q.; Lee, Z.; Ahn, B.; Nutt, S. R.; Schoenung, J. M. A Tri-Modal Aluminum Based Composite with Super-High Strength. Scr. Mater. 2005, 53, 481–486. doi: 10.1016/j.scriptamat.2005.05.004.
  • Sanaty-Zadeh, A. Comparison between Current Models for the Strength of Particulate-Reinforced Metal Matrix Nanocomposites with Emphasis on Consideration of Hall–Petch Effect. Mater. Sci. Eng., A 2012, 531, 112–118. doi: 10.1016/j.msea.2011.10.043.
  • Shen, Z.-J.; Johnsson, M.; Zhao, Z.; Nygren, M. Spark Plasma Sintering of Alumina. J. Am. Ceram. Soc. 2002, 85, 1921–1927. doi: 10.1111/j.1151-2916.2002.tb00381.x.
  • Ujah, C. O.; Popoola, A. P. I.; Popoola, O. M.; Aigbodion, V. S. Influence of CNTs Addition on the Mechanical, Microstructural, and Corrosion Properties of Al Alloy Using Spark Plasma Sintering Technique. Int. J. Adv. Manuf. Technol. 2020, 106, 2961–2969. doi: 10.1007/s00170-019-04699-7.
  • Chu, K.; Jia, C.-C.; Tian, W.-H.; Liang, X.-B.; Chen, H.; Guo, H. Thermal Conductivity of Spark Plasma Sintering Consolidated SiCp/Al Composites Containing Pores: Numerical Study and Experimental Validation. Compos. A:Appl. Sci. Manuf. 2010, 41, 161–167. doi: 10.1016/j.compositesa.2009.10.001.
  • Bhadauria, A.; Singh, L. K.; Nayak, S. K.; Laha, T. Tensile Deformation Behavior and Strengthening Mechanism in Graphene Nanoplatelet Reinforced Bimodal Grained Aluminum Nanocomposite Synthesized by Spark Plasma Sintering and Hot Rolling. Mater. Char. 2020, 168, 110568. doi: 10.1016/j.matchar.2020.110568.
  • Garbiec, D.; Jurczyk, M.; Levintant-Zayonts, N.; Mościcki, T. Properties of Al–Al2O3 Composites Synthesized by Spark Plasma Sintering Method. Arch. Civ. Mech. Eng. 2015, 15, 933–939. doi: 10.1016/j.acme.2015.02.004.
  • Jagannatham, M.; Chandran, P.; Sankaran, S.; Haridoss, P.; Nayan, N.; Bakshi, S. R. Tensile Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites: A Review. Carbon 2020, 160, 14–44. doi: 10.1016/j.carbon.2020.01.007.
  • Wu, R.; Zhou, K.; Yue, C. Y.; Wei, J.; Pan, Y. Recent Progress in Synthesis, Properties and Potential Applications of SiC Nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60. doi: 10.1016/j.pmatsci.2015.01.003.
  • Basak, A. K.; Pramanik, A.; Prakash, C. Deformation and Strengthening of SiC Reinforced Al-MMCs during in-Situ Micro-Pillar Compression. Mater. Sci. Eng., A 2019, 763, 138141. doi: 10.1016/j.msea.2019.138141.
  • Prasad Reddy, A.; Vamsi Krishna, P.; Narasimha Rao, R.; Murthy, N. V. Silicon Carbide Reinforced Aluminium Metal Matrix Nano Composites-A Review. Mater. Today: Proc. 2017, 4, 3959–3971. doi: 10.1016/j.matpr.2017.02.296.
  • Sadeghi, B.; Shamanian, M.; Cavaliere, P.; Ashrafizadeh, F.; Sanayei, M.; Szpunar, J. A. Microstructural and Mechanical Behavior of Bimodal Reinforced Al-Based Composites Produced by Spark Plasma Sintering and FSP. Int. J. Adv. Manuf. Technol. 2018, 94, 3903–3916. doi: 10.1007/s00170-017-1144-x.
  • Steinman, A. E.; Corthay, S.; Firestein, K. L.; Kvashnin, D. G.; Kovalskii, A. M.; Matveev, A. T.; Sorokin, P. B.; Golberg, D. V.; Shtansky, D. V. Al-Based Composites Reinforced with AlB2, AlN and BN Phases: Experimental and Theoretical Studies. Mater. Des. 2018, 141, 88–98. doi: 10.1016/j.matdes.2017.12.022.
  • Tan, Z.; Wang, L.; Xue, Y.-F.; Wang, G.-H.; Zhou, Z.; Tian, L.-F.; Wang, Y.-M.; Wang, B.-P.; He, D.-Y. A Multiple Grain Size Distributed Al-Based Composite Consist of Amorphous/Nanocrystalline, Submicron Grain and Micron Grain Fabricated through Spark Plasma Sintering. J. Alloys Compd. 2018, 737, 308–316. doi: 10.1016/j.jallcom.2017.12.102.
  • Ghasali, E.; Pakseresht, A.; Rahbari, A.; Eslami-Shahed, H.; Alizadeh, M.; Ebadzadeh, T. Mechanical Properties and Microstructure Characterization of Spark Plasma and Conventional Sintering of Al–SiC–TiC Composites. J. Alloys Compd. 2016, 666, 366–371. doi: 10.1016/j.jallcom.2016.01.118.
  • Manohar, G.; Pandey, K. M.; Maity, S. R. Effect of Spark Plasma Sintering on Microstructure and Mechanical Properties of AA7075/B4C/ZrC Hybrid Nanocomposite Fabricated by Powder Metallurgy Techniques. Mater. Chem. Phys. 2022, 282, 126000. doi: 10.1016/j.matchemphys.2022.126000.
  • Vorotilo, S.; Nepapushev, A. A.; Moskovskikh, D. O.; Buinevich, V. S.; Trusov, G. V.; Kovalev, D. Y.; Semenyuk, A. O.; Stepanov, N. D.; Vorotilo, K.; Nalivaiko, A. Y.; Gromov, A. A. Engineering of Strong and Hard in-Situ Al-Al3Ti Nanocomposite via High-Energy Ball Milling and Spark Plasma Sintering. J. Alloys Compd. 2022, 895, 162676. doi: 10.1016/j.jallcom.2021.162676.
  • Chianeh, V. A.; Hosseini, H. R. M.; Nofar, M. Micro Structural Features and Mechanical Properties of Al-Al3Ti Composite Fabricated by in-Situ Powder Metallurgy Route. J. Alloys Compd. 2009, 473, 127–132. doi: 10.1016/j.jallcom.2008.05.068.
  • Zeng, Y.; Himmler, D.; Randelzhofer, P.; Korner, C. In Situ Al3Ti/Al Composites Fabricated by High Shear Technology: Microstructure and Mechanical Properties. Mater. Sci. Technol. 2019, 35, 2294–2303. doi: 10.1080/02670836.2019.1677025.
  • Zhang, G.-P.; Mei, Q.-S.; Chen, F.; Ma, Y.; Mei, X.-M.; Li, J.-Y.; Ruan, X.-F.; Wan, L. Production of a High Strength Al/(TiAl3+Al2O3) Composite from an Al-TiO2 System by Accumulative Roll-Bonding and Spark Plasma Sintering. Mater. Sci. Eng., A 2019, 752, 192–198. doi: 10.1016/j.msea.2019.03.012.
  • Lasalmonie, A.; Strudel, J. L. Influence of Grain Size on the Mechanical Behaviour of Some High Strength Materials. J. Mater. Sci. 1986, 21, 1837–1852. doi: 10.1007/BF00547918.
  • Zhang, Z.; Zhang, J.-H.; Wang, J.; Li, Z.-H.; Xie, J.-S.; Liu, S.-J.; Guan, K.; Wu, R.-Z. Toward the Development of Mg Alloys with Simultaneously Improved Strength and Ductility by Refining Grain Size via the Deformation Process. Int J Miner Metall Mater 2021, 28, 30–45. doi: 10.1007/s12613-020-2190-1.
  • Varma, V. K.; Mahajan, Y. R.; Kutumbarao, V. V. Ageing Behavior of Al-Cu-Mg Alloy Matrix Composites with SiCp of Varying Sizes. Scr. Mater. 1997, 37, 485–489. doi: 10.1016/S1359-6462(97)00107-3.
  • Jiang, L.-T.; Wu, G.-H.; Zhao, M.; Zhang, Q.; Kouno, N.; Saito, H. Effects of Particle Size on Microstructure of the Matrix Alloy in Aluminum Matrix Composites. MSF 2007, 546-549, 1655–1659. doi: 10.4028/www.scientific.net/MSF.546-549.1655.
  • Spowart, J. E.; Mullens, H. M.; Puchala, B. T. Collecting and Analyzing Microstructures in Three Dimensions: A Fully Automated Approach. JOM 2003, 55, 35–37. doi: 10.1007/s11837-003-0173-0.
  • Geni, M.; Kikuchi, M. Damage Analysis of Aluminum Matrix Composite considering Non-Uniform Distribution of SiC Particles. Acta. Mater. 1998, 46, 3125–3133. doi: 10.1016/S1359-6454(98)00004-4.
  • Zhang, Z.; Chen, D.-L. Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting Their Yield Strength. Scr. Mater. 2006, 54, 1321–1326. doi: 10.1016/j.scriptamat.2005.12.017.
  • Chen, Z.-Z.; Tan, Z.-Q.; Ji, G.; Fan, G.-L.; Schryvers, D.; Ouyang, Q. B.; Li, Z.-Q. Effect of Interface Evolution on Thermal Conductivity of Vacuum Hot Pressed SiC/Al Composites. Adv. Eng. Mater. 2015, 17, 1076–1084. doi: 10.1002/adem.201400412.
  • Kota, N.; Charan, M. S.; Laha, T.; Roy, S. Review on Development of Metal/Ceramic Interpenetrating Phase Composites and Critical Analysis of Their Properties. Ceram. Int. 2022, 48, 1451–1483. doi: 10.1016/j.ceramint.2021.09.232.
  • Cheng, J. F.; Li, B.; Cai, Q. Z.; Zhao, B. Y.; Xu, C.; Chen, Z. Aging Behavior and Mechanical Properties of Ultra-Fine Grained Al2024-2TiN Composite Prepared by Spark Plasma Sintering. Mater. Char. 2021, 181, 111497. doi: 10.1016/j.matchar.2021.111497.
  • Xing, Y.; Li, N. Y.; Li, C. J.; Gao, P.; Guan, H. D.; Yang, C. M. Y.; Pu, C. J.; Yi, J. H. Effects of Size and Oxidation Treatment for SiC Particles on the Microstructures and Mechanical Properties of SiCp/Al Composites Prepared by Powder Metallurgy. Mater. Sci. Eng., A 2022, 851, 143664. doi: 10.1016/j.msea.2022.143664.
  • Mu, D. K. Q.; Zhang, Z.; Xie, Y. H.; Liang, J. M.; Wang, J.; Zhang, D. L. The Microstructures and Mechanical Properties of a 5vol%SiC/AA2024 Nanocomposite Fabricated by Powder Metallurgy. Mater. Char. 2021, 175, 111090. doi: 10.1016/j.matchar.2021.111090.
  • Paidpilli, M.; Gupta, G. K.; Upadhyaya, A. Effect of Matrix Powder and Reinforcement Content on Tribological Behavior of Particulate 6061Al-TiB2 Composites. J. Compos. Mater. 2019, 53, 1181–1195. doi: 10.1177/0021998318796172.
  • Emamy, M.; Emami, A. R.; Khorshidi, R.; Ghorbani, M. R. The Effect of Fe-Rich Intermetallics on the Microstructure, Hardness and Tensile Properties of Al–Mg2Si Die-Cast Composite. Mater. Des. 2013, 46, 881–888. doi: 10.1016/j.matdes.2012.11.041.
  • Wang, F.; Zhang, Z.-Y.; Ma, Y.-J.; Jin, Y.-S. Effect of Fe and Mn Additions on Microstructure and Wear Properties of Spray-Deposited Al–20Si Alloy. Mater. Lett. 2004, 58, 2442–2446. doi: 10.1016/j.matlet.2004.02.027.
  • Manohar, G.; Pandey, K. M.; Maity, S. R. Effect of Sintering Mechanisms on Mechanical Properties of AA7075/B4C Composite Fabricated by Powder Metallurgy Techniques. Ceram. Int. 2021, 47, 15147–15154. doi: 10.1016/j.ceramint.2021.02.073.
  • Wang, Y.; Liu, Q.; Zhang, B.; Zhang, H.-Q.; Jin, Y.-C.; Zhong, Z.-X.; Ye, J.; Ren, Y.-H.; Ye, F.; Wang, W. Dynamic Mechanical Response and Damage Mechanisms of Nacre-Inspired 2024Al/B4C Composite at Elevated Temperature. Mater. Sci. Eng., A 2022, 831, 142263. doi: 10.1016/j.msea.2021.142263.
  • Zhang, X.; Zhao, N.-Q.; He, C.-N. The Superior Mechanical and Physical Properties of Nanocarbon Reinforced Bulk Composites Achieved by Architecture Design–a Review. Prog. Mater. Sci. 2020, 113, 100672. doi: 10.1016/j.pmatsci.2020.100672.
  • Zhao, N.-Q.; Guo, S.-Y.; Zhang, X.; He, C.-N.; Shi, C.-S. Progress on Graphene/Copper Composites Focusing on Reinforcement Configuration Design: A Review. Acta Metall. Sin. 2021, 57, 1087–1106. doi: 10.11900/0412.1961.2021.00120.
  • Ma, K.; Liu, Z.-Y.; Liu, K.; Chen, X.-G.; Xiao, B.-L.; Ma, Z.-Y. Structure Optimization for Improving the Strength and Ductility of Heterogeneous Carbon Nanotube/Al–Cu–Mg Composites. Carbon 2021, 178, 190–201. doi: 10.1016/j.carbon.2021.03.006.
  • Wang, Y.-F.; Wei, Y.-G.; Zhao, Z.-F.; Lin, Z.-Y.; Guo, F.-J.; Cheng, Q.; Huang, C.-X.; Zhu, Y.-T. Mechanical Response of the Constrained Nanostructured Layer in Heterogeneous Laminate. Scr. Mater. 2022, 207, 114310. doi: 10.1016/j.scriptamat.2021.114310.
  • Zhang, Y.-Z.; Sabbaghianrad, S.; Yang, H.; Topping, T. D.; Langdon, T. G.; Lavernia, E. J.; Schoenung, J. M.; Nutt, S. R. Two-Step SPD Processing of a Trimodal Al-Based Nano-Composite. Metall. Mater. Trans. A 2015, 46, 5877–5886. doi: 10.1007/s11661-015-3151-6.
  • Lavernia, E. J.; Han, B.-Q.; Schoenung, J. M. Cryomilled Nanostructured Materials: Processing and Properties. Mater. Sci. Eng., A 2008, 493, 207–214. doi: 10.1016/j.msea.2007.06.099.
  • Zhu, L.-L.; Lu, J. Modelling the Plastic Deformation of Nanostructured Metals with Bimodal Grain Size Distribution. Int. J. Plasticity 2012, 30-31, 166–184. doi: 10.1016/j.ijplas.2011.10.003.
  • Zhang, Z.-H.; Wang, F.-C.; Luo, J.; Lee, S. K.; Wang, L. Microstructures and Mechanical Properties of Spark Plasma Sintered Al–SiC Composites Containing High Volume Fraction of SiC. Mater. Sci. Eng., A 2010, 527, 7235–7240. doi: 10.1016/j.msea.2010.07.043.
  • Liu, P.; Wang, A. Q.; Xie, J. P.; Hao, S. M. Characterization and Evaluation of Interface in SiCp/2024 Al Composite. Trans. Nonferrous Metals Soc. China 2015, 25, 1410–1418. doi: 10.1016/s1003-6326(15)63740-2.
  • Wang, D. M.; Zheng, Z. X.; Lv, J.; Xu, G. Q.; Zhou, S.; Tang, W. M.; Wu, Y. C. Enhanced Thermal Conductive 3D-SiC/Al-Si-Mg Interpenetrating Composites Fabricated by Pressureless Infiltration. Ceram. Int. 2017, 43, 1755–1761. doi: 10.1016/j.ceramint.2016.10.104.
  • Blau, P. J. Fifty Years of Research on the Wear of Metals. Tribol. Int. 1997, 30, 321–331. doi: 10.1016/S0301-679X(96)00062-X.
  • Sanchez-Santana, U.; Rubio-Gonzalez, C.; Gomez-Rosas, G.; Ocana, J. L.; Molpeceres, C.; Porro, J.; Morales, M. Wear and Friction of 6061-T6 Aluminum Alloy Treated by Laser Shock Processing. Wear 2006, 260, 847–854. doi: 10.1016/j.wear.2005.04.014.
  • Rao, T. B. An Experimental Investigation on Mechanical and Wear Properties of Al7075/SiCp Composites: Effect of SiC Content and Particle Size. J. Tribol. 2018, 140, 031601. doi: 10.1115/1.4037845.
  • Sivakumar, S.; Golla, B. R.; Rajulapati, K. V. Influence of ZrB2 Hard Ceramic Reinforcement on Mechanical and Wear Properties of Aluminum. Ceram. Int. 2019, 45, 7055–7070. doi: 10.1016/j.ceramint.2018.12.208.
  • Hosseini, N.; Karimzadeh, F.; Abbasi, M. H.; Enayati, M. H. A Comparative Study on the Wear Properties of Coarse-Grained Al6061 Alloy and Nanostructured Al6061–Al2O3 Composites. Tribol. Int. 2012, 54, 58–67. doi: 10.1016/j.triboint.2012.04.020.
  • Kumar, S.; Balasubramanian, V. Effect of Reinforcement Size and Volume Fraction on the Abrasive Wear Behaviour of AA7075 Al/SiCp P/M Composites—A Statistical Analysis. Tribol. Int. 2010, 43, 414–422. doi: 10.1016/j.triboint.2009.07.003.
  • Rouhi, M.; Moazami-Goudarzi, M.; Ardestani, M. Comparison of Effect of SiC and MoS2 on Wear Behavior of Al Matrix Composites. Trans. Nonferrous Metals Soc. China 2019, 29, 1169–1183. doi: 10.1016/S1003-6326(19)65025-9.
  • Moazami-Goudarzi, M.; Akhlaghi, F. Wear Behavior of Al 5252 Alloy Reinforced with Micrometric and Nanometric SiC Particles. Tribol. Int. 2016, 102, 28–37. doi: 10.1016/j.triboint.2016.05.013.
  • Habibnejad-Korayem, M.; Mahmudi, R.; Ghasemi, H. M.; Poole, W. J. Tribological Behavior of Pure Mg and AZ31 Magnesium Alloy Strengthened by Al2O3 Nano-Particles. Wear 2010, 268, 405–412. doi: 10.1016/j.wear.2009.08.031.
  • Mizuuchi, K.; Inoue, K.; Agari, Y.; Morisada, Y.; Sugioka, M.; Tanaka, M.; Takeuchi, T.; Kawahara, M.; Makino, Y. Thermal Conductivity of Diamond Particle Dispersed Aluminum Matrix Composites Fabricated in Solid–Liquid co-Existent State by SPS. Compos. Part B-Eng. 2011, 42, 1029–1034. doi: 10.1016/j.compositesb.2011.03.028.
  • Mizuuchi, K.; Inoue, K.; Agari, Y.; Sugioka, M.; Tanaka, M.; Takeuchi, T.; Tani, J.; Kawahara, M.; Makino, Y.; Ito, M. Bimodal and Monomodal Diamond Particle Effect on the Thermal Properties of Diamond-Particle-Dispersed Al–Matrix Composite Fabricated by SPS. Microelectron. Reliab. 2014, 54, 2463–2470. doi: 10.1016/j.microrel.2014.04.006.
  • Sadeghi, B.; Shamanian, M.; Ashrafizadeh, F.; Cavaliere, P.; Rizzo, A. Wear Behavior of Al-Based Nanocomposites Reinforced with Bimodal Micro- and Nano-Sized Al2O3 Particles Produced by Spark Plasma Sintering. Mater. Perform. Charact. 2018, 7, 327–350. doi: 10.1520/mpc20180039.
  • Trinh, P. V.; Lee, J.; Minh, P. N.; Phuong, D. D.; Hong, S. H. Effect of Oxidation of SiC Particles on Mechanical Properties and Wear Behavior of SiCp/Al6061 Composites. J. Alloys Compd. 2018, 769, 282–292. doi: 10.1016/j.jallcom.2018.07.355.
  • Wang, Y.; Rainforth, W. M.; Jones, H.; Lieblich, M. Dry Wear Behaviour and Its Relation to Microstructure of Novel 6092 Aluminium Alloy–Ni3Al Powder Metallurgy Composite. Wear 2001, 251, 1421–1432. doi: 10.1016/S0043-1648(01)00783-9.
  • Mizuuchi, K.; Inoue, K.; Agari, Y.; Tanaka, M.; Takeuchi, T.; Tani, J. I.; Kawahara, M.; Makino, Y.; Ito, M. Thermal Conductivity of Cubic Boron Nitride (cBN) Particle Dispersed Al Matrix Composites Fabricated by SPS. MSF 2016, 879, 2413–2418. doi: 10.4028/www.scientific.net/MSF.879.2413.
  • Mizuuchi, K.; Inoue, K.; Agari, Y.; Kawahara, M.; Makino, Y.; Ito, M. Thermal Properties of Al/β-SiC Composite Fabricated by Spark Plasma Sintering (SPS). J. Metall. Eng. 2014, 3, 59–68. doi: 10.14355/me.2014.0302.01.
  • Mizuuchi, K.; Inoue, K.; Agari, Y.; Nagaoka, T.; Sugioka, M.; Tanaka, M.; Takeuchi, T.; Tani, J-i.; Kawahara, M.; Makino, Y.; Ito, M. Processing of Al/SiC Composites in Continuous Solid–Liquid co-Existent State by SPS and Their Thermal Properties. Compos. Part B-Eng. 2012, 43, 2012–2019. doi: 10.1016/j.compositesb.2012.02.004.
  • Mizuuchi, K.; Inoue, K.; Agari, Y.; Yamada, S.; Sugioka, M.; Itami, M.; Kawahara, M.; Makino, Y. Consolidation and Thermal Conductivity of Diamond Particle Dispersed Copper Matrix Composites Produced by Spark Plasma Sintering (SPS). J. Japan Inst. Metals 2007, 71, 1066–1069. doi: 10.2320/jinstmet.71.1066.
  • Mizuuchi, K.; Inoue, K.; Agari, Y.; Morisada, Y.; Sugioka, M.; Tanaka, M.; Takeuchi, T.; Tani, J-i.; Kawahara, M.; Makino, Y. Thermal Properties of Diamond Particle Dispersed Aluminum Matrix Composites Fabricated in Continuous Solid-Liquid co-Existent State by SPS. J. Jpn. Soc. Powder Powder Metall. 2009, 56, 438–443. doi: 10.2497/jjspm.56.438.
  • Dun, B.; Jia, X.-A.; Jia, C.-C.; Chu, K. Thermal Conductivity Behavior of SPS Consolidated AlN/Al Composites for Thermal Management Applications. Rare Met. 2011, 30, 189–194. doi: 10.1007/s12598-011-0222-8.
  • Chien, C. W.; Lee, S. L.; Lin, J. C.; Jahn, M. T. Effects of Sip Size and Volume Fraction on Properties of Al/Sip Composites. Mater. Lett. 2002, 52, 334–341. doi: 10.1016/S0167-577X(01)00418-9.
  • Karadeniz, Z. H.; Kumlutas, D. A Numerical Study on the Coefficients of Thermal Expansion of Fiber Reinforced Composite Materials. Compos. Struct. 2007, 78, 1–10. doi: 10.1016/j.compstruct.2005.11.034.
  • Balch, D. K.; Fitzgerald, T. J.; Michaud, V. J.; Mortensen, A.; Shen, Y.-L.; Suresh, S. Thermal Expansion of Metals Reinforced with Ceramic Particles and Microcellular Foams. Metall. Mater. Trans. A 1996, 27, 3700–3717. doi: 10.1007/BF02595462.
  • Kumar, P. L.; Lombardi, A.; Byczynski, G.; Murty, S.; Murty, B. S.; Bichler, L. Recent Advances in Aluminium Matrix Composites Reinforced with Graphene-Based Nanomaterial: A Critical Review. Prog. Mater. Sci. 2022, 128, 100948. doi: 10.1016/j.pmatsci.2022.100948.
  • Chen, L.; Zhang, X.; Zheng, W.; Wang, M.; Liu, B.; Sun, W. Investigation on Corrosion Behaviors and Mechanical Properties of TiB2/7075Al Composites with Various Particle Contents. J. Mater. Res. Technol. 2023, 23, 2911–2923. doi: 10.1016/j.jmrt.2023.01.222.
  • Ao, M.; Liu, H. M.; Dong, C. F.; Feng, S.; Liu, J. C. Degradation Mechanism of 6063 Aluminium Matrix Composite Reinforced with TiC and Al2O3 Particles. J. Alloys Compd. 2021, 859, 157838. doi: 10.1016/j.jallcom.2020.157838.
  • Loto, R. T. Investigation of the Influence of SiC Content and Particle Size Variation on the Corrosion Resistance of Al-SiC Matrix Composite in Neutral Chloride Solution. Int. J. Adv. Manuf. Technol. 2019, 101, 2407–2413. doi: 10.1007/s00170-018-3137-9.
  • Aydın, F. A Review of Recent Developments in the Corrosion Performance of Aluminium Matrix Composites. J. Alloys Compd. 2023, 949, 169508. doi: 10.1016/j.jallcom.2023.169508.
  • Zhang, L.; Xu, H. Q.; Wang, Z.; Li, Q. G.; Wu, J. Y. Mechanical Properties and Corrosion Behavior of Al/SiC Composites. J. Alloys Compd. 2016, 678, 23–30. doi: 10.1016/j.jallcom.2016.03.180.
  • Akinwamide, S. O.; Akinribide, O. J.; Olubambi, P. A. Influence of Ferrotitanium and Silicon Carbide Addition on Structural Modification, Nanohardness and Corrosion Behaviour of Stir-Cast Aluminium Matrix Composites. Silicon 2021, 13, 2221–2232. doi: 10.1007/s12633-020-00733-6.
  • Pan, S. H.; Yuan, J.; Linsley, C.; Liu, J. K.; Li, X. C. Corrosion Behavior of Nano-Treated AA7075 Alloy with TiC and TiB2 Nanoparticles. Corros. Sci. 2022, 206, 110479. doi: 10.1016/j.corsci.2022.110479.
  • Kumar, S. D.; Ravichandran, M.; Jeevika, A.; Stalin, B.; Kailasanathan, C.; Karthick, A. Effect of ZrB2 on Microstructural, Mechanical and Corrosion Behaviour of Aluminium (AA7178) Alloy Matrix Composite Prepared by the Stir Casting Route. Ceram. Int. 2021, 47, 12951–12962. doi: 10.1016/j.ceramint.2021.01.158.
  • Kumar, S.; Kumar, A.; Vanitha, C. Corrosion Behaviour of Al 7075/TiC Composites Processed through Friction Stir Processing. Mater. Today: Proc. 2019, 15, 21–29. doi: 10.1016/j.matpr.2019.05.019.
  • Kumar, A.; Pal, K.; Mula, S. Simultaneous Improvement of Mechanical Strength, Ductility and Corrosion Resistance of Stir Cast Al7075-2% SiC Micro- and Nanocomposites by Friction Stir Processing. J. Manuf. Process 2017, 30, 1–13. doi: 10.1016/j.jmapro.2017.09.005.
  • Gaylan, Y.; Avar, B.; Panigrahi, M.; Aygün, B.; Karabulut, A. Effect of the B4C Content on Microstructure, Microhardness, Corrosion, and Neutron Shielding Properties of Al–B4C Composites. Ceram. Int. 2023, 49, 5479–5488. doi: 10.1016/j.ceramint.2022.10.071.
  • Tozkoparan, B.; Dikici, B.; Topuz, M.; Bedir, F.; Gavgali, M. Al-5Cu/B4Cp Composites: The Combined Effect of Artificially Aging (T6) and Particle Volume Fractions on the Corrosion Behaviour. Adv. Powder Technol. 2020, 31, 2833–2842. doi: 10.1016/j.apt.2020.05.006.
  • Shrivastava, V.; Gupta, G. K.; Singh, I. B. Heat Treatment Effect on the Microstructure and Corrosion Behavior of Al-6061 Alloy with Influence of Alpha-Nanoalumina Reinforcement in 3.5% NaCl Solution. J. Alloys Compd. 2019, 775, 628–638. doi: 10.1016/j.jallcom.2018.10.111.
  • Karabacak, A. H.; Çanakçı, A.; Çelebi, M.; Güler, O.; Tunç, S. A.; Arpacı, K. A. Production of Al2024/h-BN Nanocomposites with Improved Corrosion, Wear and Mechanical Properties. Mater. Chem. Phys. 2023, 300, 127566. doi: 10.1016/j.matchemphys.2023.127566.
  • Mahdi, S. M.; Ghalib, L. Corrosion Behavior of Al/SiC Composite Prepared by Powder Metallurgy in Chloride Environments. J. Bio. Tribo. Corros. 2022, 8, 1–11. doi: 10.1007/s40735-021-00612-6.
  • Zhang, L. X.; Li, B. Y.; Wu, H.; Wang, W.; Zhai, S. C.; Xu, J.; Niu, Z. Z.; Wang, Y. Microstructure and Property Characterization of Al-Based Composites Reinforced with CuZrAl Particles Fabricated by Mechanical Alloying and Spark Plasma Sintering. Adv. Powder Technol. 2018, 29, 1695–1702. doi: 10.1016/j.apt.2018.04.004.
  • Mirbagheri, S. M.; Shahrajabian, H.; Rafiei, M. Effects of Graphene Nanoplatelets on the Microstructure, Mechanical Properties, and Corrosion Behavior of Spark Plasma Sintered Al + 20vol.% (TiC + TiB2) Hybrid Composites. J. Mater. Eng. Perform. 2022, 31, 3535–3549. doi: 10.1007/s11665-021-06498-2.
  • Beheshtipour, A.; Mahdizadeh, S. M.; Khademi, D.; Khodeir, E.; Emamiyan, H. Comparison of Mechanical Properties and Corrosion Behavior of Al-Nano Al2O3 with Al-Micro Al2O3 Composites Made by SPS Process. Met. Mater. Int. 2020, 26, 1697–1709. doi: 10.1007/s12540-019-00511-z.
  • Mirbagheri, S. M.; Baharzadeh, E.; Rafiei, M. Characterization of Al/(TiC + TiB2) Hybrid Composites Containing Different Amounts of MWCNTs Produced by SPS. J. Mater. Res. 2022, 37, 3575–3586. doi: 10.1557/s43578-022-00726-8.
  • Darowicki, K.; Orlikowski, J.; Arutunow, A. Investigations of the passive layer Cracking by Means of Dynamic Electrochemical Impedance Spectroscopy. Electrochim. Acta 2003, 48, 4189–4196. doi: 10.1016/s0013-4686(03)00604-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.