367
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Metal halide perovskite photocatalysts: recent progress, challenges, and future directions

ORCID Icon, , &

References

  • Gao, J.; Wang, S.; Lu, J.; Zhang, C.; Ma, W. Metal Halide Perovskite-Based Photocatalysts for Environmental Remediation. J. Hazard. Mater. 2022, 416, 125917.
  • Xu, C.; Ravi Anusuyadevi, P.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured Materials for Photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902. doi:10.1039/c9cs00102f
  • Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium Dioxide Photocatalysis. J. Photochem. Photobiol C. 2000, 1, 1–21. doi:10.1016/S1389-5567(00)00007-1
  • Kostopoulou, A.; Brintakis, K.; Nasikas, N. K.; Stratakis, E. Perovskite Nanocrystals for Energy Conversion and Storage. Nanophotonics. 2019, 8, 1607–1640. doi:10.1515/nanoph-2019-0119
  • Liu, X.; Cao, L.; Guo, Z.; Li, Y.; Gao, W.; Zhou, L. A Review of Perovskite Photovoltaic Materials’ Synthesis and Applications via Chemical Vapor Deposition Method. Materials. 2019, 12, 3304. doi:10.3390/ma12203304
  • Xiao, M.; Zhang, Y.; You, J.; Wang, Z.; Yun, J. H.; Konarova, M.; Liu, G.; Wang, L. Addressing the Stability Challenge of Metal Halide Perovskite Based Photocatalysts for Solar Fuel Production. J. Phys: Energy. 2022, 4, 042005.
  • Ren, K.; Yue, S.; Li, C.; Fang, Z.; Gasem, K. A.; Leszczynski, J.; Qu, S.; Wang, Z.; Fan, M. Metal Halide Perovskites for Photocatalysis Applications. J. Mater. Chem. A. 2022, 10, 407–429. doi:10.1039/D1TA09148D
  • Corti, M.; Bonomi, S.; Chiara, R.; Romani, L.; Quadrelli, P.; Malavasi, L. Application of Metal Halide Perovskites as Photocatalysts in Organic Reactions. Inorganics. 2021, 9, 56. doi:10.3390/inorganics9070056
  • Zhou, Y.; Lu, F.; Fang, T.; Gu, D.; Feng, X.; Song, T.; Liu, W. A Brief Review on Metal Halide Perovskite Photocatalysts: History, Applications and Prospects. J. Alloys Compd. 2022, 911, 165062. doi:10.1016/j.jallcom.2022.165062
  • Saidi, W. A.; Shadid, W.; Castelli, I. E. Machine-Learning Structural and Electronic Properties of Metal Halide Perovskites Using a Hierarchical Convolutional Neural Network. Npj. Comput. Mater. 2020, 6, 36. doi:10.1038/s41524-020-0307-8
  • Zhang, L.; Wang, X.; Wang, T.; Cao, L.; Zhang, J. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modification, and Applications in Photocatalysis. J. Mater. Chem. A. 2020, 8, 17413.
  • Liu, X.; Yang, Z.; Chueh, C.-C.; Meng, L.; Zhou, H.; Padture, N. P. Metal Halide Perovskite Solar Cells: Recent Advances in Materials and Device Design. Adv. Mater. 2021, 33, 2004318.
  • Qiu, L.; He, S.; Ono, L. K.; Qi, Y. Progress of Surface Science Studies on ABX3-Based Metal Halide Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 1902726. doi:10.1002/aenm.201902726
  • Dobrovolsky, A.; Merdasa, A.; Unger, E. L.; Yartsev, A.; Scheblykin, I. G. Defect-Induced Local Variation of Crystal Phase Transition Temperature in Metal-Halide Perovskites. Nat. Commun. 2017, 8, 34. doi:10.1038/s41467-017-00058-w
  • Yuan, J.; Li, H.; Wang, S.; Li, X. How to Apply Metal Halide Perovskites to Photocatalysis: Challenges and Development. Nanoscale. 2021, 13, 10281–10304. doi:10.1039/d0nr07716j
  • Takanabe, K. Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. ACS Catal. 2017, 7, 8006–8022. doi:10.1021/acscatal.7b02662
  • Mikaeili, F.; Gilmore, T.; Gouma, P. I. Photochemical Water Splitting via Transition Metal Oxides. Catalysts. 2022, 12, 1303. doi:10.3390/catal12111303
  • Wang, C.; Xu, H.; Zhao, Y.; Liu, X.; Wang, M.; Zhang, X.; Wang, Y. Recent Advances in Perovskite Photocatalysts for Solar-Driven Water Splitting. Chem. Asian J. 2021, 16, 2625.
  • Saleem, Z.; Pervaiz, E.; Yousaf, M. U.; Niazi, M. B. K. Two-Dimensional Materials and Composites as Potential Water Splitting Photocatalysts: A Review. Catalysts. 2020, 10, 464. doi:10.3390/catal10040464
  • Li, R.; Wang, D.; Ma, Y.; Yang, D.; Liu, D.; Zhang, X.; Fan, F. High‐Performance CsPb(Br/I)3 Perovskite Photocatalyst for Overall Water Splitting. Nat. Energy. 2020, 5, 716.
  • Zhu, X.; Cui, X.; Zhang, X.; Fan, F.; Xiong, J.; Yu, J. Achieving Efficient and Stable Photocatalytic Hydrogen Production from Water Splitting Using CsPbBr3 Photocatalyst. Joule. 2021, 5, 959.
  • Sayed, F. N.; Ali, T.; Ptasinska, S. Advances in Metal Halide Perovskite Photocatalysts for Solar Hydrogen Production. ACS Energy Lett. 2021, 6, 1028.
  • Sivaram, V.; Kim, H. S.; Yang, S. H.; M. S., Jang; S. H., Lee; H., Kim. Recent Advances in Perovskite Photocatalysts for Solar-Driven Water Splitting. ACS Appl. Energy Mater. 2021, 4, 1481.
  • Wang, F.; Wang, X.; Liu, B.; Zhao, Q.; Wang, H.; Zhan, C.; Han, H. Lead-Free Cs3Bi2Br9 Perovskite for Solar Water Splitting. Nat. Commun. 2021, 12, 1.
  • Nasir, J. A.; Ur Rehman, Z.; Shah, S. N. A.; Khan, A.; Butler, I. S.; Catlow, C. R. A. Recent Developments and Perspectives in CdS-Based Photocatalysts for Water Splitting. J. Mater. Chem. A. 2020, 8, 20752–20780. doi:10.1039/D0TA05834C
  • Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891–2959. doi:10.1021/cr0500535
  • Fujishima, A.; Zhang, X. Titanium Dioxide Photocatalysis: Present Situation and Future Approaches. CR. Chim. 2006, 9, 750–760. doi:10.1016/j.crci.2005.02.055
  • Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8, 76–80. doi:10.1038/nmat2317
  • Hisatomi, T.; Kubota, J.; Domen, K. Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chem. Soc. Rev. 2014, 43, 7520–7535. doi:10.1039/c3cs60378d
  • Li, X.; Bi, Y.; Ouyang, S. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated TiO2 Nanotube Arrays. Appl. Catal. B. 2016, 192, 198.
  • Li, H.; Li, J.; Liu, Q.; Zhang, X.; Tang, Z.; Wang, Y. Constructing Highly Efficient Visible-Light-Driven Photocatalysts through Coupling Semiconductors to Graphitic Carbon Nitride: Current Status and Future Prospects. Nanoscale. 2015, 7, 7482–7501. doi:10.1039/C5NR00518C
  • Bie, C.; Wang, L.; Yu, J. Challenges for Photocatalytic Overall Water Splitting. Chem. 2022, 8, 1567–1574. doi:10.1016/j.chempr.2022.04.013
  • Liu, B.; Chen, S.; Liu, G.; Chen, X. Co-Catalysts in Photocatalytic Water Splitting on TiO2-Based Photocatalysts: A Review. J. Mater. Chem. A. 2018, 6, 22592.
  • Hisatomi, T.; Takanabe, K.; Domen, K. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives. Catal. Lett. 2015, 145, 95–108. doi:10.1007/s10562-014-1397-z
  • Yeh, T.; Cihlář, J.; Chang, C.; Wang, S.; Cheng, C.; Teng, H. Roles of Graphene Oxide in Photocatalytic Water Splitting. Nat. Commun. 2013, 16, 78–84. doi:10.1016/j.mattod.2013.03.006
  • Wu, X.; Xu, Q.; Chen, X. Graphene-Based Materials as Efficient co-Catalysts for Photocatalytic Hydrogen Production. Catal. Sci. Technol. 2016, 6, 648.
  • Huang, H.; Li, M.; Li, W.; Dai, Y. Enhanced Photocatalytic Hydrogen Production over a Reduced Graphene Oxide–Wrapped NiO/TiO2 Nanocomposite. Appl. Surf. Sci. 2021, 540, 148521.
  • Zhang, J.; Guo, J.; Wang, J.; Yu, H. Carbon Nitride/Graphene Oxide Composite as a co-Catalyst for Photocatalytic Hydrogen Production. Int. J. Hydrogen Energy. 2021, 46, 4612.
  • Xu, M.; Li, J.; Cheng, Y.; Zhu, X.; Li, L.; Ma, T. Cobalt-Based co-Catalysts for Photocatalytic Hydrogen Production: Insights into the Role of the co-Catalyst. J. Colloid Interface Sci. 2021, 582, 365.
  • Zhurenok, A. V.; Vasilchenko, D. B.; Kozlova, E. A. Comprehensive Review on C3N4-Based Photocatalysts for the Photocatalytic Hydrogen Production under Visible Light. IJMS. 2022, 24, 346. doi:10.3390/ijms24010346
  • Zhang, T.; Liu, J.; Lyu, M.; Wang, L.; Chen, H.; Chen, H.; Wang, L. Efficient and Stable Overall Water Splitting with Hematite and Perovskite Solar Cells. Nat. Energy. 2017, 2, 866.
  • Mao, Y.; Wen, M.; Zhang, T.; Wang, X.; Shi, J.; Yang, W.; Zhang, X. Bi-Layered Perovskite Oxynitride Photoanode for Overall Water Splitting. J. Amer. Chem. SOC. 2017, 139, 10653.
  • Ullah, I.; Munir, A.; Haider, A.; Ullah, N.; Hussain, I. Supported Polyoxometalates as Emerging Nanohybrid Materials for Photochemical and Photoelectrochemical Water Splitting. Nanophotonics. 2021, 10, 1595–1620. doi:10.1515/nanoph-2020-0542
  • Liu, C.; Zhao, Y.; Wu, C.; Li, L.; Zhang, Y.; Wang, J. Lead-Free Double Perovskite Cs2AgBiBr6 with a Narrow Bandgap for Visible-Light Photocatalytic CO2 Reduction to CH4. ACS Appl. Mater. Interface. 2021, 13, 19813.
  • Wu, K.; Guo, Y.; Ma, W.; Huang, Y.; Wang, T.; Du, Y. In-Doped Lead Halide Perovskite Quantum Dots for Efficient Visible Light-Driven Photocatalytic Degradation of Organic Pollutants. J. Alloys Compd. 2021, 883, 160906.]
  • Zhang, X.; Wang, Y.; Chen, T.; Chen, Z.; Huang, L.; Liu, Y.; Lu, H. Iodine-Regulated Synthesis of Tin-Based Perovskite for Efficient Visible-Light Photocatalysis. ACS Appl. Mater. Interface. 2021, 13, 6089.
  • Wang, L.; Xie, J.; Dong, L.; Zhang, J.; Deng, Z. Tunable Bandgap Engineering of All-Inorganic CsPbX3 (X = Br, Cl) Perovskite Nanocrystals by Controlling Their Sizes for Photocatalysis. J. Phys. Chem. C. 2021, 125, 3426.
  • Yu, C.; Li, Y.; Li, X.; Li, Q.; Zhou, L.; Guo, Y. Cu-Doped CsPbBr3 Perovskite Nanocrystals for Visible-Light-Driven Photocatalytic Hydrogen Evolution. ACS Appl. Mater. Interface. 2021, 13, 15847.
  • Xu, H.; Zhang, C.; Li, Y.; Tang, L.; Lin, Z. S-Doped MAPbBr3 Perovskite Microcrystals with Enhanced Photocatalytic Degradation of Tetracycline under Visible Light. Chem. Eng. J. 2021, 423, 130259.
  • Wang, J.; Wang, Y.; Li, G.; Xiong, Y.; Zhang, M.; Zhang, S.; Zhong, Q. Nitrogen-Doped Lead-Based Perovskite Nanocrystals with Tunable Bandgap for Photocatalysis. J. Colloid Interface Sci. 2021, 603, 210–219. doi:10.1016/j.jcis.2021.06.113
  • Li, Y.; Cao, R.; Zhang, W.; Guo, Y.; Wang, Z.; Du, Y. Ag-Doped CsPbBr3 Perovskite Quantum Dots for Efficient Visible Light-Driven Photocatalytic CO2 Reduction to CH4. J. Colloid Interface Sci. 2021, 601, 104.
  • Fang, Y.; Zhang, Z.; Gao, S.; Zhang, Z.; Ji, H. Copper-Doped Lead Halide Perovskite Quantum Dots for Efficient Visible-Light-Driven Photocatalytic Degradation of Organic Pollutants. J. Hazard. Mater. 2021, 401, 123422.]
  • Armenise, V.; Colella, S.; Fracassi, F.; Listorti, A. Lead-Free Metal Halide Perovskites for Hydrogen Evolution from Aqueous Solutions. Nanomaterials. 2021, 11, 433. doi:10.3390/nano11020433
  • Li, W.; Lu, W.; Guo, Y.; Li, M.; Li, Y.; Li, J.; Li, J. All-Inorganic CsPbX3 Nanocrystals with Tunable Composition and Bandgap for White Light-Emitting Diodes. ACS Appl. Mater. Interface. 2021, 13, 2584.
  • Zhao, Z.; Wang, X.; He, L.; Zhang, S.; Wang, S.; Fan, C. Graphene Oxide-Assisted Synthesis of Lead-Free Double Perovskite Nanocrystals for Photocatalytic Water Splitting. ACS Appl. Mater. Interface. 2021, 13, 11168.
  • Hu, Z.; Li, Y.; Ding, W.; Yan, M.; Liu, J.; Zhang, J.; Li, X. Novel Organic-Inorganic Hybrid Perovskite Membrane with High Proton Conductivity for Proton Exchange Membrane Fuel Cell Application. J. Power Sources. 2021, 482, 229118.
  • Zhu, X.; Chen, S.; Li, S.; Zhang, Y.; Shang, Y.; Zhang, Y.; Sun, H. Metal Cation Doping-Induced Stabilization of CsPbX3 Nanocrystals with Enhanced Photoluminescence Properties. ACS Appl. Mater. Interface. 2021, 13, 26309.
  • Wang, K.; Zhu, L.; Zhang, K.; Wang, M. Lead-Free Perovskite Solar Cells: Progress and Challenges. Mater. Horiz. 2020, 7, 284.
  • Zhang, J.; Shi, Y.; Li, X.; Yang, Y. Recent Advances in Metal Halide Perovskites for Solar-Driven Hydrogen Evolution. Joule. 2019, 3, 276.
  • Wang, K.; Wang, K.; Dong, B.; Chen, H.; Song, Q. Progress in Metal Halide Perovskite-Based Photocatalysts for Hydrogen Evolution Reaction. Adv. Mater. 2021, 33, 2006694.
  • Luo, J.; Zhu, C.; Zhang, X., Yuan, X., Zhang, Y., Dong, H., Liu, Y., Wang, S., Wang, J., Dai, L.; and others Metal Halide Perovskites for Photocatalytic Organic Synthesis and Transformations. Angew. Chem. Int. Ed. 2020, 59, 831.
  • Fu, P.; Zhang, X.; Luo, J., Wang, S., Zhang, Y., Yuan, X., Dong, H., Liu, Y., Wang, J., Dai, L.; and others Recent Progress in Metal Halide Perovskites for Photocatalytic Water Splitting. Adv. Energy Mater. 2019, 9, 1900377.
  • Xu, Y.; Zhang, J.; Shi, Y.; Li, X.; Yang, Y. Metal Halide Perovskites for Energy Storage and Conversion: Advances and Challenges. Sci. China Mater. 2020, 63, 249.
  • Khan, M. A.; Ansari, S. A. Recent Advances in Heterogeneous Photocatalytic Degradation of Dyes and Pollutants in Wastewater – A Review. J. Environ. Chem. Eng. 2019, 7, 102786.
  • Cai, R.; Kubota, Y.; Shimojo, K.; Fujishima, A. Photocatalytic Degradation of Organic Pollutants Diluted in Aqueous Solution Using TiO2 Powder. Chemosphere. 2003, 52, 277.
  • Kaur, P.; Singh, G.; Singh, P.; Singh, R. Advanced Oxidation Processes for Wastewater Treatment: An Overview. J. Environ. Manage. 2018, 225, 351.
  • Kumar, S.; Sambi, S. S. Sustainable and Efficient Photocatalytic Systems for the Degradation of Organic Pollutants: A Review. Environ. Technol. Innov. 2019, 14, 100344.
  • Yu, J.; Ho, W. Photocatalytic Materials for Environmental Applications. J. Hazard. Mater. 2009, 170, 520.
  • Zhang, Y.; Li, L.; Li, X.; Li, J.; Li, Y.; Li, J. Degradation of Organic Pollutants by Photocatalysis with Graphene-Based Nanomaterials: A Review. Chem. Eng. J. 2019, 372, 101.
  • Malla, M. A.; Malik, A. Advanced Oxidation Processes for Wastewater Treatment: An Overview. Environ. Technol. Innov. 2020, 17, 100566.
  • Irshad, M.; Ain, Q. T.; Zaman, M.; Aslam, M. Z.; Kousar, N.; Asim, M.; Rafique, M.; Siraj, K.; Tabish, A. N.; Usman, M.; et al. Photocatalysis and Perovskite Oxide-Based Materials: A Remedy for a Clean and Sustainable Future. RSC Adv. 2022, 12, 7009–7039. doi:10.1039/d1ra08185c
  • Niu, Q.; Chen, D.; Guo, X.; Dong, C.; Zhang, L. A Perovskite-Based Photocatalyst for Efficient Visible-Light-Driven Degradation of Methyl Orange. Chem. Eng. J. 2021, 426, 130826.]
  • Niu, Q.; Dong, C.; Chen, D.; Guo, X.; Zhang, L. Synthesis of a Mixed-Halide Perovskite Photocatalyst for Efficient Photodegradation of Imidacloprid. J. Environ. Manage. 2021, 288, 112443.
  • Liu, Y.; Wang, Z.; Zhang, J.; Liu, B.; Lu, H. Recent Progress in Metal Halide Perovskite-Based Photocatalysts for Environmental Applications. J. Hazard. Mater. 2022, 416, 125768.
  • Chen, J.; Wu, D.; Chen, Z.; Chen, Z.; Yang, M.; Wu, L. Metal Halide Perovskites for Solar-to-Fuel Conversion: Recent Advances and Perspectives. J. Mater. Chem. A 2020, 8, 4298.
  • Li, M.; Zuo, W.-W.; Yang, Y.-G.; Aldamasy, M. H.; Wang, Q.; Cruz, S. H. T.; Feng, S.-L.; Saliba, M.; Wang, Z.-K.; Abate, A. Highly Efficient and Stable All-Inorganic Lead-Free Metal Halide Perovskite Solar Water Splitting Device. ACS Energy Lett. 2020, 5, 1923–1929. doi:10.1021/acsenergylett.0c00782
  • Wang, Q.; Chen, J.; Chen, W.; Huang, X.; Li, F. Metal Halide Perovskite-Based Photocatalysts for Energy and Environmental Applications. J. Mater. Chem. A. 2021, 9, 24765.
  • Zhang, C.; Zhai, Y.; Zhang, C.; Xu, X.; Lu, X.; Wang, J.; Zhao, J. A Novel Strategy for the Preparation of Stable and Efficient CsPbBr3 Perovskite Photocatalysts for H2 Evolution. Appl. Surf. Sci. 2021, 538, 148065.
  • Yu, X.; Cui, Y.; Zhang, W.; Luo, W.; Yang, J.; Li, Y. Efficient and Stable CsPbBr3 Perovskite-Based Photoelectrochemical Cells for Solar-Driven Water Splitting. Chem. Commun. 2021, 57, 5286.
  • Li, J.; Wang, Y.; Li, Z.; Li, X.; Li, Y.; Zhang, Q.; Zou, G.; Liu, Y.; Wang, X. Highly Efficient and Stable All-Inorganic CsPbI2Br Perovskite Solar Cells. Sci. Adv. 2020, 6, 2412.
  • Zhao, W.; Liu, Y.; Shakir, I.; Yang, J.; Zou, B.; Wang, D. High-Efficiency and Stable Perovskite Solar Cells Based on Metal Halide Interface Passivation. Adv. Funct. Mater. 2021, 31, 2009537.
  • Xu, W.; Li, L.; Li, H.; Li, X.; Zou, J.; Li, Z.; Zhang, Y.; Jin, X.; Liu, Y.; Wang, L.; et al. Improved Efficiency and Stability of Perovskite Solar Cells with Cesium Bromide Interface Modification. Energy Environ. Sci. 2022, 15, 674.
  • Saeed, M. T.; Zhao, Y.; Shakir, I.; Zhang, J.; Liu, Y.; Wang, L.; Yang, J.; Zou, B.; Wang, D. Planar Heterojunction Perovskite Solar Cells with Improved Efficiency Using a Low-Temperature Solution-Processed WO3 Interlayer. ACS Appl. Mater. Interface. 2020, 12, 49727.
  • Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McGehee, M. D.; Holman, Z. C. 23.6%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Improved Stability. Nat. Energy. 2020, 5, 864.
  • Saliba, M.; Turren-Cruz, S.-H.; Wolff, C. M.; Neutzner, S.; Grätzel, M. Efficient, Stable and Scalable Perovskite Solar Cells Using a Two-Step Deposition Process. Science. 2021, 372, 740.
  • Werner, F.; Tockhorn, S.; Richter, A.; Kublitski, J.; Nickl, J.; Lachmann, F.; Roßkopf, J.; Morales, V.; Belén, A.; Boitier, R.; et al. 26.6% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells with Industrially Scalable Fabrication. Adv. Energy Mater. 2022, 12, 2102506.
  • Wang, H.; Li, X.; Zhao, X.; Li, C.; Song, X.; Zhang, P.; Huo, P.; Li, X. A Review on Heterogeneous Photocatalysis for Environmental Remediation: From Semiconductors to Modification Strategies. Chin. J. Catal. 2022, 43, 178–214. doi:10.1016/S1872-2067(21)63910-4
  • Uekert, T.; Pichler, C. M.; Schubert, T.; Reisner, E. Solar-Driven Reforming of Solid Waste for a Sustainable Future. Nat Sustain. 2020, 4, 383–391. doi:10.1038/s41893-020-00650-x
  • Uekert, T.; Kasap, H.; Reisner, E. Photoreforming of Nonrecyclable Plastic Waste over a Carbon Nitride/Nickel Phosphide Catalyst. J. Am. Chem. Soc. 2019, 141, 15201–15210. doi:10.1021/jacs.9b06872
  • Cao, B.; Wan, S.; Wang, Y.; Guo, H.; Ou, M.; Zhong, Q. Highly-Efficient Visible-Light-Driven Photocatalytic H2 Evolution Integrated with Microplastic Degradation over MXene/ZnxCd1-xS Photocatalyst. J. Colloid. Interface Sci. 2022, 605, 311–319. doi:10.1016/j.jcis.2021.07.113
  • Zhang, J.; Liang, Z.; Gong, Z.; Li, Q.; Wu, P. Photocatalytic Reforming of Lignin-Derived Phenols over CsPbBr3 Perovskite. Chem. Eng. J. 2020, 395, 125060.
  • Liu, J.; Jiang, M.; Cheng, Y.; Zhang, J.; Huang, H.; Zhang, H.; Li, W. Highly Efficient Photocatalytic Hydrogen Production from Biomass-Derived Glycerol Using Perovskite Nanocrystals. Appl. Catal. B. 2020, 264, 118540. doi:10.1016/j.apcatb.2019.118540
  • Feng, X.; Yang, Y.; Chen, Y.; Shao, L.; Ye, J.; Zhuang, Q. Highly Efficient and Stable CsPbBr3 Perovskite Photocatalysts for Visible-Light-Driven Hydrogen Evolution. ACS Appl. Energy Mater. 2020, 3, 10395.
  • Xu, J.; Chen, J.; Liu, Z.; Lin, Z.; Yan, J. Metal Halide Perovskite Photocatalysts for Hydrogen Production via Water Splitting: A Review. Nanomaterials. 2020, 10, 2387.
  • Wang, L.; Bie, C.; Yu, J. Challenges of Z-Scheme Photocatalytic Mechanisms. Trend. Chem. 2022, 4, 973–983. doi:10.1016/j.trechm.2022.08.008
  • Hill, R.; Bendall, F. Function of the Two Cytochrome Components in Chloroplasts: A Working Hypothesis. Nature. 1960, 186, 136–137. doi:10.1038/186136a0
  • Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. S-Scheme Heterojunction Photocatalyst. Chem. 2020, 6, 1543–1559. doi:10.1016/j.chempr.2020.06.010
  • Serpone, N.; Borgarello, E.; Grätzel, M. Visible Light Induced Generation of Hydrogen from H2S in Mixed Semiconductor Dispersions; Improved Efficiency through Inter-Particle Electron Transfer. J. Chem. Soc. Chem. Commun. 1984, 6, 342–344. doi:10.1039/C39840000342
  • Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-Scheme Photocatalyst. Adv. Mater. 2022, 34, 2107668. doi:10.1002/adma.202107668
  • Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Unique S-Scheme Heterojunctions in Self-Assembled TiO2/CsPbBr3 Hybrids for CO2 Photoreduction. Nat. Commun. 2020, 11, 4613. doi:10.1038/s41467-020-18350-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.