597
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

A critique on boron nitride nanotube reinforced metal matrix composites

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &

References

  • Sovacool, B. K.; Ali, S. H.; Bazilian, M.; Radley, B.; Nemery, B.; Okatz, J.; Mulvaney, D. Sustainable Minerals and Metals for a Low-Carbon Future. Science 2020, 367, 30–33. 10.1126/science.aaz6003
  • Bakshi, S. R.; Lahiri, D.; Agarwal, A. Carbon Nanotube Reinforced Metal Matrix Composites - a Review. Int. Mater. Rev 2010, 55, 41–64. 10.1179/095066009X12572530170543
  • Esawi, A. M. K.; Farag, M. M. Carbon Nanotube Reinforced Composites: Potential and Current Challenges. Mater. Des 2007, 28, 2394–2401. 10.1016/j.matdes.2006.09.022
  • Bai, Y.; Zhang, R.; Ye, X.; Zhu, Z.; Xie, H.; Shen, B.; Cai, D.; Liu, B.; Zhang, C.; Jia, Z.; et al. Carbon Nanotube Bundles with Tensile Strength over 80 GPa. Nat. Nanotechnol. 2018, 13, 589–595. 10.1038/s41565-018-0141-z
  • Xu, Z. Y.; Li, C. J.; Li, K. R.; Yi, J. H.; Tang, J. J.; Zhang, Q. X.; Liu, X. Q.; Bao, R.; Li, X. Carbon Nanotube-Reinforced Aluminum Matrix Composites Enhanced by Grain Refinement and in Situ Precipitation. J. Mater. Sci. 2019, 54, 8655–8664. 10.1007/s10853-019-03411-0
  • Mohammed, S. M. A. K.; Chen, D. L. Carbon Nanotube‐Reinforced Aluminum Matrix Composites. Adv. Eng. Mater. 2020, 22, 1901176. 10.1002/adem.201901176
  • Singh, V.; Diaz, R.; Balani, K.; Agarwal, A.; Seal, S. Chromium Carbide–CNT Nanocomposites with Enhanced Mechanical Properties. Acta Mater 2009, 57, 335–344. 10.1016/j.actamat.2008.09.023
  • Simonsen Ginestra, C. J.; Martínez-Jiménez, C.; Matatyaho Ya’akobi, A.; Dewey, O. S.; Smith McWilliams, A. D.; Headrick, R. J.; Acapulco, J. A.; Scammell, L. R.; Smith, M. W.; Kosynkin, D. V.; et al. Liquid Crystals of Neat Boron Nitride Nanotubes and Their Assembly into Ordered Macroscopic Materials. Nat. Commun. 2022, 13, 3136. 10.1038/s41467-022-30378-5
  • Jakubinek, M. B.; Kim, K. S.; Kim, M. J.; Martí, A. A.; Pasquali, M. Recent Advances and Perspective on Boron Nitride Nanotubes: From Synthesis to Applications. J. Mater. Res 2022, 37, 4403–4418. 10.1557/s43578-022-00841-6
  • Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Boron Nitride Nanotubes. Adv. Mater. 2007, 19, 2413–2432. 10.1002/adma.200700179
  • Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron Nitride Nanotubes. Science (80-.) 1995, 269, 966–967. 10.1126/science.269.5226.966
  • Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron Nitride Nanotubes and Nanosheets. ACS Nano. 2010, 4, 2979–2993. 10.1021/nn1006495
  • Huang, Y.; Lin, J.; Tang, C.; Bando, Y.; Zhi, C.; Zhai, T.; Dierre, B.; Sekiguchi, T.; Golberg, D. Bulk Synthesis, Growth Mechanism and Properties of Highly Pure Ultrafine Boron Nitride Nanotubes with Diameters of Sub-10 nm. Nanotechnology 2011, 22, 145602. 10.1088/0957-4484/22/14/145602
  • Jakubinek, M. B.; Ashrafi, B.; Martinez-Rubi, Y.; Guan, J.; Rahmat, M.; Kim, K. S.; Dénommée, S.; Kingston, C. T.; Simard, B. Boron Nitride Nanotube Composites and Applications. In Nanotub. Superfiber Mater., Amsterdam, Netherlands: Elsevier, 2019; pp 91–111.
  • Nautiyal, P.; Bustillos, J.; Selvam, T.; Zhang, C.; Seal, S.; Boesl, B.; Agarwal, A. In‐Situ Investigation of Deformation Mechanisms Induced by Boron Nitride Nanotubes and Nano‐Interphases in Ti‐6Al‐4V Alloy. Adv. Eng. Mater. 2022, 24, 2200610. 10.1002/adem.202200610
  • Bustillos, J.; Lu, X.; Nautiyal, P.; Zhang, C.; Boesl, B.; Agarwal, A. Boron Nitride Nanotube–Reinforced Titanium Composite with Controlled Interfacial Reactions by Spark Plasma Sintering. Adv. Eng. Mater. 2020, 22, 2000702. 10.1002/adem.202000702
  • Bhuiyan, M. M. H.; Wang, J.; Li, L. H.; Hodgson, P.; Agarwal, A.; Qian, M.; Chen, Y. Boron Nitride Nanotube Reinforced Titanium Metal Matrix Composites with Excellent High-Temperature Performance. J. Mater. Res. 2017, 32, 3744–3752. 10.1557/jmr.2017.345
  • Ghazizadeh, M.; Estevez, J. E.; Kelkar, A. D. Boron Nitride Nanotubes for Space Radiation Shielding. IJNST 2015, 4, 1–2. 10.19070/2167-8685-150007e
  • Tiano, A. L.; Park, C.; Lee, J. W.; Luong, H. H.; Gibbons, L. J.; Chu, S.-H.; Applin, S.; Gnoffo, P.; Lowther, S.; Kim, H. J.; et al. Boron Nitride Nanotube: Synthesis and Applications. 2014, 906006. 10.1117/12.2045396
  • Kim, K. S.; Kim, M. J.; Park, C.; Fay, C. C.; Chu, S.-H.; Kingston, C. T.; Simard, B. Scalable Manufacturing of Boron Nitride Nanotubes and Their Assemblies: A Review. Semicond. Sci. Technol. 2017, 32, 013003. 10.1088/0268-1242/32/1/013003
  • Rohmann, C.; Yamakov, V. I.; Park, C.; Fay, C.; Hankel, M.; Searles, D. J. Interaction of Boron Nitride Nanotubes with Aluminum: A Computational Study. J. Phys. Chem. C Nanomater. Interfaces. 2018, 122, 15226–15240. 10.1021/acs.jpcc.8b00774
  • Cong, Z.; Lee, S. Study of Mechanical Behavior of BNNT-Reinforced Aluminum Composites Using Molecular Dynamics Simulations. Compos. Struct 2018, 194, 80–86. 10.1016/j.compstruct.2018.03.103
  • Paul, T.; Agarwal, A.; Zhang, C. Patent No. US 63,265,398, 2021.
  • Zhang, C.; Agarwal, A.; Paul, T. US 63,265,401 2021.
  • Agarwal, A.; Paul, T.; Zhang, C.; Nautiyal, P. US 10,941,464 2021.
  • Agarwal, A.; Boesl, B.; Nautiyal, P.; Rudolf, C.; Zhang, C. US 11,148,201 2021.
  • Agarwal, A.; Nautiyal, P.; Boesl, B. US 11,131,007 2021.
  • Nautiyal, P. Boron Nitride Nanotube Based Lightweight Metal Matrix Composites: Microstructure Engineering and Stress-Transfer Mechanics; Miami, FL, USA: Florida International University, 2020.
  • Golberg, D.; Bando, Y.; Kurashima, K.; Sato, T. Synthesis and Characterization of Ropes Made of BN Multiwalled Nanotubes. Scr. Mater 2001, 44, 1561–1565. 10.1016/S1359-6462(01)00724-2
  • Chen, Y.; Zou, J.; Campbell, S. J.; Le Caer, G. Boron Nitride Nanotubes: Pronounced Resistance to Oxidation. Appl. Phys. Lett. 2004, 84, 2430–2432. 10.1063/1.1667278
  • Nautiyal, P.; Loganathan, A.; Agrawal, R.; Boesl, B.; Wang, C.; Agarwal, A. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into “White Graphene Oxide” Platelets. Sci. Rep. 2016, 6, 29498. 10.1038/srep29498
  • Wei, X.; Wang, M.-S.; Bando, Y.; Golberg, D. Tensile Tests on Individual Multi-Walled Boron Nitride Nanotubes. Adv. Mater. 2010, 22, 4895–4899. 10.1002/adma.201001829
  • Yu, M.-F.; Yakobson, B. I.; Ruoff, R. S. Controlled Sliding and Pullout of Nested Shells in Individual Multiwalled Carbon Nanotubes. J. Phys. Chem. B 2000, 104, 8764–8767. 10.1021/jp002828d
  • Tang, D.-M.; Ren, C.-L.; Wei, X.; Wang, M.-S.; Liu, C.; Bando, Y.; Golberg, D. Mechanical Properties of Bamboo-like Boron Nitride Nanotubes by in Situ TEM and MD Simulations: Strengthening Effect of Interlocked Joint Interfaces. ACS Nano. 2011, 5, 7362–7368. 10.1021/nn202283a
  • Turhan, E. A.; Pazarçeviren, A. E.; Evis, Z.; Tezcaner, A. Properties and Applications of Boron Nitride Nanotubes. Nanotechnology 2022, 33, 242001. 10.1088/1361-6528/ac5839
  • Huang, Y.; Lin, J.; Zou, J.; Wang, M.-S.; Faerstein, K.; Tang, C.; Bando, Y.; Golberg, D. Thin Boron Nitride Nanotubes with Exceptionally High Strength and Toughness. Nanoscale 2013, 5, 4840–4846. 10.1039/c3nr00651d
  • Zheng, M.; Chen, X.; Bae, I.-T.; Ke, C.; Park, C.; Smith, M. W.; Jordan, K. Radial Mechanical Properties of Single-Walled Boron Nitride Nanotubes. Small 2012, 8, 116–121. 10.1002/smll.201100946
  • Yang, Y. H.; Li, W. Z. Radial Elasticity of Single-Walled Carbon Nanotube Measured by Atomic Force Microscopy. Appl. Phys. Lett. 2011, 98, 041901. 10.1063/1.3546170
  • Chen, X.; Dmuchowski, C. M.; Park, C.; Fay, C. C.; Ke, C. Quantitative Characterization of Structural and Mechanical Properties of Boron Nitride Nanotubes in High Temperature Environments. Sci. Rep. 2018, 8, 4769. 10.1038/s41598-018-23081-3
  • Garel, J.; Leven, I.; Zhi, C.; Nagapriya, K. S.; Popovitz-Biro, R.; Golberg, D.; Bando, Y.; Hod, O.; Joselevich, E. Ultrahigh Torsional Stiffness and Strength of Boron Nitride Nanotubes. Nano Lett. 2012, 12, 6347–6352. 10.1021/nl303601d
  • Maselugbo, A. O.; Harrison, H. B.; Alston, J. R. Boron Nitride Nanotubes: A Review of Recent Progress on Purification Methods and Techniques. J. Mater. Res 2022, 37, 4438–4458. 10.1557/s43578-022-00672-5
  • Kalay, S.; Yilmaz, Z.; Sen, O.; Emanet, M.; Kazanc, E.; Çulha, M. Synthesis of Boron Nitride Nanotubes and Their Applications. Beilstein J. Nanotechnol. 2015, 6, 84–102. 10.3762/bjnano.6.9
  • Xu, T.; Zhang, K.; Cai, Q.; Wang, N.; Wu, L.; He, Q.; Wang, H.; Zhang, Y.; Xie, Y.; Yao, Y.; Chen, Y. Advances in Synthesis and Applications of Boron Nitride Nanotubes: A Review. Chem. Eng. J 2022, 431, 134118. 10.1016/j.cej.2021.134118
  • Matarredona, O.; Rhoads, H.; Li, Z.; Harwell, J. H.; Balzano, L.; Resasco, D. E. Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS. J. Phys. Chem. B 2003, 107, 13357–13367. 10.1021/jp0365099
  • Vaisman, L.; Wagner, H. D.; Marom, G. The Role of Surfactants in Dispersion of Carbon Nanotubes. Adv. Colloid Interface Sci. 2006, 128-130, 37–46. 10.1016/j.cis.2006.11.007
  • Islam, M. F.; Rojas, E.; Bergey, D. M.; Johnson, A. T.; Yodh, A. G. High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. Nano Lett. 2003, 3, 269–273. 10.1021/nl025924u
  • Lahiri, D.; Hadjikhani, A.; Zhang, C.; Xing, T.; Li, L. H.; Chen, Y.; Agarwal, A. Boron Nitride Nanotubes Reinforced Aluminum Composites Prepared by Spark Plasma Sintering: Microstructure, Mechanical Properties and Deformation Behavior. Mater. Sci. Eng. A 2013, 574, 149–156. 10.1016/j.msea.2013.03.022
  • Yamaguchi, M.; Meng, F.; Firestein, K.; Tsuchiya, K.; Golberg, D. Powder Metallurgy Routes toward Aluminum Boron Nitride Nanotube Composites, Their Morphologies, Structures and Mechanical Properties. Mater. Sci. Eng. A 2014, 604, 9–17. 10.1016/j.msea.2014.02.086
  • Lu, X.; Dolmetsch, T.; Zhang, C.; Chen, Y.; Boesl, B.; Agarwal, A. In-Situ Synthesis of Boron Nitride Nanotube Reinforced Aluminum Oxide Composites by Molecular Mixing. Ceram. Int 2021, 47, 13970–13979. 10.1016/j.ceramint.2021.01.266
  • Lahiri, D.; Singh, V.; Li, L. H.; Xing, T.; Seal, S.; Chen, Y.; Agarwal, A. Insight into Reactions and Interface between Boron Nitride Nanotube and Aluminum. J. Mater. Res. 2012, 27, 2760–2770. 10.1557/jmr.2012.294
  • Singhal, S.; Srivastava, A.; Pasricha, R.; Mathur, R. Fabrication of Al-Matrix Composites Reinforced with Amino Functionalized Boron Nitride Nanotubes. J. Nanosci. Nanotechnol. 2011, 11, 5179–5186. 10.1166/jnn.2011.4182
  • Nautiyal, P.; Zhang, C.; Boesl, B.; Agarwal, A. Non-Equilibrium Wetting and Capture of Boron Nitride Nanotubes in Molten Aluminum during Plasma Spray. Scr. Mater 2018, 151, 71–75. 10.1016/j.scriptamat.2018.03.037
  • Mirza, F. A.; Chen, D. L. An Analytical Model for Predicting the Yield Strength of Particulate-Reinforced Metal Matrix Nanocomposites with Consideration of Porosity. Materials (Basel) 2015, 8, 5138–5153. 10.3390/ma8085138
  • Yamaguchi, M.; Pakdel, A.; Zhi, C.; Bando, Y.; Tang, D.-M.; Faerstein, K.; Shtansky, D.; Golberg, D. Utilization of Multiwalled Boron Nitride Nanotubes for the Reinforcement of Lightweight Aluminum Ribbons. Nanoscale Res. Lett 2013, 8, 3. 10.1186/1556-276X-8-3
  • McWilliams, A. D. S.; Martínez-Jiménez, C.; Shumard, K. R.; Pasquali, M.; Martí, A. A. Dispersion and Individualization of Boron Nitride Nanotubes. J. Mater. Res 2022, 37, 4459–4482. 10.1557/s43578-022-00696-x
  • Yamaguchi, M.; Tang, D.-M.; Zhi, C.; Bando, Y.; Shtansky, D.; Golberg, D. Synthesis, Structural Analysis and in Situ Transmission Electron Microscopy Mechanical Tests on Individual Aluminum Matrix/Boron Nitride Nanotube Nanohybrids. Acta Mater 2012, 60, 6213–6222. 10.1016/j.actamat.2012.07.066
  • Xue, Y.; Jiang, B.; Bourgeois, L.; Dai, P.; Mitome, M.; Zhang, C.; Yamaguchi, M.; Matveev, A.; Tang, C.; Bando, Y.; et al. Aluminum Matrix Composites Reinforced with Multi-Walled Boron Nitride Nanotubes Fabricated by a High-Pressure Torsion Technique. Mater. Des 2015, 88, 451–460. 10.1016/j.matdes.2015.08.162
  • Chao, Q.; Mateti, S.; Annasamy, M.; Imran, M.; Joseph, J.; Cai, Q.; Li, L. H.; Cizek, P.; Hodgson, P. D.; Chen, Y.; et al. Nanoparticle-Mediated Ultra Grain Refinement and Reinforcement in Additively Manufactured Titanium Alloys. Addit. Manuf 2021, 46, 102173. 10.1016/j.addma.2021.102173
  • Bhuiyan, M. M. H.; Li, L. H.; Wang, J.; Hodgson, P.; Chen, Y. Interfacial Reactions between Titanium and Boron Nitride Nanotubes. Scr. Mater 2017, 127, 108–112. 10.1016/j.scriptamat.2016.09.005
  • Obraztsova, E. A.; Shtansky, D. V.; Sheveyko, A. N.; Yamaguchi, M.; Kovalskii, A. M.; Golberg, D. Metal Ion Implantation of Multiwalled Boron Nitride Nanotubes. Scr. Mater 2012, 67, 507–510. 10.1016/j.scriptamat.2012.06.016
  • Bisht, A.; Kumar, V.; Li, L. H.; Chen, Y.; Agarwal, A.; Lahiri, D. Effect of Warm Rolling and Annealing on the Mechanical Properties of Aluminum Composite Reinforced with Boron Nitride Nanotubes. Mater. Sci. Eng. A 2018, 710, 366–373. 10.1016/j.msea.2017.10.101
  • Nautiyal, P.; Denis, N.; Dolmetsch, T.; Zhang, C.; Boesl, B.; Agarwal, A. Interface Engineering and Direct Observation of Strengthening Behavior in Field‐Sintered Boron Nitride Nanotube–Magnesium Alloy Composite. Adv. Eng. Mater. 2020, 22, 2000170. 10.1002/adem.202000170
  • Edalati, K.; Horita, Z. Application of High-Pressure Torsion for Consolidation of Ceramic Powders. Scr. Mater 2010, 63, 174–177. 10.1016/j.scriptamat.2010.03.048
  • Bhusal, S.; Zhang, C.; Bustillos, J.; Nautiyal, P.; Boesl, B.; Agarwal, A. A Computational Approach for Predicting Microstructure and Mechanical Properties of Plasma Sprayed Ceramic Coatings from Powder to Bulk. Surf. Coatings Technol 2019, 374, 1–11. 10.1016/j.surfcoat.2019.05.068
  • Bastwros, K.; Wifi, A.; Esawi, A. Synthesis, Mechanical Properties, and Microstructure of Dual-Matrix (DM) Aluminum-Boron Nitride Nanotube (Al-BNNT) Composites. Emergent Mater. 2022, 5, 553–563. 10.1007/s42247-022-00363-1
  • Nautiyal, P.; Rudolf, C.; Loganathan, A.; Zhang, C.; Boesl, B.; Agarwal, A. Directionally Aligned Ultra-Long Boron Nitride Nanotube Induced Strengthening of Aluminum-Based Sandwich Composite. Adv. Eng. Mater. 2016, 18, 1747–1754. 10.1002/adem.201600212
  • Antillon, M.; Nautiyal, P.; Loganathan, A.; Boesl, B.; Agarwal, A. Strengthening in Boron Nitride Nanotube Reinforced Aluminum Composites Prepared by Roll Bonding. Adv. Eng. Mater. 2018, 20, 1800122. 10.1002/adem.201800122
  • Nautiyal, P.; Gupta, A.; Seal, S.; Boesl, B.; Agarwal, A. Reactive Wetting and Filling of Boron Nitride Nanotubes by Molten Aluminum during Equilibrium Solidification. Acta Mater 2017, 126, 124–131. 10.1016/j.actamat.2016.12.034
  • Mohammed, S. M. A. K.; Paul, T.; John, D.; Zhang, C.; Agarwal, A. Understanding the Role of Ultrasonic Cavitation Assisted Casting of Boron Nitride Nanotube-Reinforced Aluminum Matrix Composite. J. Mater. Res. Technol. Technol 2023, 25, 2405–2418.)). 10.1016/j.jmrt.2023.06.111
  • Altieri, A. L.; Steen, P. H. Adhesion upon Solidification and Detachment in the Melt Spinning of Metals. Metall. Mater. Trans. B 2014, 45, 2262–2268. 10.1007/s11663-014-0128-6
  • Paul, T.; Zhang, C.; Boesl, B.; Agarwal, A. Correlations to Predict Microstructure and Mechanical Properties of Ultrasonically Cast Metal Matrix Nanocomposites as a Function of Treatment Time. Adv. Eng. Mater. 2020, 22, 2000413. 10.1002/adem.202000413
  • Paul, T.; Zhang, C.; Denis, N.; Boesl, B.; Agarwal, A. Role of Ultrasonic Treatment on Microstructure, Mechanical and Tribological Behavior of 2D Boron Nitride Reinforced Aluminum Composites. Mater. Sci. Eng. A 2021, 809, 140970. 10.1016/j.msea.2021.140970
  • Paul, T.; Zhang, C.; Boesl, B.; Agarwal, A. Analytical Review of Reinforcement Addition Techniques during Ultrasonic Casting of Metal Matrix Composites. Adv. Eng. Mater. 2020, 22, 2000524. 10.1002/adem.202000524
  • Paul, T.; Joshi, R.; Exime, A.; Edward, W.; Zhang, C.; Boesl, B.; Agarwal, A. Role of Ultrasonic Treatment on Microstructure, Multiscale Mechanical, and Tribological Behavior of 2D Tungsten Disulfide Reinforced Aluminum Composites. Adv. Eng. Mater. 2022, 24, 2200543. 10.1002/adem.202200543
  • Palacios, B.; Paul, T.; Mohammed, S. M. A. K.; Orikasa, K.; John, D.; Rodriguez, K.; Thomas, T.; Langan, S.; Michelson, A.; Agarwal, A. Role of Structural Hierarchy on Mechanics and Electrochemistry of Wire Arc Additive Manufactured (WAAM) Single Phase Titanium. J. Manuf. Process 2023, 93, 239–249. 10.1016/j.jmapro.2023.03.025
  • Relativ. Sp. 2023.
  • Eskin, G. I. I. Broad Prospects for Commercial Application of the Ultrasonic (Cavitation) Melt Treatment of Light Alloys. Ultrason. Sonochem. 2001, 8, 319–325. 10.1016/s1350-4177(00)00074-2
  • Agarwal, A.; Bakshi, S. R.; Lahiri, D. Carbon Nanotubes: Reinforced Metal Matrix Composites, 1st ed.; CRC Press, Boca Raton, FL, 2017.
  • Ryu, H. J.; Cha, S. I.; Hong, S. H. Generalized Shear-Lag Model for Load Transfer in SiC/Al Metal-Matrix Composites. J. Mater. Res. 2003, 18, 2851–2858. 10.1557/JMR.2003.0398
  • Mohammed, S. M. A. K.; Chen, D. L.; Liu, Z. Y.; Ni, D. R.; Wang, Q. Z.; Xiao, B. L.; Ma, Z. Y. Deformation Behavior and Strengthening Mechanisms in a CNT-Reinforced Bimodal-Grained Aluminum Matrix Nanocomposite. Mater. Sci. Eng. A 2021, 817, 141370. 10.1016/j.msea.2021.141370
  • Jiang, Y.; Li, N.; Liu, Z.; Yi, C.; Zhou, H.; Park, C.; Fay, C. C.; Deng, J.; Chew, H. B.; Ke, C. Exceptionally Strong Boron Nitride Nanotube Aluminum Composite Interfaces. Extrem. Mech. Lett 2023, 59, 101952. 10.1016/j.eml.2022.101952
  • Zhou, W.; Bang, S.; Kurita, H.; Miyazaki, T.; Fan, Y.; Kawasaki, A. Interface and Interfacial Reactions in Multi-Walled Carbon Nanotube-Reinforced Aluminum Matrix Composites. Carbon 2016, 96, 919–928. 10.1016/j.carbon.2015.10.016
  • Coleman, J. N.; Cadek, M.; Blake, R.; Nicolosi, V.; Ryan, K. P.; Belton, C.; Fonseca, A.; Nagy, J. B.; Gun’ko, Y. K.; Blau, W. J. High Performance Nanotube-Reinforced Plastics: Understanding the Mechanism of Strength Increase. Adv. Funct. Mater. 2004, 14, 791–798. 10.1002/adfm.200305200
  • Baxter, S. C.; Burrows, B. J.; Fralick, B. S. Mechanical Percolation in Nanocomposites: Microstructure and Micromechanics. Probabilistic Eng. Mech 2016, 44, 35–42. 10.1016/j.probengmech.2015.09.018
  • Wang, G.; Yu, D.; Mohan, R. V.; Gbewonyo, S.; Zhang, L. A Comparative Study of Nanoscale Glass Filler Reinforced Epoxy Composites: Electrospun Nanofiber vs Nanoparticle. Compos. Sci. Technol 2016, 129, 19–29. 10.1016/j.compscitech.2016.04.006
  • Sedigh, P.; Zare, A.; Montazeri, A. Evolution in Aluminum Applications by Numerically-Designed High Strength Boron-Nitride/Al Nanocomposites. Comput. Mater. Sci. 2020, 171, 109227. 10.1016/j.commatsci.2019.109227
  • Bakshi, S. R.; Agarwal, A. An Analysis of the Factors Affecting Strengthening in Carbon Nanotube Reinforced Aluminum Composites. Carbon 2011, 49, 533–544. 10.1016/j.carbon.2010.09.054
  • Jagannatham, M.; Chandran, P.; Sankaran, S.; Haridoss, P.; Nayan, N.; Bakshi, S. R. Tensile Properties of Carbon Nanotubes Reinforced Aluminum Matrix Composites: A Review. Carbon N. Y 2020, 160, 14–44. 10.1016/j.carbon.2020.01.007
  • Akkaş, A.; Tugrul, A. B.; Addemir, O.; Marşoğlu, M.; Ağacan, B.; Büyük, B. Radiation Shielding Effect of Boron Carbide Aluminum Metal Matrix Composite. Acta Phys. Pol. A 2015, 127, 947–949. 10.12693/APhysPolA.127.947
  • More, C. V.; Alsayed, Z.; Badawi, M. S.; Thabet, A. A.; Pawar, P. P. Polymeric Composite Materials for Radiation Shielding: A Review. Environ. Chem. Lett. 2021, 19, 2057–2090. 10.1007/s10311-021-01189-9
  • Thibeault, S. A.; Kang, J. H.; Sauti, G.; Park, C.; Fay, C. C.; King, G. C. Nanomaterials for Radiation Shielding. MRS Bull. 2015, 40, 836–841. 10.1557/mrs.2015.225
  • Kang, J. H.; Sauti, G.; Park, C.; Yamakov, V. I.; Wise, K. E.; Lowther, S. E.; Fay, C. C.; Thibeault, S. A.; Bryant, R. G. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes. ACS Nano. 2015, 9, 11942–11950. 10.1021/acsnano.5b04526
  • Bacca, N.; Zhang, C.; Paul, T.; Sukumaran, A. K.; John, D.; Rengifo, S.; Park, C.; Chu, S.-H.; Mazurkivich, M.; Scott, W.; Agarwal, A. Tribological and Neutron Radiation Properties of Boron Nitride Nanotubes Reinforced Titanium Composites under Lunar Environment. J. Mater. Res. 2022, 37, 4582–4593. 10.1557/s43578-022-00708-w
  • Chu, K.; Wang, J.; Liu, Y.; Geng, Z. Graphene Defect Engineering for Optimizing the Interface and Mechanical Properties of Graphene/Copper Composites. Carbon N. Y 2018, 140, 112–123. 10.1016/j.carbon.2018.08.004
  • Nautiyal, P.; Zhang, C.; Loganathan, A.; Boesl, B.; Agarwal, A. High-Temperature Mechanics of Boron Nitride Nanotube “Buckypaper” for Engineering Advanced Structural Materials. ACS Appl. Nano Mater. 2019, 2, 4402–4416. 10.1021/acsanm.9b00817
  • Rudolf, C.; Boesl, B.; Agarwal, A. In Situ Mechanical Testing Techniques for Real-Time Materials Deformation Characterization. JOM 2016, 68, 136–142. 10.1007/s11837-015-1629-8
  • George, R.; Kashyap, K. T. T.; Rahul, R.; Yamdagni, S. Strengthening in Carbon Nanotube/Aluminium (CNT/Al) Composites. Scr. Mater. 2005, 53, 1159–1163. 10.1016/j.scriptamat.2005.07.022
  • Nautiyal, P.; Embrey, L.; Boesl, B.; Agarwal, A. Multi-Scale Mechanics and Electrical Transport in a Free-Standing 3D Architecture of Graphene and Carbon Nanotubes Fabricated by Pressure Assisted Welding. Carbon N. Y. 2017, 122, 298–306. 10.1016/j.carbon.2017.06.081
  • Boesl, B.; Lahiri, D.; Behdad, S.; Agarwal, A. Direct Observation of Carbon Nanotube Induced Strengthening in Aluminum Composite via in Situ Tensile Tests. Carbon N. Y 2014, 69, 79–85. 10.1016/j.carbon.2013.11.061
  • Yang, Y.; Chen, W.; Hacopian, E.; Dong, P.; Sun, A.; Ci, L.; Lou, J. Unveil the Size‐Dependent Mechanical Behaviors of Individual CNT/SiC Composite Nanofibers by in Situ Tensile Tests in SEM. Small 2016, 12, 4486–4491. 10.1002/smll.201601113
  • Zhou, W.; Yamamoto, G.; Fan, Y.; Kwon, H.; Hashida, T.; Kawasaki, A. In-Situ Characterization of Interfacial Shear Strength in Multi-Walled Carbon Nanotube Reinforced Aluminum Matrix Composites. Carbon N. Y 2016, 106, 37–47. 10.1016/j.carbon.2016.05.015
  • Uchic, M. D.; Dimiduk, D. M. A Methodology to Investigate Size Scale Effects in Crystalline Plasticity Using Uniaxial Compression Testing. Mater. Sci. Eng. A 2005, 400-401, 268–278. 10.1016/j.msea.2005.03.082
  • Greer, J. R.; De Hosson, J. T. M. Plasticity in Small-Sized Metallic Systems: Intrinsic versus Extrinsic Size Effect. Prog. Mater. Sci 2011, 56, 654–724. 10.1016/j.pmatsci.2011.01.005
  • Kim, J.-Y.; Greer, J. R. Tensile and Compressive Behavior of Gold and Molybdenum Single Crystals at the Nano-Scale. Acta Mater 2009, 57, 5245–5253. 10.1016/j.actamat.2009.07.027
  • Okai, M.; Yamaura, H.; Yamane, H. Composite of aluminum and boron nitride nanotubes and method for manufacturing same. US Patent No. US20190316233A1, 2019
  • Chopra, N.; Banerjee, S. Nano-composite materials for thermal management applications, US Patent No. US20050116336A1, 2004
  • Kim, K. S.; Kingston, C. T.; Hrdina, A.; Jakubinek, M. B.; Guan, J.; Plunkett, M.; Simard, B. Hydrogen-Catalyzed, Pilot-Scale Production of Small-Diameter Boron Nitride Nanotubes and Their Macroscopic Assemblies. ACS Nano. 2014, 8, 6211–6220. 10.1021/nn501661p
  • Lee, C.; Bhandari, S.; Tiwari, B.; Yapici, N.; Zhang, D.; Yap, Y. Boron Nitride Nanotubes: Recent Advances in Their Synthesis, Functionalization, and Applications. Molecules 2016, 21, 922. 10.3390/molecules21070922
  • Boron Nitride Nanotub. Mark. Share, Size 2022 Glob. Oppor; 2022.
  • Trang, T. T. T.; Zhang, J. H.; Kim, J. H.; Zargaran, A.; Hwang, J. H.; Suh, B.-C.; Kim, N. J. Designing a Magnesium Alloy with High Strength and High Formability. Nat. Commun. 2018, 9, 2522. 10.1038/s41467-018-04981-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.