3,886
Views
534
CrossRef citations to date
0
Altmetric
Research Article

Aldehyde Sources, Metabolism, Molecular Toxicity Mechanisms, and Possible Effects on Human Health

, &
Pages 609-662 | Published online: 10 Oct 2008

REFERENCES

  • Abordo E. A., Minhas H. S., Thornalley P. J. Accumulation of alpha-oxoaldehydes during oxidative stress: A role in cytotoxicity. Biochem. Pharmacol. 1999; 58(4)641–648, [CSA]
  • Ackland N. R., Hinton M. R., Denmeade K. R. Controlled formaldehyde fumigation system. Appl. Environ. Microbiol. 1980; 39(3)480–487, [CSA]
  • Adam W., Kurz A., Saha-Moller C. R. DNA and 2′-deoxyguanosine damage in the horseradish-peroxidase-catalyzed autoxidation of aldehydes: The search for the oxidizing species. Free Radical. Biol. Med. 1999; 26(5–6)566–579, [CSA], [CROSSREF]
  • Adams J. D., Jr., Klaidman L. K. Acrolein-induced oxygen radical formation. Free Radical. Biol. Med. 1993; 15(2)187–193, [CSA], [CROSSREF]
  • Adams T. B., Doull J., Goodman J. I., Munro I. C., Newberne P., Portoghese P. S., Smith R. L., Wagner B. M., Weil C. S., Woods L. A., Ford R. A. The FEMA GRAS assessment of furfural used as a flavour ingredient. Flavor and Extract Manufacturers' Association. Food Chem. Toxicol. 1997; 35(8)739–751, [CSA], [CROSSREF]
  • Agarwal D. P. Genetic polymorphisms of alcohol metabolizing enzymes. Pathol. Biol. (Paris) 2001; 49(9)703–709, [CSA]
  • Agostinelli E., Przybytkowski E., Mondovi B., Averill-Bates D. A. Heat enhancement of cytotoxicity induced by oxidation products of spermine in Chinese hamster ovary cells. Biochem. Pharmacol 1994; 48(6)1181–1186, [CSA], [CROSSREF]
  • Ahmed N., Argirov O. K., Minhas H. S., Cordeiro C. A., Thornalley P. J. Assay of advanced glycation endproducts (AGEs): Surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to Nepsilon-carboxymethyl-lysine- and Nepsilon-(1-carboxyethyl)lysine-modified albumin. Biochem. J. 2002; 364(Pt 1)1–14, [CSA]
  • Ahmed N., Thornalley P. J. Chromatographic assay of glycation adducts in human serum albumin glycated in vitro by derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and intrinsic fluorescence. Biochem. J. 2002; 364(Pt 1)15–24, [CSA]
  • Ahmed N. K., Felsted R. L., Bachur N. R. Heterogeneity of anthracycline antibiotic carbonyl reductases in mammalian livers. Biochem. Pharmacol. 1978; 27(23)2713–2719, [CSA], [CROSSREF]
  • Akhand A. A., Hossain K., Mitsui H., Kato M., Miyata T., Inagi R., Du J., Takeda K., Kawamoto Y., Suzuki H., Kurokawa K., Nakashima I. Glyoxal and methylglyoxal trigger distinct signals for map family kinases and caspase activation in human endothelial cells. Free Radical. Biol. Med. 2001; 31(1)20–30, [CSA], [CROSSREF]
  • Alarcon R. A. Formation of acrolein from various amino-acids and polyamines under degradation at 100 degrees C. Environ. Res. 1976; 12(3)317–326, [CSA], [CROSSREF]
  • Aleynik S. I., Leo M. A., Aleynik M. K., Lieber C. S. Increased circulating products of lipid peroxidation in patients with alcoholic liver disease. Alcohol Clin. Exp. Res. 1998; 22(1)192–196, [CSA]
  • Ali F., Persaud T. V. Mechanisms of fetal alcohol effects: Role of acetaldehyde. Exp. Pathol. 1988; 33(1)17–21, [CSA]
  • Ambroziak W., Izaguirre G., Pietruszko R. Metabolism of retinaldehyde and other aldehydes in soluble extracts of human liver and kidney. J. Biol Chem. 1999; 274(47)33366–33373, [CSA], [CROSSREF]
  • Amicarelli F., Colafarina S., Cesare P., Aimola P., Di Ilio C., Miranda M., Ragnelli A. M. Morphofunctional mitochondrial response to methylglyoxal toxicity in Bufo bufo embryos. Int. J. Biochem. Cell Biol. 2001; 33(11)1129–1139, [CSA], [CROSSREF]
  • Anderson M. M., Hazen S. L., Hsu F. F., Heinecke J. W. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha, beta-unsaturated aldehydes by phagocytes at sites of inflammation. J. Clin. Invest 1997; 99(3)424–432, [CSA]
  • Andersson C., Morgenstern R. Chemical modification of rat liver microsomal glutathione transferase defines residues of importance for catalytic function. Biochem. J. 1990; 272(2)479–484, [CSA]
  • Apple M. A., Greenberg D. M. Arrest of cancer in mice by therapy with normal metabolites. II. Indefinite survirors among mice treated with mixtures of 2-oxopropanal (NSC-79019) and 2,3-dihydroxypropanal (NSC67934). Cancer Chemother. Rep. 1968; 52(7)687–696, [CSA]
  • Argiles J. M. The oxidation of methylglyoxal by mammalian pyruvate dehydrogenase. Arch. Biochem. Biophys. 1989; 273(1)238–244, [CSA], [CROSSREF]
  • Atkinson R. Gas-phase tropospheric chemistry of organic compounds: A review. Atmos. Environ 1990; 24A: 1–41, [CSA]
  • Ayoub F. M., Zaman M. A., Thornalley P. J., Masters J. R. Glyoxalase activity in human tumour cell lines in vitro. Biochem. Soc. Trans. 1993; 21(2)167S, [CSA]
  • Bagchi D., Bagchi M., Hassoun E. A., Kelly J., Stohs S. J. Adriamycin-induced hepatic and myocardial lipid peroxidation and DNA damage, and enhanced excretion of urinary lipid metabolites in rats. Toxicology 1995a; 95(1–3)1–9, [CSA], [CROSSREF]
  • Bagchi D., Hassoun E. A., Bagchi M., Muldoon D. F., Stohs S. J. Oxidative stress induced by chronic administration of sodium dichromate [Cr(VI)] to rats. Comp. Biochem. Physiol C. Pharmacol. Toxicol. Endocrinol. 1995b; 110(3)281–287, [CSA], [CROSSREF]
  • Barciszewski J., Siboska G. E., Pedersen B. O., Clark B. F., Rattan S. I. A mechanism for the in vivo formation of N6-furfuryladenine, kinetin, as a secondary oxidative damage product of DNA. FEBS Lett. 1997; 414(2)457–460, [CSA], [CROSSREF]
  • Barratt M. D., Basketter D. A., Roberts D. W. Structure-activity relationships for contact hypersensitivity. Allergic contact dermatitis: The molecular basis, J.-P. Lepoittevin, D. A. Basketter, A. Goossens, A.-T. Karlberg. Springer-Verlag, Heidelberg 1998; 129–154
  • Barrera G., Pizzimenti S., Laurora S., Moroni E., Giglioni B., Dianzani M. U. 4-Hydroxynonenal affects pRb/E2F pathway in HL-60 human leukemic cells. Biochem. Biophys. Res. Commun. 2002; 295(2)267–275, [CSA], [CROSSREF]
  • Barski O. A., Gabbay K. H., Bohren K. M. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity. Biochemistry 1996; 35(45)14276–14280, [CSA], [CROSSREF]
  • Bartfay W. J., Dawood F., Wen W. H., Lehotay D. C., Hou D., Bartfay E., Luo X., Backx P. H., Liu P. P. Cardiac function and cytotoxic aldehyde production in a murine model of chronic iron-overload. Cardiovasc. Res. 1999; 43(4)892–900, [CSA], [CROSSREF]
  • Bartsch H. Keynote address: Exocyclic adducts as new risk markers for DNA damage in man. IARC Sci. Publ. 1999, 150: 1–16, [CSA]
  • Baynes J. W., Thorpe S. R. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 1999; 48(1)1–9, [CSA]
  • Baynes J. W., Thorpe S. R. Glycoxidation and lipoxidation in atherogenesis. Free Radical. Biol. Med. 2000; 28(12)1708–1716, [CSA], [CROSSREF]
  • Bedham C. Molybdenum hydroxylases: Biological distribution and substrate-inhibitor specificity. Prog. Med. Chem. 1987; 2485–127, [CSA]
  • Beland F. A. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302–17-0). Administered by gavage to F344/N rats and B6C3F1 mice. Toxic. Rep. Ser. 1999; 59: 1–E7, [CSA]
  • Bellucci G., Chiappe C., Pucci L., Gervasi P. G. The mechanism of oxidation of allylic alcohols to alpha,beta-unsaturated ketones by cytochrome P450. Chem. Res. Toxicol. 1996; 9(5)871–874, [CSA], [CROSSREF]
  • Benov L., Fridovich I. Superoxide dependence of the toxicity of short chain sugars. J. Biol. Chem. 1998; 273(40)25741–25744, [CSA], [CROSSREF]
  • Berhane K., Widersten M., Engstrom A., Kozarich J. W., Mannervik B. Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc. Natl. Acad. Sci. USA 1994; 91(4)1480–1484, [CSA]
  • Bernoud-Hubac N., Roberts L. J. Identification of oxidized derivatives of neuroketals. Biochemistry 2002; 41(38)11466–11471, [CSA], [CROSSREF]
  • Biswas S., Bhattacharjee S., Ray M., Ray S. Interaction of aldehydes with glyoxalase I and the status of several aldehyde metabolizing enzymes of Ehrlich ascites carcinoma cells. Mol. Cell Biochem. 1996; 165(1)9–16, [CSA], [CROSSREF]
  • Boggaram V., Mannervik B. Essential arginine residues in the pyridine nucleotide binding sites of glutathione reductase. Biochim. Biophys. Acta 1982; 701(1)119–126, [CSA]
  • Boh E. E., Baricos W. H., Bernofsky C., Steele R. H. Mitochondrial chemiluminescence elicited by acetaldehyde. J. Bioenerg. Biomembr. 1982; 14(2)115–133, [CSA], [CROSSREF]
  • Bohren K. M., von Wartburg J. P., Wermuth B. Inactivation of carbonyl reductase from human brain by phenylglyoxal and 2,3-butanedione: A comparison with aldehyde reductase and aldose reductase. Biochim. Biophys. Acta 1987a; 916(2)185–192, [CSA]
  • Bohren K. M., von Wartburg J. P., Wermuth B. Kinetics of carbonyl reductase from human brain. Biochem. J. 1987b; 244(1)165–171, [CSA]
  • Boleda M. D., Saubi N., Farres J., Pares X. Physiological substrates for rat alcohol dehydrogenase classes: Aldehydes of lipid peroxidation, omega-hydroxyfatty acids, and retinoids. Arch. Biochem. Biophys. 1993; 307(1)85–90, [CSA], [CROSSREF]
  • Bondoc F. Y., Bao Z., Hu W. Y., Gonzalez F. J., Wang Y., Yang C. S., Hong J. Y. Acetone catabolism by cytochrome P450 2E1: Studies with CYP2E1-null mice. Biochem. Pharmacol 1999; 58(3)461–463, [CSA], [CROSSREF]
  • Born S. L., Hu J. K., Lehman-McKeeman L. D. o-Hydroxyphenylacetaldehyde is a hepatotoxic metabolite of coumarin. Drug Metab. Dispos. 2000; 28(2)218–223, [CSA]
  • Branlant G., Tritsch D., Biellmann J. F. Evidence for the presence of anion-recognition sites in pig-liver aldehyde reductase. Modification by phenyl glyoxal and p-carboxyphenyl glyoxal of an arginyl residue located close to the substrate-binding site. Eur. J. Biochem. 1981; 116(3)505–512, [CSA], [CROSSREF]
  • Brown P. C., Thurman R. G., Belinsky S. A., Kauffman F. C. Effect of allyl alcohol on xanthine dehydrogenase activity in the perfused rat liver. Toxicol. Lett. 1991; 58(1)1–6, [CSA], [CROSSREF]
  • Brown S. K. Chamber assessment of formaldehyde and VOC emissions from wood-based panels. Indoor. Air 1999; 9(3)209–215, [CSA], [CROSSREF]
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865)813–820, [CSA], [CROSSREF]
  • Brunk U. T., Terman A. The mitochondrial-lysosomal axis theory of aging: Accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur. J. Biochem. 2002; 269(8)1996–2002, [CSA], [CROSSREF]
  • Bunting K. D., Townsend A. J. Dependence of aldehyde dehydrogenase-mediated oxazaphosphorine resistance on soluble thiols: Importance of thiol interactions with the secondary metabolite acrolein. Biochem. Pharmacol. 1998; 56(1)31–39, [CSA]
  • Burg M., Green N. Effect of ethacrynic acid on the thick ascending limb of Henle's loop. Kidney Int. 1973; 4(5)301–308, [CSA]
  • Byrns M. C., Predecki D. P., Peterson L. A. Characterization of nucleoside adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan. Chem. Res. Toxicol. 2002; 15(3)373–379, [CSA], [CROSSREF]
  • Cabiscol E., Piulats E., Echave P., Herrero E., Ros J. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol Chem. 2000; 275(35)27393–27398, [CSA]
  • Calingasan N. Y., Uchida K., Gibson G. E. Protein-bound acrolein: A novel marker of oxidative stress in Alzheimer's disease. J. Neurochem. 1999; 72(2)751–756, [CSA], [CROSSREF]
  • Canuto R. A., Muzio G., Salvo R. A., Maggiora M., Trombetta A., Chantepie J., Fournet G., Reichert U., Quash G. The effect of a novel irreversible inhibitor of aldehyde dehydrogenases 1 and 3 on tumour cell growth and death. Chem. Biol Interact. 2001; 130–132(1–3)209–218, [CSA], [CROSSREF]
  • Castro G. D., Delgado de Layno A. M., Costantini M. H., Castro J. A. Cytosolic xanthine oxidoreductase mediated bioactivation of ethanol to acetaldehyde and free radicals in rat breast tissue. Its potential role in alcohol-promoted mammary cancer. Toxicology 2001; 160(1–3)11–18, [CSA], [CROSSREF]
  • Cecconi I., Scaloni A., Rastelli G., Moroni M., Vilardo P. G., Costantino L., Cappiello M., Garland D., Carper D., Petrash J. M., Del Corso A., Mura U. Oxidative modification of aldose reductase induced by copper ion. Definition of the metal-protein interaction mechanism. J. Biol. Chem. 2002; 277(44)42017–42027, [CSA], [CROSSREF]
  • Cecinato A., Yassaa N., Di P. V., Possanzin M. Observation of volatile and semi-volatile carbonyls in an Algerian urban environment using dinitrophenylhydrazine/silica-HPLC and pentafluorophenylhydrazine/silica-GC-MS. J. Environ. Monit. 2002; 4(2)223–228, [CSA], [CROSSREF]
  • CEPA. Acretaldehyde. Canadian environmental protection act. Priority substances list assessment report. Environ. Canada & Health Canada 2000a En40–215/50E, [CSA]
  • CEPA. Acrolein. Canadian environmental protection act. priority substances list assessment report. Environ. Canada & Health Canada 2000b; En40–215/48E, [CSA]
  • CEPA. Formaldehyde. Canadian environment protection act. Priority substances list assessment report. Environ. Canada & Health Canada 2001; En40–215/61E, [CSA]
  • Chen J., Henderson G. I., Freeman G. L. Role of 4-hydroxynonenal in modification of cytochrome c oxidase in ischemia/reperfused rat heart. J. Mol. Cell Cardiol. 2001; 33(11)1919–1927, [CSA], [CROSSREF]
  • Chen J., Petersen D. R., Schenker S., Henderson G. I. Formation of malondialdehyde adducts in livers of rats exposed to ethanol: Role in ethanol-mediated inhibition of cytochrome c oxidase. Alcohol Clin. Exp. Res. 2000; 24(4)544–552, [CSA], [CROSSREF]
  • Chen J., Robinson N. C., Schenker S., Frosto T. A., Henderson G. I. Formation of 4-hydroxynonenal adducts with cytochrome c oxidase in rats following short-term ethanol intake. Hepatology 1999; 29(6)1792–1798, [CSA], [CROSSREF]
  • Chen L. J., Hecht S. S., Peterson L. A. Characterization of amino acid and glutathione adducts of cis-2-butene-1,4-dial, a reactive metabolite of furan. Chem. Res. Toxicol. 1997; 10(8)866–874, [CSA], [CROSSREF]
  • Chen Z., Zhang J., Stamler J. S. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc. Natl. Acad. Sci. USA 2002; 99(12)8306–8311, [CSA], [CROSSREF]
  • Chevion M., Berenshtein E., Stadtman E. R. Human studies related to protein oxidation: Protein carbonyl content as a marker of damage. Free Radical Res. 2000; 33(Suppl.)S99–108, [CSA]
  • Chiarpotto E., Allasia C., Biasi F., Leonarduzzi G., Ghezzo F., Berta G., Bellomo G., Waeg G., Poli G. Down-modulation of nuclear localisation and pro-fibrogenic effect of 4-hydroxy-2,3-nonenal by thiol- and carbonyl-reagents. Biochim. Biophys. Acta 2002; 1584(1)1–8, [CSA]
  • Chung F. L., Tanaka T., Hecht S. S. Induction of liver tumors in F344 rats by crotonaldehyde. Cancer Res. 1986; 46(3)1285–1289, [CSA]
  • Cimanga K., Kambu K., Tona L., Apers S., De Bruyne T., Hermans N., Totte J., Pieters L., Vlietinck A. J. Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharmacol. 2002; 79(2)213–220, [CSA], [CROSSREF]
  • Clejan L. A., Cederbaum A. I. Role of cytochrome P450 in the oxidation of glycerol by reconstituted systems and microsomes. FASEB J. 1992; 6(2)765–770, [CSA]
  • Cohen S. D., Pumford N. R., Khairallah E. A., Boekelheide K., Pohl L. R., Amouzadeh H. R., Hinson J. A. Selective protein covalent binding and target organ toxicity. Toxicol. Appl. Pharmacol 1997; 143(1)1–12, [CSA], [CROSSREF]
  • Cohen S. M., Garland E. M., St John M., Okamura T., Smith R. A. Acrolein initiates rat urinary bladder carcinogenesis. Cancer Res. 1992; 52(13)3577–3581, [CSA]
  • Collins J. J., Lineker G. A. A review and meta-analysis of formaldehyde exposure and leukemia. Regul. Toxicol. Pharmacol. 2004; 40(2)81–91, [CSA], [CROSSREF]
  • Conklin D. J., Boyce C. L., Trent M. B., Boor P. J. Amine metabolism: a novel path to coronary artery vasospasm. Toxicol. Appl. Pharmacol. 2001; 175(2)149–159, [CSA], [CROSSREF]
  • Conolly R. B., Lilly P. D., Kimbell J. S. Simulation modeling of the tissue disposition of formaldehyde to predict nasal DNA-protein cross-links in Fischer 344 rats, rhesus monkeys, and humans. Environ. Health Perspect 2000; 108(Suppl)5919–924, [CSA]
  • Cooke M. S., Evans M. D., Podmore I. D., Herbert K. E., Mistry N., Mistry P., Hickenbotham P. T., Hussieni A., Griffiths H. R., Lunec J. Novel repair action of vitamin C upon in vivo oxidative DNA damage. FEBS Lett. 1998; 439(3)363–367, [CSA], [CROSSREF]
  • Cox P. J. Cyclophosphamide cystitis—Identification of acrolein as the causative agent. Biochem. Pharmacol. 1979; 28(13)2045–2049, [CSA], [CROSSREF]
  • Cramer S. D., Ferree P. M., Lin K., Milliner D. S., Holmes R. P. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum. Mol. Genet. 1999; 8(11)2063–2069, [CSA], [CROSSREF]
  • Dahl A. R., Hadley W. M. Formaldehyde production promoted by rat nasal cytochrome P-450-dependent monooxygenases with nasal decongestants, essences, solvents, air pollutants, nicotine, and cocaine as substrates. Toxicol. Appl. Pharmacol 1983; 67(2)200–205, [CSA], [CROSSREF]
  • Datey K. K., Deshmukh S. N., Dalvi C. P., Purandare N. M. Hepatocellular damage with ethacrynic acid. Br. Med. J. 1967; 3(558)152–153, [CSA]
  • de Bari L., Atlante A., Guaragnella N., Principato G., Passarella S. D-Lactate transport and metabolism in rat liver mitochondria. Biochem. J. 2002; 365(Pt 2)391–403, [CSA], [CROSSREF]
  • Deetz J. S., Luehr C. A., Vallee B. L. Human liver alcohol dehydrogenase isozymes: Reduction of aldehydes and ketones. Biochemistry 1984; 23(26)6822–6828, [CSA], [CROSSREF]
  • de Groot A. C., Frosch P. J. Adverse reactions to fragrances. A clinical review. Contact Dermatitis 1997; 36(2)57–86, [CSA]
  • Demaine A., Cross D., Millward A. Polymorphisms of the aldose reductase gene and susceptibility to retinopathy in type 1 diabetes mellitus. Invest Ophthalmol. Vis. Sci. 2000; 41(13)4064–4068, [CSA]
  • Dempsey C. R. A comparison of organic emissions from hazardous waste incinerators versus the 1990 Toxic Release Inventory air release. J. Air Waste Manag. Assoc. 1990; 43: 1374–1379, [CSA]
  • Dennis K. J., Shibamoto T. Gas chromatographic analysis of reactive carbonyl compounds formed from lipids upon UV-irradiation. Lipids 1990; 25(8)460–464, [CSA]
  • Destaillats H., Spaulding R. S., Charles M. J. Ambient air measurement of acrolein and other carbonyls at the Oakland–San Francisco Bay Bridge toll plaza. Environ. Sci. Technol. 2002; 36(10)2227–2235, [CSA], [CROSSREF]
  • Dicker E., Cederbaum A. I. Inhibition of the oxidation of acetaldehyde and formaldehyde by hepatocytes and mitochondria by crotonaldehyde. Arch. Biochem. Biophys. 1984; 234(1)187–196, [CSA], [CROSSREF]
  • Dicker E., Cederbaum A. I. Inhibition of CO2 production from aminopyrine or methanol by cyanamide or crotonaldehyde and the role of mitochondrial aldehyde dehydrogenase in formaldehyde oxidation. Biochim. Biophys. Acta 1986; 883(1)91–97, [CSA]
  • Dieckhaus C. M., Thompson C. D., Roller S. G., Macdonald T. L. Mechanisms of idiosyncratic drug reactions: The case of felbamate. Chem. Biol. Interact. 2002; 142(1–2)99–117, [CSA], [CROSSREF]
  • Dinkova-Kostova A. T., Holtzclaw W. D., Cole R. N., Itoh K., Wakabayashi N., Katoh Y., Yamamoto M., Talalay P. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 2002; 99(18)11908–11913, [CSA], [CROSSREF]
  • Di Stefano F. Glutaraldehyde: An occupational hazard in the hospital setting. Allergy 1999; 54: 1105–1109, [CSA], [CROSSREF]
  • Domeyer B. E., Sladek N. E. Inhibition by cyanamide of 4-hydroxycyclophosphamide/aldophosphamide oxidation to carboxyphosphamide. Biochem. Pharmacol. 1981; 30(15)2065–2073, [CSA], [CROSSREF]
  • Doorn J. A., Maser E., Blum A., Claffey D. J., Petersen D. R. Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enal. Biochemistry 2004; 43(41)13106–13114, [CSA], [CROSSREF]
  • Dost F. N. Acute toxicology of components of vegetation smoke. Rev. Environ. Contam. Toxicol. 1991; 119: 1–46, [CSA]
  • Du J., Suzuki H., Nagase F., Akhand A. A., Ma X. Y., Yokoyama T., Miyata T., Nakashima I. Superoxide-mediated early oxidation and activation of ASK1 are important for initiating methylglyoxal-induced apoptosis process. Free Radical Biol. Med. 2001; 31(4)469–478, [CSA], [CROSSREF]
  • Eklund H., Ramaswamy S., Plapp B. V., El-Ahmad M., Danielsson O., Hoog J. O., Jornvall H. Crystallographic investigations of alcohol dehydrogenases. EXS 1994; 71: 269–277, [CSA]
  • Ellis E. M., Judah D. J., Neal G. E., O'Connor T., Hayes J. D. Regulation of carbonyl-reducing enzymes in rat liver by chemoprotectors. Cancer Res. 1996; 56(12)2758–2766, [CSA]
  • Ellis E. M., Slattery C. M., Hayes J. D. Characterization of the rat aflatoxin B1 aldehyde reductase gene, AKR7A1. Structure and chromosomal localization of AKR7A1 as well as identification of antioxidant response elements in the gene promoter. Carcinogenesis 2003; 24(4)727–737, [CSA], [CROSSREF]
  • Enroth C., Eger B. T., Okamoto K., Nishino T., Nishino T., Pai E. F. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc. Natl. Acad. Sci. USA 2000; 97(20)10723–10728, [CSA]
  • Eriksson U. J., Wentzel P., Minhas H. S., Thornalley P. J. Teratogenicity of 3-deoxyglucosone and diabetic embryopathy. Diabetes 1998; 47(12)1960–1966, [CSA]
  • Espinosa-Mansilla A., Duran-Meras I., Salinas F. High-performance liquid chromatographic-fluorometric determination of glyoxal, methylglyoxal, and diacetyl in urine by prederivatization to pteridinic rings. Anal. Biochem. 1998; 255(2)263–273, [CSA], [CROSSREF]
  • Feron V. J., Til H. P., de Vrijer F., Woutersen R. A., Cassee F. R., van Bladeren P. J. Aldehydes: Occurrence, carcinogenic potential, mechanism of action and risk assessment. Mutat. Res. 1991; 259(3–4)363–385, [CSA]
  • Flyvholm M. A., Andersen P. Identification of formaldehyde releasers and occurrence of formaldehyde and formaldehyde releasers in registered chemical products. Am. J. Ind. Med. 1993; 24(5)533–552, [CSA]
  • Forrest G. L., Gonzalez B. Carbonyl reductase. Chem. Biol. Interact. 2000; 129(1–2)21–40, [CSA], [CROSSREF]
  • Friedman M., Kozukue N., Harden L. A. Cinnamaldehyde content in foods determined by gas chromatography-mass spectrometry. J. Agric. Food Chem. 2000; 48(11)5702–5709, [CSA], [CROSSREF]
  • Fu S., Wang H., Davies M., Dean R. Reactions of hypochlorous acid with tyrosine and peptidyl-tyrosyl residues give dichlorinated and aldehydic products in addition to 3-chlorotyrosine. J. Biol. Chem. 2000; 275(15)10851–10858, [CSA], [CROSSREF]
  • Fujii E., Iwase H., Ishii-Karakasa I., Yajima Y., Hotta K. The presence of 2-keto-3-deoxygluconic acid and oxoaldehyde dehydrogenase activity in human erythrocytes. Biochem. Biophys. Res. Commun. 1995; 210(3)852–857, [CSA], [CROSSREF]
  • Fujita Y., Wakabayashi K., Nagao M., Sugimura T. Characteristics of major mutagenicity of instant coffee. Mutat. Res. 1985; 142(4)145–148, [CSA], [CROSSREF]
  • Furuhata A., Nakamura M., Osawa T., Uchida K. Thiolation of protein-bound carcinogenic aldehyde. An electrophilic acrolein-lysine adduct that covalently binds to thiols. J. Biol. Chem. 2002; 277(31)27919–27926, [CSA], [CROSSREF]
  • Fylling A. C., Westlund P., Helander A. Kinetic and structural evidence for the identification of 11-hydroxythromboxane B2 dehydrogenase as cytosolic aldehyde dehydrogenase. Prostaglandins 1995; 50(5–6)287–299, [CSA], [CROSSREF]
  • Gaffney J. S., Marley N. A. Alternative fuels. Air pollution reviews:. The urban air atmosphere and its effects, P. Brimblecombe, R. Maynard. Imperia College Press. 2000; Volume 1: 195–246
  • Ganey P. E., Schultze A. E. Depletion of neutrophils and modulation of Kupffer cell function in allyl alcohol-induced hepatotoxicity. Toxicology 1995; 99(1–2)99–106, [CSA], [CROSSREF]
  • Gardner R., Kazi S., Ellis E. M. Detoxification of the environmental pollutant acroein by a rat liver aldo-keto reductase. Toxic. Lett. 2004; 148: 65–72, [CSA], [CROSSREF]
  • Ghilarducci D. P., Tjeerdema R. S. Fate and effects of acrolein. Rev. Environ. Contam Toxicol. 1995; 144: 95–146, [CSA]
  • Ginsberg G., Smolenski S., Hattis D., Sonawane B. Population distribution of aldehyde dehydrogenase-2 genetic polymorphism: Implications for risk assessment. Regul. Toxicol. Pharmacol. 2002; 36(3)297–309, [CSA], [CROSSREF]
  • Glomb M. A., Monnier V. M. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. J. Biol. Chem. 1995; 270(17)10017–10026, [CSA], [CROSSREF]
  • Goering P. L. Acute exposure to formaldehyde induces hepatic metallothionein synthesis in mice. Toxicol. Appl. Pharmacol. 1989; 98(2)325–337, [CSA], [CROSSREF]
  • Grosjean E., Grosjean D., Fraser M. P., Cass G. R. Air quality model evaluation data for organics. 2. C1–C14 carbonyls in Los Angeles. Air. Environ. Sci. Technol. 1996; 30(2687)2703, [CSA]
  • Grune T., Siems W., Kowalewski J., Zollner H., Esterbauer H. Identification of metabolic pathways of the lipid peroxidation product 4-hydroxynonenal by enterocytes of rat small intestine. Biochem. Int. 1991; 25(5)963–971, [CSA]
  • Grune T., Siems W. G., Zollner H., Esterbauer H. Metabolism of 4-hydroxynonenal, a cytotoxic lipid peroxidation product, in Ehrlich mouse ascites cells at different proliferation stages. Cancer Res. 1994; 54(19)5231–5235, [CSA]
  • Guin J. D., Berry V. K. Perfume sensitivity in adult females. A study of contact sensitivity to a perfume mix in two groups of student nurses. J. Am. Acad. Dermatol. 1980; 3(3)299–302, [CSA]
  • Gupta A. K., del Rosso J. Q., Lynde C. W., Brown G. H., Shear N. H. Hepatitis associated with terbinafine therapy: Three case reports and a review of the literature. Clin. Exp. Dermatol. 1998; 23(2)64–67, [CSA], [CROSSREF]
  • Hagenlocher T., Nair J., Becker N., Korfmann A., Bartsch H. Influence of dietary fatty acid, vegetable, and vitamin intake on etheno-DNA adducts in white blood cells of healthy female volunteers: A pilot study. Cancer Epidemiol. Biomarkers Prev. 2001; 10(11)1187–1191, [CSA]
  • Halder J., Ray M., Ray S. Inhibition of glycolysis and mitochondrial respiration of Ehrlich ascites carcinoma cells by methylglyoxal. Int. J. Cancer 1993; 54(3)443–449, [CSA]
  • Hara A., Usui S., Hayashibara M., Horiuchi T., Nakayama T., Sawada H. Microsomal carbonyl reductase in rat liver. Sex difference, hormonal regulation, and characterization. Prog. Clin. Biol. Res. 1987; 232: 401–414, [CSA]
  • Hartley D. P., Kolaja K. L., Reichard J., Petersen D. R. 4-Hydroxynonenal and malondialdehyde hepatic protein adducts in rats treated with carbon tetrachloride: Immunochemical detection and lobular localization. Toxicol. Appl. Pharmacol. 1999; 161(1)23–33, [CSA], [CROSSREF]
  • Hartley D. P., Ruth J. A., Petersen D. R. The hepatocellular metabolism of 4-hydroxynonenal by alcohol dehydrogenase, aldehyde dehydrogenase, and glutathione S-transferase. Arch. Biochem. Biophys. 1995; 316(1)197–205, [CSA], [CROSSREF]
  • Hazen S. L., Hsu F. F., d'Avignon A., Heinecke J. W. Human neutrophils employ myeloperoxidase to convert alpha-amino acids to a battery of reactive aldehydes: A pathway for aldehyde generation at sites of inflammation. Biochemistry 1998; 37(19)6864–6873, [CSA], [CROSSREF]
  • Headlam H. A., Davies M. J. Beta-scission of side-chain alkoxyl radicals on peptides and proteins results in the loss of side-chains as aldehydes and ketones. Free Radical. Biol. Med. 2002; 32(11)1171–1184, [CSA], [CROSSREF]
  • Heck H. D. Toxicological implications of formaldehyde formation in vivo from industrial chemicals and pharmaceuticals. (CIIT) Activities 1989; 9: 1–6, [CSA]
  • Heck H. D., Casanova M., Starr T. B. Formaldehyde toxicity—New understanding. Crit. Rev. Toxicol. 1990; 20(6)397–426, [CSA]
  • Heesom A. E., Hibberd M. L., Millward A., Demaine A. G. Polymorphism in the 5′-end of the aldose reductase gene is strongly associated with the development of diabetic nephropathy in type I diabetes. Diabetes 1997; 46(2)287–291, [CSA]
  • Heimbrook D. C., Sartorelli A. C. Biochemistry of misonidazole reduction by NADPH-cytochrome c (P-450) reductase. Mol. Pharmacol. 1986; 29(2)168–172, [CSA]
  • Hoet P., Graf M. L., Bourdi M., Pohl L. R., Duray P. H., Chen W., Peter R. M., Nelson S. D., Verlinden N., Lison D. Epidemic of liver disease caused by hydrochlorofluorocarbons used as ozone-sparing substitutes of chlorofluorocarbons. Lancet 1997; 350(9077)556–559, [CSA], [CROSSREF]
  • Hofmann T., Bors W., Stettmaier K. Studies on radical intermediates in the early stage of the nonenzymatic browning reaction of carbohydrates and amino acids. J. Agric. Food Chem. 1999; 47(2)379–390, [CSA], [CROSSREF]
  • Hold K. M., Sirisoma N. S., Ikeda T., Narahashi T., Casida J. E. Alpha-thujone (the active component of absinthe): Gamma-aminobutyric acid type A receptor modulation and metabolic detoxification. Proc. Natl. Acad. Sci. USA 2000; 97(8)3826–3831, [CSA], [CROSSREF]
  • Hu R. H., Pegg A. E. Rapid induction of apoptosis by deregulated uptake of polyamine analogues. Biochem. J. 1997; 328(Pt 1)307–316, [CSA]
  • Humphries K. M., Szweda L. I. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: Reaction of lipoic acid with 4-hydroxy-2-nonenal. Biochemistry 1998; 37(45)15835–15841, [CSA], [CROSSREF]
  • Hutcheon D. E., Arnold J. D., ten Hove W., Boyle J, III. Disposition, metabolism, and toxicity of methyl tertiary butyl ether, an oxygenate for reformulated gasoline. J. Toxicol. Environ. Health 1996; 47(5)453–464, [CSA], [CROSSREF]
  • Hyun D. H., Lee M. H., Halliwell B., Jenner P. Proteasomal dysfunction induced by 4-hydroxy-2,3-trans-nonenal, an end-product of lipid peroxidation: A mechanism contributing to neurodegeneration. J. Neurochem. 2002; 83(2)360–370, [CSA], [CROSSREF]
  • IARC. Acrylamide. IARC Some industrial chemicals. Acrylamide. IARC Sci. Publ. 1994; 60: 389–433, [CSA]
  • IARC. Dry cleaning, some chlorinated solvents and other industrial chemicals. “crotonaldehyde.”. WHO 1995a; 63: 373–391, [CSA]
  • IARC. Dry cleaning, some chlorinated solvents and other industrial chemicals. Acrolein. World Health Organization 1995b; 63: 337–372, [CSA]
  • IARC. Dry cleaning, some chlorinated solvents and other industrial chemicals. Furfural. World Health Organization 1995c; 63: 409–429, [CSA]
  • IARC. Dry cleaning, some chlorinated solvents and other industrial chemicals. Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. Acetaldehyde. World Health Organization 1999; 71: 319–335, [CSA]
  • IARC. Formaldehyde, 2-butoxyethanol and 1-tert-butoxy-2-propanol. IARC 2004; 88, Summary available at http://www-cie.iarc.frc/htdocs/announcements/vol88.htm, [CSA] (Either page or author must be supplied)
  • Ichihashi K., Osawa T., Toyokuni S., Uchida K. Endogenous formation of protein adducts with carcinogenic aldehydes: Implications for oxidative stress. J. Biol. Chem. 2001; 276(26)23903–23913, [CSA], [CROSSREF]
  • Ikeda M., Ezaki M., Kokeguchi S., Ohmori S. Studies on NADPH-dependent chloral hydrate reducing enzymes in rat liver cytosol. Biochem. Pharmacol. 1981; 30(14)1931–1939, [CSA], [CROSSREF]
  • Imamura Y., Migita T., Uriu Y., Otagiri M., Okawara T. Inhibitory effects of flavonoids on rabbit heart carbonyl reductase. J. Biochem. (Tokyo) 2000; 127(4)653–658, [CSA]
  • Inagi R. Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: Role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett. 1999; 463(3)260–264, [CSA], [CROSSREF]
  • IPCS. International Programme on Chemical Safety. Concise international chemical assessment document. 2-Furaldehyde. ICPS 2000; 21, [CSA]
  • IPCS. International Programme on Chemical Safety. Concise international chemical assessment document. Acrolein. ICPS 2002a; 43, [CSA]
  • IPCS. International Programme on Chemical Safety. Concise international chemical assessment document. Formaldehyde. ICPS 2002b; 40, [CSA]
  • IRIS. Integrated Risk Information System. U.S. Environmental Agency. 2004, http://www.epm.gov/iriswebphris/subst/0419.htm. [December 10] IRIS
  • Irwin W. A., Gaspers L. D., Thomas J. A. Inhibition of the mitochondrial permeability transition by aldehydes. Biochem. Biophys. Res. Commun. 2002; 291(2)215–219, [CSA], [CROSSREF]
  • Ishii T., Tatsuda E., Kumazawa S., Nakayama T., Uchida K. Molecular basis of enzyme inactivation by an endogenous electrophile 4-hydroxy-2-nonenal: Identification of modification sites in glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 2003; 42(12)3474–3480, [CSA], [CROSSREF]
  • Islam R., Isaacson B. J., Zickerman P. M., Ratanawong C., Tipping S. J. Hemorrhagic cystitis as an unexpected adverse reaction to temozolomide: Case report. Am. J. Clin. Oncol. 2002; 25(5)513–514, [CSA], [CROSSREF]
  • Ivanova S., Batliwalla F., Mocco J., Kiss S., Huang J., Mack W., Coon A., Eaton J. W., Al Abed Y., Gregersen P. K., Shohami E., Connolly E. S., Jr., Tracey K. J. Neuroprotection in cerebral ischemia by neutralization of 3-aminopropanal. Proc. Natl. Acad. Sci. USA 2002; 99(8)5579–5584, [CSA], [CROSSREF]
  • Iverson S. L., Uetrecht J. P. Identification of a reactive metabolite of terbinafine: Insights into terbinafine-induced hepatotoxicity. Chem. Res. Toxicol. 2001; 14(2)175–181, [CSA], [CROSSREF]
  • Iwata N., Inazu N., Hara S., Yanase T., Kano S., Endo T., Kuriiwa F., Sato Y., Satoh T. Interindividual variability of carbonyl reductase levels in human livers. Biochem. Pharmacol 1993; 45(8)1711–1714, [CSA], [CROSSREF]
  • Izaguirre G., Kikonyogo A., Pietruszko R. Methylglyoxal as substrate and inhibitor of human aldehyde dehydrogenase: Comparison of kinetic properties among the three isozymes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1998; 119(4)747–754, [CSA], [CROSSREF]
  • James J. T. Carcinogens in spacecraft air. Radiat. Res. 1997; 148(5 suppl.)S11–S16, [CSA]
  • Janzowski C., Glaab V., Samimi E., Schlatter J., Eisenbrand G. 5-Hydroxymethylfurfural: Assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem. Toxicol. 2000; 38(9)801–809, [CSA], [CROSSREF]
  • Jarvelainen H. A., Fang C., Ingelman-Sundberg M., Lukkari T. A., Sippel H., Lindros K. O. Kupffer cell inactivation alleviates ethanol-induced steatosis and CYP2E1 induction but not inflammatory responses in rat liver. J. Hepatol. 2000; 32(6)900–910, [CSA], [CROSSREF]
  • Jerzykowski T., Winter R., Matuszewski W., Piskorska D. A re-evaluation of studies on the distribution of glyoxalases in animal and tumour tissues. Int. J. Biochem. 1978; 9(11)853–860, [CSA], [CROSSREF]
  • Jez J. M., Penning T. M. The aldo-keto reductase (AKR) superfamily: An update. Chem. Biol. Interact. 2001; 130–132(1–3)499–525, [CSA], [CROSSREF]
  • Ji C., Amarnath V., Pietenpol J. A., Marnett L. J. 4-hydroxynonenal induces apoptosis via caspase-3 activation and cytochrome c release. Chem. Res. Toxicol. 2001; 14(8)1090–1096, [CSA], [CROSSREF]
  • Ji C., Kozak K. R., Marnett L. J. IkappaB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J. Biol. Chem. 2001b; 276(21)18223–18228, [CSA], [CROSSREF]
  • Kalapos M. P. Methylglyoxal toxicity in mammals. Toxicol. Lett. 1994; 73(1)3–24, [CSA], [CROSSREF]
  • Kanazu T., Shinoda M., Nakayama T., Deyashiki Y., Hara A., Sawada H. Aldehyde reductase is a major protein associated with 3-deoxyglucosone reductase activity in rat, pig and human livers. Biochem. J. 1991; 279(Pt 3)903–906, [CSA]
  • Kang Y., Edwards L. G., Thornalley P. J. Effects of methylglyoxal on human leukemia 60 cell growth: Modification of DNA, G1 growth arrest and induction of apoptosis. Leukemia Res. 1996; 20: 397–405, [CSA], [CROSSREF]
  • Kapetanovic I. M., Torchin C. D., Strong J. M., Yonekawa W. D., Lu C., Li A. P., Dieckhaus C. M., Santos W. L., Macdonald T. L., Sofia R. D., Kupferberg H. J. Reactivity of atropaldehyde, a felbamate metabolite in human liver tissue in vitro. Chem. Biol. Interact. 2002; 142(1–2)119–134, [CSA], [CROSSREF]
  • Karas M., Chakrabarti S. K. Caffeine potentiation of allyl alcohol-induced hepatotoxicity. II. In vitro study. J. Environ. Pathol. Toxicol. Oncol. 2001; 20(2)155–164, [CSA]
  • Kato H., van Chuyen N., Shinoda T., Sekiya F., Hayase F. Metabolism of 3-deoxyglucosone, an intermediate compound in the Maillard reaction, administered orally or intravenously to rats. Biochim. Biophys. Acta 1990; 1035(1)71–76, [CSA]
  • Kato S., Burke P. J., Fenick D. J., Taatjes D. J., Bierbaum V. M., Koch T. H. Mass spectrometric measurement of formaldehyde generated in breast cancer cells upon treatment with anthracycline antitumor drugs. Chem. Res. Toxicol. 2000; 13(6)509–516, [CSA], [CROSSREF]
  • Kaufman D. W., Kelly J. P., Anderson T., Harmon D. C., Shapiro S. Evaluation of case reports of aplastic anemia among patients treated with felbamate. Epilepsia 1997; 38(12)1265–1269, [CSA], [CROSSREF]
  • Kavet R., Nauss K. M. The toxicity of inhaled methanol vapors. Crit. Rev. Toxicol. 1990; 21(1)21–50, [CSA]
  • Kelley T. J., Sadola J. R., Smith D. L. Emission rates of formaldehyde and other carbonyls from consumer and industrial products found in California homes. Proc. Int. Spec. Conf. Air Waste Manage. Assoc. 1966 521–526, [CSA]
  • Kelly V. P., others. Chemoprevention of aflatoxin B1 hepatocarcinogenesis by coumarin, a natural benzopyrone that is a potent inducer of aflatoxin B1-aldehyde reductase, the glutathione S-transferase A5 and P1 subunits, and NAD(P)H:quinone oxidoreductase in rat liver. Cancer Res. 2000; 60(4)957–969, [CSA]
  • Kelson T. L., Secor M., Jr., Rizzo W. B. Human liver fatty aldehyde dehydrogenase: Microsomal localization, purification, and biochemical characterization. Biochim. Biophys. Acta 1997; 1335(1–2)99–110, [CSA]
  • Keung W. M. Human liver alcohol dehydrogenases catalyze the oxidation of the intermediary alcohols of the shunt pathway of mevalonate metabolism. Biochem. Biophys. Res. Commun. 1991; 174(2)701–707, [CSA], [CROSSREF]
  • Khan M. F., Wu X., Tipnis U. R., Ansari G. A., Boor P. J. Protein adducts of malondialdehyde and 4-hydroxynonenal in livers of iron loaded rats: Quantitation and localization. Toxicology 2002; 173(3)193–201, [CSA]
  • Khan S., Sood C., O'Brien P. J. The involvement of cytochrome P4502E1 in 2-bromoethanol-induced hepatocyte cytotoxicity. Pharmacol. Toxicol. 1996; 78(4)241–248, [CSA]
  • Kikuchi S., Shinpo K., Moriwaka F., Makita Z., Miyata T., Tashiro K. Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: Synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J. Neurosci. Res. 1999; 57(2)280–289, [CSA], [CROSSREF]
  • Kim C. W., Song J. S., Ahn Y. S., Park S. H., Park J. W., Noh J. H., Hong C. S. Occupational asthma due to formaldehyde. Yonsei Med. J. 2001; 42(4)440–445, [CSA]
  • Kirchstetter T. W., Singer B. C., Harly R. A. Impact of oxygenated gasoline use on California light-duty vehicle emissions. Environ. Sci. Technol. 1996; 30: 661–670, [CSA], [CROSSREF]
  • Kitchens J. F., Casner R. E., Edwards G. S., Harward W. E., Marci B. J. Investigation of selected potential environmental contaminants: Formaldehyde. US Environmental Protection Agency, Washington, DC 1976
  • Klaassen C. D., Fitzgerald T. J. Metabolism and biliary excretion of ethacrynic acid. J. Pharmacol. Exp. Ther. 1974; 191(3)548–556, [CSA]
  • Klyosov A. A. Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes. Biochemistry 1996; 35(14)4457–4467, [CSA], [CROSSREF]
  • Knowles S. R., Uetrecht J., Shear N. H. Idiosyncratic drug reactions: The reactive metabolite syndromes. Lancet 2000; 356(9241)1587–1591, [CSA], [CROSSREF]
  • Koh Y. H., Park Y. S., Takahashi M., Suzuki K., Taniguchi N. Aldehyde reductase gene expression by lipid peroxidation end products, MDA and HNE. Free Radical. Res. 2000; 33(6)739–746, [CSA]
  • Koivusalo M., Baumann M., Uotila L. Evidence for the identity of glutathione-dependent formaldehyde dehydrogenase and class III alcohol dehydrogenase. FEBS Lett. 1989; 257(1)105–109, [CSA], [CROSSREF]
  • Koschinsky T., He C. J., Mitsuhashi T., Bucala R., Liu C., Buenting C., Heitmann K., Vlassara H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA 1997; 94(12)6474–6479, [CSA], [CROSSREF]
  • Kozma E., Brown E., Ellis E. M., Lapthorn A. J. The high resolution crystal structure of rat liver AKR7A1: Understanding the substrate specificites of the AKR7 family. Chem. Biol. Interact. 2003; 143–144: 289–297, [CSA], [CROSSREF]
  • Kraemer R. J., Deitrich R. A. Isolation and characterization of human liver aldehyde dehydrogenase. J. Biol. Chem. 1968; 243(24)6402–6408, [CSA]
  • Kubiseski T. J., Green N. C., Borhani D. W., Flynn T. G. Studies on pig aldose reductase. Identification of an essential arginine in the primary and tertiary structure of the enzyme. J. Biol. Chem. 1994; 269(3)2183–2188, [CSA]
  • Kukielka E., Cederbaum A. I. Increased oxidation of ethylene glycol to formaldehyde by microsomes after ethanol treatment: Role of oxygen radicals and cytochrome P450. Toxicol. Lett. 1995; 78(1)9–15, [CSA], [CROSSREF]
  • Kumagai T., Nakamura Y., Osawa T., Uchida K. Role of p38 mitogen-activated protein kinase in the 4-hydroxy-2-nonenal-induced cyclooxygenase-2 expression. Arch. Biochem. Biophys. 2002; 397(2)240–245, [CSA], [CROSSREF]
  • Kuo C. L., Raner G. M., Vaz A. D., Coon M. J. Discrete species of activated oxygen yield different cytochrome P450 heme adducts from aldehydes. Biochemistry 1999; 38(32)10511–10518, [CSA], [CROSSREF]
  • Kuo C. L., Vaz A. D., Coon M. J. Metabolic activation of trans-4-hydroxy-2-nonenal, a toxic product of membrane lipid peroxidation and inhibitor of P450 cytochromes. J. Biol. Chem. 1997; 272(36)22611–22616, [CSA], [CROSSREF]
  • Kuykendall J. R., Bogdanffy M. S. Reaction kinetics of DNA-histone crosslinking by vinyl acetate and acetaldehyde. Carcinogenesis 1992; 13(11)2095–2100, [CSA]
  • Lag M., Omichinski J. G., Dybing E., Nelson S. D., Soderlund E. J. Mutagenic activity of halogenated propanes and propenes: Effect of bromine and chlorine positioning. Chem. Biol. Interact. 1994; 93(1)73–84, [CSA], [CROSSREF]
  • Lane R. H., Smathers J. L. Monitoring aldehyde production during frying by reversed-phase liquid chromatography. J. Assoc. Off. Anal. Chem. 1991; 74(6)957–960, [CSA]
  • Langlais P. J., Anderson G., Guo S. X., Bondy S. C. Increased cerebral free radical production during thiamine deficiency. Metab Brain. Dis. 1997; 12(2)137–143, [CSA]
  • Lee A. Y., Chung S. S. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 1999; 13(1)23–30, [CSA]
  • Lee K. W., Ko B. C., Jiang Z., Cao D., Chung S. S. Overexpression of aldose reductase in liver cancers may contribute to drug resistance. Anticancer Drugs 2001; 12(2)129–132, [CSA], [CROSSREF]
  • Leoncini G., Maresca M., Bonsignore A. The effect of methylglyoxal on the glycolytic enzymes. FEBS Lett. 1980; 117(1)17–18, [CSA], [CROSSREF]
  • Leung C., Chan K., Poon R., O'Brien P. J. Role of carbonyl metabolizing enzymes in anesthesia and hepatotoxicity induced by chloral hydrate and tribromoethanol in vivo and in vitro. Enzymol. Mol. Biol. Carbonyl Metab. 2004, (In press)[CSA]
  • Leuratti C., Watson M. A., Deag E. J., Welch A., Singh R., Gottschalg E., Marnett L. J., Atkin W., Day N. E., Shuker D. E., Bingham S. A. Detection of malondialdehyde DNA adducts in human colorectal mucosa: relationship with diet and the presence of adenomas. Cancer Epidemiol. Biomarkers Prev. 2002; 11(3)267–273, [CSA]
  • Li W., Yuan X. M., Ivanova S., Tracey K. J., Eaton J. W., Brunk U. T. 3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochem. J. 2003; 371(Pt 2)429–436, [CSA], [CROSSREF]
  • Li Q., Xie P., Huang J., Gu Y., Zeng W., Song H. Polymorphisms and functions of the aldose reductase gene 5' regulatory region in Chinese patients with type 2 diabetes mellitus. Chin. Med. J. (Engl.) 2002; 115(2)209–213, [CSA]
  • Liang C. C. A new approach to the study of thiamine deficiency. Nature 1960; 188: 660–661, [CSA]
  • Lipari F., Dasch J. M., Scruggs W. F. Aldehyde emissions from wood-burning fireplaces. Environ. Sci. Technol. 1984; 18: 326–330, [CSA], [CROSSREF]
  • Liteplo R. G., Meek M. E. Inhaled formaldehyde: Exposure estimation, hazard characterization, and exposure-response analysis. J. Toxicol. Environ. Health B Crit. Rev. 2003; 6(1)85–114, [CSA], [CROSSREF]
  • Liu J., others. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc. Natl. Acad. Sci. USA 2002; 99(4)2356–2361, [CSA], [CROSSREF]
  • Lo T. W., Thornalley P. J. Inhibition of proliferation of human leukaemia 60 cells by diethyl esters of glyoxalase inhibitors in vitro. Biochem. Pharmacol. 1992; 44(12)2357–2363, [CSA], [CROSSREF]
  • Lopez d. C., Marin A., Idoate M. A., Tunon M. T., Bello J. Carbonyl reductase and NADPH cytochrome P450 reductase activities in human tumoral versus normal tissues. Eur. J. Cancer 1999; 35(2)320–324, [CSA], [CROSSREF]
  • Lovell M. A., Xie C., Markesbery W. R. Acrolein is increased in Alzheimer's disease brain and is toxic to primary hippocampal cultures. Neurobiol. Aging 2001; 22(2)187–194, [CSA], [CROSSREF]
  • Luckey S. W., Taylor M., Sampey B. P., Scheinman R. I., Petersen D. R. 4-Hydroxynonenal decreases interleukin-6 expression and protein production in primary rat Kupffer cells by inhibiting nuclear factor-kappaB activation. J. Pharmacol Exp. Ther. 2002; 302(1)296–303, [CSA], [CROSSREF]
  • Luo X., Reichetzer B., Trines J., Benson L. N., Lehotay D. C. L-Carnitine attenuates doxorubicin-induced lipid peroxidation in rats. Free Radical. Biol. Med. 1999; 26(9–10)1158–1165, [CSA], [CROSSREF]
  • Madyastha K. M., Raj C. P. Studies on the metabolism of a monoterpene ketone, R-(+)-pulegone—A hepatotoxin in rat: Isolation and characterization of new metabolites. Xenobiotica 1993; 23(5)509–518, [CSA]
  • Maejima K., Suzuki T., Niwa K., Numata H., Maekawa A., Nagase S., Ishinishi N. Toxicity to rats of methanol-fueled engine exhaust inhaled continuously for 28 days. J. Toxicol. Environ. Health 1992; 37(2)293–312, [CSA]
  • Maggs J. L., Park B. K. Drug-protein conjugates—XVI. Studies of sorbinil metabolism: formation of 2-hydroxysorbinil and unstable protein conjugates. Biochem. Pharmacol 1988; 37(4)743–748, [CSA], [CROSSREF]
  • Maki P. A., Sladek N. E. Potentiation of the cytotoxic action of mafosfamide by N-isopropyl-p-formylbenzamide, a metabolite of procarbazine. Cancer Res. 1991; 51(16)4170–4175, [CSA]
  • Maki P. A., Sladek N. E. Sensitivity of aldehyde dehydrogenases in murine tumor and hematopoietic progenitor cells to inhibition by chloral hydrate as determined by the ability of chloral hydrate to potentiate the cytotoxic action of mafosfamide. Biochem. Pharmacol 1993; 45(1)231–239, [CSA], [CROSSREF]
  • Maldotti A., Chiorboli C., Bignozzi C. A. Photooxidation of 1,3-butadiene containing systems: Rate constant determination for the reaction of acrolein with hydroxyl radicals. Int. J. Chem. Kinet. 1980; 12: 905–913, [CSA], [CROSSREF]
  • Mansfield C. T., Hodge B. T., Hege R. B., Jr., Hamlin W. C. Analysis of formaldehyde in tobacco smoke by high performance liquid chromatography. J. Chromatogr. Sci. 1977; 15(8)301–302, [CSA]
  • Mantovani A., Stazi A. V., Macri C., Ricciardi C., Piccioni A., Badellino E. Pre-natal (segment II) toxicity study of cinnamic aldehyde in the Sprague-Dawley rat. Food Chem. Toxicol. 1989; 27(12)781–786, [CSA], [CROSSREF]
  • Marini S., Grasso E., Longo V., Puccini P., Riccardi B., Gervasi P. G. 4-Biphenylaldehyde and 9-anthraldehyde: Two fluorescent substrates for determining P450 enzyme activities in rat and human. Xenobiotica 2003; 33(1)1–11, [CSA], [CROSSREF]
  • Marnett L. J. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 1999; 424(1–2)83–95, [CSA]
  • Marnett L. J. Oxy radicals, lipid peroxidation and DNA damage. Toxicology 2002; 181–182: 219–222, [CSA], [CROSSREF]
  • Marnett L. J., Hurd H. K., Hollstein M. C., Levin D. E., Esterbauer H., Ames B. N. Naturally occurring carbonyl compounds are mutagens in Salmonella tester strain TA104. Mutat. Res. 1985; 148(1–2)25–34, [CSA]
  • Marnett L. J., Plastaras J. P. Endogenous DNA damage and mutation. Trends Genet. 2001; 17(4)214–221, [CSA], [CROSSREF]
  • Maser E. Xenobiotic carbonyl reduction and physiological steroid oxidoreduction. The pluripotency of several hydroxysteroid dehydrogenases. Biochem. Pharmacol. 1995; 49(4)421–440, [CSA], [CROSSREF]
  • Maser E., Friebertshauser J., Volker B. Purification, characterization and NNK carbonyl reductase activities of 11beta-hydroxysteroid dehydrogenase type 1 from human liver: Enzyme cooperativity and significance in the detoxification of a tobacco-derived carcinogen. Chem. Biol. Interact. 2003; 143–144: 435–448, [CSA], [CROSSREF]
  • Maser E., Stinner B., Atalla A. Carbonyl reduction of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) by cytosolic enzymes in human liver and lung. Cancer Lett. 2000; 148(2)135–144, [CSA], [CROSSREF]
  • Materna B. L., Jones J. R., Sutton P. M., Rothman N., Harrison R. J. Occupational exposures in California wildland fire fighting. Am. Ind. Hyg. Assoc. J. 1992; 53(1)69–76, [CSA]
  • Mereto E., Frencia L., Ghia M. Effect of aspirin on incidence and growth of aberrant crypt foci induced in the rat colon by 1,2-dimethylhydrazine. Cancer Lett. 1994; 76(1)5–9, [CSA], [CROSSREF]
  • Migliore L., Barale R., Bosco E., Giorgelli F., Minunni M., Scarpato R., Loprieno N. Genotoxicity of methylglyoxal: Cytogenetic damage in human lymphocytes in vitro and in intestinal cells of mice. Carcinogenesis 1990; 11(9)1503–1507, [CSA]
  • Mira L., Maia L., Barreira L., Manso C. F. Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism. Arch. Biochem. Biophys. 1995; 318(1)53–58, [CSA], [CROSSREF]
  • Miyata T., Saito A., Kurokawa K., Van Ypersele D. S. Advanced glycation and lipoxidation end products: Reactive carbonyl compounds-related uraemic toxicity. Nephrol. Dial. Transplant. 2001; 16(Suppl 4)8–11, [CSA]
  • Mlakar A., Spiteller G. Previously unknown aldehydic lipid peroxidation compounds of arachidonic acid. Chem. Phys. Lipids 1996; 79(1)47–53, [CSA], [CROSSREF]
  • Modig T., Liden G., Taherzadeh M. J. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem. J. 2002; 363(Pt 3)769–776, [CSA], [CROSSREF]
  • Morgan P. E., Dean R. T., Davies M. J. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Arch. Biochem. Biophys. 2002; 403(2)259–269, [CSA], [CROSSREF]
  • Moridani M. Y., Khan S., Chan T., Teng S., Beard K., O'Brien P. J. Cytochrome P450 2E1 metabolically activates propargyl alcohol: Propiolaldehyde-induced hepatocyte cytotoxicity. Chem. Biol Interact. 2001; 130–132(1–3)931–942, [CSA], [CROSSREF]
  • Morris J. B. Dosimetry, toxicity and carcinogenicity of inspired acetaldehyde in the rat. Mutat. Res. 1997; 380(1–2)113–124, [CSA]
  • Morrow J. D., others. Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N. Engl. J. Med. 1995; 332(18)1198–1203, [CSA], [CROSSREF]
  • Mottram D. S., Wedzicha B. L., Dodson A. T. Acrylamide is formed in the Maillard reaction. Nature 2002; 419(6906)448–449, [CSA], [CROSSREF]
  • Muir P. S. Fogwater chemistry in a wood-burning community, western Oregon. J. Air Waste Manage. Assoc. 1991; 41(1)32–38, [CSA]
  • Munzel P. A., Schmohl S., Heel H., Kalberer K., Bock-Hennig B. S., Bock K. W. Induction of human UDP glucuronosyltransferases (UGT1A6, UGT1A9, and UGT2B7) by t-butylhydroquinone and 2,3,7,8-tetrachlorodibenzo-p-dioxin in Caco-2 cells. Drug Metab. Dispos. 1999; 27(5)569–573, [CSA]
  • Murata-Kamiya N., Kamiya H. Methylglyoxal, an endogenous aldehyde, crosslinks DNA polymerase and the substrate DNA. Nucleic Acids Res. 2001; 29(16)3433–3438, [CSA], [CROSSREF]
  • Murata-Kamiya N., Kamiya H., Kaji H., Kasai H. Glyoxal, a major product of DNA oxidation, induces mutations at G:C sites on a shuttle vector plasmid replicated in mammalian cells. Nucleic Acids Res. 1997; 25(10)1897–1902, [CSA], [CROSSREF]
  • Murphy M. J., Dunbar D. A., Kaminsky L. S. Acute toxicity of fluorinated ether anesthetics: Role of 2,2,2-trifluoroethanol and other metabolites. Toxicol. Appl. Pharmacol. 1983; 71(1)84–92, [CSA], [CROSSREF]
  • Musatov A., Carroll C. A., Liu Y. C., Henderson G. I., Weintraub S. T., Robinson N. C. Identification of bovine heart cytochrome c oxidase subunits modified by the lipid peroxidation product 4-hydroxy-2-nonenal. Biochemistry 2002; 41(25)8212–8220, [CSA], [CROSSREF]
  • Muzio G., Salvo R. A., Taniguchi N., Maggiora M., Canuto R. A. 4–Hydroxynonenal metabolism by aldo/keto reductase in hepatoma cells. Adv. Exp. Med. Biol. 1999; 463: 445–452, [CSA]
  • Nagao M., Fujita Y., Wakabayashi K., Nukaya H., Kosuge T., Sugimura T. Mutagens in coffee and other beverages. Environ. Health Perspect. 1986; 67: 89–91, [CSA]
  • Nair J., Barbin A., Velic I., Bartsch H. Etheno DNA-base adducts from endogenous reactive species. Mutat. Res. 1999; 424(1–2)59–69, [CSA]
  • Nakamura K., Iwahashi K., Itoh M., Ameno K., Ijiri I., Takeuchi Y., Suwaki H. Immunohistochemical study on acetaldehyde adducts in alcohol-fed mice. Alcohol Clin. Exp. Res. 2000a; 24(4 Suppl.)93S–96S, [CSA]
  • Nakamura N., Obayashi H., Fujii M., Fukui M., Yoshimori K., Ogata M., Hasegawa G., Shigeta H., Kitagawa Y., Yoshikawa T., Kondo M., Ohta M., Nishimura M., Nishinaka T., Nishimura C. Y. Induction of aldose reductase in cultured human microvascular endothelial cells by advanced glycation end products. Free Radical Biol Med. 2000b; 29(1)17–25, [CSA], [CROSSREF]
  • Nakao L. S., Kadiiska M. B., Mason R. P., Grijalba M. T., Augusto O. Metabolism of acetaldehyde to methyl and acetyl radicals: In vitro and in vivo electron paramagnetic resonance spin-trapping studies. Free Radical. Biol. Med. 2000; 29(8)721–729, [CSA], [CROSSREF]
  • Neuberger J. M. Halothane and hepatitis. Incidence, predisposing factors and exposure guidelines. Drug Safety 1990; 5(1)28–38, [CSA]
  • Ni Y. C., Wong T. Y., Lloyd R. V., Heinze T. M., Shelton S., Casciano D., Kadlubar F. F., Fu P. P. Mouse liver microsomal metabolism of chloral hydrate, trichloroacetic acid, and trichloroethanol leading to induction of lipid peroxidation via a free radical mechanism. Drug Metab Dispos. 1996; 24(1)81–90, [CSA]
  • Niemela O., Parkkila S., Bradford B., Iimuro Y., Pasanen M., Thurman R. G. Effect of Kupffer cell inactivation on ethanol-induced protein adducts in the liver. Free Radical Biol. Med. 2002; 33(3)350–355, [CSA], [CROSSREF]
  • Niknahad H., Shuhendler A., Galati G., Siraki A. G., Easson E., Poon R., O'Brien P. J. Modulating carbonyl cytotoxicity in intact rat hepatocytes by inhibiting carbonyl metabolizing enzymes. II. Aromatic aldehydes. Chem. Biol. Interact. 2003a; 143–144: 119–128, [CSA], [CROSSREF]
  • Niknahad H., Siraki A. G., Shuhendler A., Khan S., Teng S., Galati G., Easson E., Poon R., O'Brien P. J. Modulating carbonyl cytotoxicity in intact rat hepatocytes by inhibiting carbonyl-metabolizing enzymes. I. Aliphatic alkenals. Chem. Biol. Interact. 2003b; 143–144: 107–117, [CSA], [CROSSREF]
  • Niwa T. 3-Deoxyglucosone: Metabolism, analysis, biological activity, and clinical implication. J. Chromatogr. B Biomed. Sci. Appl. 1999; 731(1)23–36, [CSA], [CROSSREF]
  • Nogueira A. C., Carvalho R. R., Souza C. A., Chahoud I., Paumgartten F. J. Study on the embryofeto-toxicity of citral in the rat. Toxicology 1995; 96(2)105–113, [CSA], [CROSSREF]
  • NRC. The airliner cabin environment and the health of passengers and crews. National Research Council, National Academic Press, Washington, DC 2002
  • NTP. U.S. Department of Health and Human Services, Public Health Service. 2005, National Toxicology Program. 11th Report on Carcinogens. http://ntp.niehs.nih.gov/ntp/roc/toc11.html.
  • Obach R. S. Potent inhibition of human liver aldehyde oxidase by raloxifene. Drug Metab. Dispos. 2004; 32(1)89–97, [CSA], [CROSSREF]
  • O'Brien P. J., Kaul H., McGirr L., Drolet D., Silva J. M. Molecular mechanisms for the involvement of the aldehydic metabolites of lipid peroxides in cytotoxicity and carcinogenesis. The pharmacological effects of lipids III, J. J. Kabara. Library of Congress, Washinggton, DC 1989; 266–267
  • O'Connor T., Ireland L. S., Harrison D. J., Hayes J. D. Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo-keto reductase AKR1 family members. Biochem. J. 1999; 343(Pt 2)487–504, [CSA]
  • Odani H., Shinzato T., Usami J., Matsumoto Y., Brinkmann F. E., Baynes J. W., Maeda K. Imidazolium crosslinks derived from reaction of lysine with glyoxal and methylglyoxal are increased in serum proteins of uremic patients: Evidence for increased oxidative stress in uremia. FEBS Lett. 1998; 427(3)381–385, [CSA], [CROSSREF]
  • Okado-Matsumoto A., Fridovich I. The role of alpha,beta-dicarbonyl compounds in the toxicity of short chain sugars. J. Biol. Chem. 2000; 275(45)34853–34857, [CSA], [CROSSREF]
  • Olcerst R. Paraformaldehyde sterilant use in vocational high school program. Appl. Occup. Environ. Hyg. 1999; 14(6)391–396, [CSA], [CROSSREF]
  • Oliveira O. M., Haun M., Duran N., O'Brien P. J., O'Brien C. R., Bechara E. J., Cilento G. Enzyme-generated electronically excited carbonyl compounds, Acetone phosphorescence during the peroxidase-catalyzed aerobic oxidation of isobutanal. J. Biol. Chem. 1978; 253(13)4707–4712, [CSA]
  • Ou J. J., Zhang Y., Montine T. J. In vivo assessment of lipid peroxidation products associated with age-related neurodegenerative diseases. Exp. Neurol. 2002; 175(2)363–369, [CSA], [CROSSREF]
  • Palackal N. T., Burczynski M. E., Harvey R. G., Penning T. M. The ubiquitous aldehyde reductase (AKR1A1) oxidizes proximate carcinogen trans-dihydrodiols to o-quinones: Potential role in polycyclic aromatic hydrocarbon activation. Biochemistry 2001; 40(36)10901–10910, [CSA], [CROSSREF]
  • Palackal N. T., Lee S. H., Harvey R. G., Blair I. A., Penning T. M. Activation of polycyclic aromatic hydrocarbon trans-dihydrodiol proximate carcinogens by human aldo-keto reductase (AKR1C) enzymes and their functional overexpression in human lung carcinoma (A549) cells. J. Biol. Chem. 2002; 277(27)24799–24808, [CSA], [CROSSREF]
  • Pannunzio P., Hazell A. S., Pannunzio M., Rao K. V., Butterworth R. F. Thiamine deficiency results in metabolic acidosis and energy failure in cerebellar granule cells: An in vitro model for the study of cell death mechanisms in Wernicke's encephalopathy. J. Neurosci. Res. 2000; 62(2)286–292, [CSA], [CROSSREF]
  • Pappas P., Sotiropoulou M., Karamanakos P., Kostoula A., Levidiotou S., Marselos M. Acute-phase response to benzo[a]pyrene and induction of rat ALDH3A1. Chem. Biol. Interact. 2003; 143–144: 55–62, [CSA], [CROSSREF]
  • Paradies G., Petrosillo G., Pistolese M., Ruggiero F. M. Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 2002; 286(1)135–141, [CSA], [CROSSREF]
  • Park K. S., Cho S. Y., Kim H., Paik Y. K. Proteomic alterations of the variants of human aldehyde dehydrogenase isozymes correlate with hepatocellular carcinoma. Int. J. Cancer 2002; 97(2)261–265, [CSA], [CROSSREF]
  • Park Y. S., Koh Y. H., Takahashi M., Miyamoto Y., Suzuki K., Dohmae N., Takio K., Honke K., Taniguchi N. Identification of the binding site of methylglyoxal on glutathione peroxidase: methylglyoxal inhibits glutathione peroxidase activity via binding to glutathione binding sites Arg 184 and 185. Free Radical. Res. 2003; 37(2)205–211, [CSA], [CROSSREF]
  • Patel J. M., Wood J. C., Leibman K. C. The biotransformation of allyl alcohol and acrolein in rat liver and lung preparations. Drug Metab Dispos. 1980; 8(5)305–308, [CSA]
  • Patlewicz G., Basketter D. A., Smith C. K., Hotchkiss S. A., Roberts D. W. Skin-sensitization structure-activity relationships for aldehydes. Contact Dermatitis 2001; 44(6)331–336, [CSA], [CROSSREF]
  • Pellock J. M. Felbamate. Epilepsia 1999; 40(Suppl 5)S57–S62, [CSA], [CROSSREF]
  • Pethig R., Szent-Gyorgyi A. Electronic properties of the casein-methylglyoxal complex. Proc. Natl. Acad. Sci. USA 1977; 74(1)226–228, [CSA]
  • Picklo M. J., Montine T. J. Acrolein inhibits respiration in isolated brain mitochondria. Biochem. Biophys. Acta 1991; 1535(2)145–152, [CSA]
  • Picklo M. J., Montine T. J., Amarnath V., Neely M. D. Carbonyl toxicology and Alzheimers disease. Toxicol. Appl. Pharmaco. 2002; 184: 187–197, [CSA], [CROSSREF]
  • Pickrell J. A., Mokler B. V., Griffis L. C., Hobbs C. H. Formaldehyde release rate coefficients from selected consumer products. Eniron. Sci. Technol. 1983; 17: 753–757, [CSA], [CROSSREF]
  • Pietruszko R., Chern M. Betaine aldehyde dehydrogenase from rat liver mitochondrial matrix. Chem. Biol. Interact. 2001; 130–132(1–3)193–199, [CSA], [CROSSREF]
  • Pocernich C. B., Cardin A. L., Racine C. L., Lauderback C. M., Butterfield D. A. Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: Relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem. Int. 2001; 39(2)141–149, [CSA], [CROSSREF]
  • Rae C., Berners-Price S. J., Bulliman B. T., Kuchel P. W. Kinetic analysis of the human erythrocyte glyoxalase system using 1H NMR and a computer model. Eur. J. Biochem. 1990; 193(1)83–90, [CSA], [CROSSREF]
  • Ramana K. V., others. Characterization of the glutathione binding site of aldose reductase. Chem. Biol. Interact. 2001; 130–132(1–3)537–548, [CSA], [CROSSREF]
  • Ramdahl T., Alfheim I., Rustad S., Olsen T. Chemical and biological characterization of emissions from small residential stoves burning wood and charcoal. Chemosphere 1982; 11: 601–612, [CSA], [CROSSREF]
  • Raner G. M., Chiang E. W., Vaz A. D., Coon M. J. Mechanism-based inactivation of cytochrome P450 2B4 by aldehydes: Relationship to aldehyde deformylation via a peroxyhemiacetal intermediate. Biochemistry 1997; 36(16)4895–4902, [CSA], [CROSSREF]
  • Rao X., Kobayashi R., White-Morris R., Spaulding R., Frazey P., Charles M. J. GC/ITMS measurement of carbonyls and multifunctional carbonyls in PM2.5 particles emitted from motor vehicles. J. AOAC Int. 2001; 84(3)699–705, [CSA]
  • Rastogi S. C., Heydorn S., Johansen J. D., Basketter D. A. Fragrance chemicals in domestic and occupational products. Contact Dermatitis 2001; 45(4)221–225, [CSA], [CROSSREF]
  • Ravindranath V., Boyd M. R. Metabolic activation of 2-methylfuran by rat microsomal systems. Toxicol. Appl. Pharmacol. 1985; 78(3)370–376, [CSA], [CROSSREF]
  • Ray S., Ray M. Purification and characterization of NAD and NADP-linked alpha-ketoaldehyde dehydrogenases involved in catalyzing the oxidation of methylglyoxal to pyruvate. J. Biol. Chem. 1982; 257(18)10566–10570, [CSA]
  • Rekha G. K., Devaraj V. R., Sreerama L., Lee M. J., Nagasawa H. T., Sladek N. E. Inhibition of human class 3 aldehyde dehydrogenase, and sensitization of tumor cells that express significant amounts of this enzyme to oxazaphosphorines, by chlorpropamide analogues. Biochem. Pharmacol. 1998; 55(4)465–474, [CSA], [CROSSREF]
  • Requena J. R., Chao C. C., Levine R. L., Stadtman E. R. Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins. Proc. Natl. Acad. Sci. USA 2001; 98(1)69–74, [CSA], [CROSSREF]
  • Ress N. B., Hailey J. R., Maronpot R. R., Bucher J. R., Travlos G. S., Haseman J. K., Orzech D. P., Johnson J. D., Hejtmancik M. R. Toxicology and carcinogenesis studies of microencapsulated citral in rats and mice. Toxicol. Sci. 2003; 71(2)198–206, [CSA], [CROSSREF]
  • Richard J. P. Kinetic parameters for the elimination reaction catalyzed by triosephosphate isomerase and an estimation of the reaction's physiological significance. Biochemistry 1991; 30(18)4581–4585, [CSA], [CROSSREF]
  • Rickert W. S., Robinson J. C., Young J. C. Estimating the hazards of “less hazardous” cigarettes. I. Tar, nicotine, carbon monoxide, acrolein, hydrogen cyanide, and total aldehyde deliveries of Canadian cigarettes. J. Toxicol. Environ. Health 1980; 6(2)351–365, [CSA]
  • Riedel K., Weller R., Schrems O. Variability of formaldehyde in the Antartic troposphere. Phys. Chem. Chem. Phys. 1999; 1: 5523–5527, [CSA], [CROSSREF]
  • Roberts M. J., Wondrak G. T., Laurean D. C., Jacobson M. K., Jacobson E. L. DNA damage by carbonyl stress in human skin cells. Mutat. Res. 2003; 522(1–2)45–56, [CSA]
  • Robino G., Zamara E., Novo E., Dianzani M. U., Parola M. 4-Hydroxy-2,3-alkenals as signal molecules modulating proliferative and adaptative cell responses. Biofactors 2001; 15(2–4)103–106, [CSA]
  • Rodriguez-Vicente J., Vicente-Ortega V., Canteras-Jordana M. The effects of different antineoplastic agents and of pretreatment by modulators on three melanoma lines. Cancer 1998; 82(3)495–502, [CSA]
  • Roffey S. J., Walker R., Gibson G. G. Hepatic peroxisomal and microsomal enzyme induction by citral and linalool in rats. Food Chem. Toxicol. 1990; 28(6)403–408, [CSA], [CROSSREF]
  • Rolla R., Vay D., Mottaran E., Parodi M., Traverso N., Arico S., Sartori M., Bellomo G., Klassen L. W., Thiele G. M., Tuma D. J., Albano E. Detection of circulating antibodies against malondialdehyde-acetaldehyde adducts in patients with alcohol-induced liver disease. Hepatology 2000; 31(4)878–884, [CSA], [CROSSREF]
  • Rosca M. G., Monnier V. M., Szweda L. I., Weiss M. F. Alterations in renal mitochondrial respiration in response to the reactive oxoaldehyde methylglyoxal. Am. J. Physiol. Renal Physiol. 2002; 283(1)F52–F59, [CSA]
  • Russo J., Chung S., Contreras K., Lian B., Lorenz J., Stevens D., Trousdell W. Identification of 4-(N,N-dipropylamino)benzaldehyde as a potent, reversible inhibitor of mouse and human class I aldehyde dehydrogenase. Biochem. Pharmacol 1995; 50(3)399–406, [CSA], [CROSSREF]
  • Russo J. E., Hilton J. Characterization of cytosolic aldehyde dehydrogenase from cyclophosphamide resistant L1210 cells. Cancer Res. 1988; 48(11)2963–2968, [CSA]
  • Sady C., Jiang C. L., Chellan P., Madhun Z., Duve Y., Glomb M. A., Nagaraj R. H. Maillard reactions by alpha-oxoaldehydes: Detection of glyoxal-modified proteins. Biochim. Biophys. Acta 2000; 1481(2)255–264, [CSA]
  • Saint-Jalm Y., Moree-Testa P. Study of nitrogen-containing compounds in cigarette smoke by gas chromatography-mass spectrometry. J. Chromatogr. 1980; 198(2)188–192, [CSA], [CROSSREF]
  • Sakamoto H., Mashima T., Kizaki A., Dan S., Hashimoto Y., Naito M., Tsuruo T. Glyoxalase I is involved in resistance of human leukemia cells to antitumor agent-induced apoptosis. Blood 2000; 95(10)3214–3218, [CSA]
  • Sato J., Wang Y. M., van Eys J. Methylglyoxal formation in rat liver cells. J. Biol. Chem. 1980; 255(5)2046–2050, [CSA]
  • Schalkwijk C. G., Posthuma N., ten Brink H. J., ter Wee P. M., Teerlink T. Induction of 1,2-dicarbonyl compounds, intermediates in the formation of advanced glycation end-products, during heat-sterilization of glucose-based peritoneal dialysis fluids. Perit. Dial. Int. 1999; 19(4)325–333, [CSA]
  • Schneider C., Tallman K. A., Porter N. A., Brash A. R. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J. Biol. Chem. 2001; 276(24)20831–20838, [CSA], [CROSSREF]
  • Sciotti M., Wermuth B. Coenzyme specificity of human monomeric carbonyl reductase: Contribution of Lys-15, Ala-37 and Arg-38. Chem. Biol. Interact. 2001; 130–132(1–3)871–878, [CSA], [CROSSREF]
  • Seiler N. Oxidation of polyamines and brain injury. Neurochem. Res. 2000; 25(4)471–490, [CSA], [CROSSREF]
  • Shah J., Singh H. B. Distribution of volatile organic chemicals in outdoor and indoor air. Environ. Sci. Technol. 1988; 22: 1381–1388, [CSA], [CROSSREF]
  • Shangari N., Bruce W. R., Poon R., O'Brien P. J. Toxicity of glyoxals—Role of oxidative stress, metabolic detoxification and thiamine deficiency. Biochem. Soc. Trans. 2003; 31(Pt 6)1390–1393, [CSA]
  • Shangari N., O'Brien P. J. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem. Pharmacol 2004; 68(7)1433–1442, [CSA], [CROSSREF]
  • Shangari N., O'Brien P. J. Hepatocyte methylglyoxal (MG) resistance is overcome by inhibiting aldo-keto reductases (AKRs) and glyoxalase (GLO I) catalyzed MG metabolism. Enzymology and Molecular Biology of Carbonyl Metabolism 12 Proceedings 2005, (In press)[CSA]
  • Shara M. A., Dickson P. H., Bagchi D., Stohs S. J. Excretion of formaldehyde, malondialdehyde, acetaldehyde and acetone in the urine of rats in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin, paraquat, endrin and carbon tetrachloride. J. Chromatogr. 1992; 576(2)221–233, [CSA]
  • Sharpe A. L., Carter D. E. Substrate specificity of rat liver aldehyde dehydrogenase with chloroacetaldehydes. J. Biochem. Toxicol. 1993; 8(3)155–160, [CSA]
  • Shaw S., Jayatilleke E. Ethanol-induced iron mobilization: Role of acetaldehyde–aldehyde oxidase generated superoxide. Free Radical. Biol. Med. 1990; 9(1)11–17, [CSA], [CROSSREF]
  • Sheader E. A., Benson R. S., Best L. Cytotoxic action of methylglyoxal on insulin-secreting cells. Biochem. Pharmacol. 2001; 61(11)1381–1386, [CSA], [CROSSREF]
  • Shinpo K., Kikuchi S., Sasaki H., Ogata A., Moriwaka F., Tashiro K. Selective vulnerability of spinal motor neurons to reactive dicarbonyl compounds, intermediate products of glycation, in vitro: Implication of inefficient glutathione system in spinal motor neurons. Brain Res. 2000; 861(1)151–159, [CSA], [CROSSREF]
  • Shringarpure R., Grune T., Davies K. J. Protein oxidation and 20S proteasome-dependent proteolysis in mammalian cells. Cell Mol. Life Sci. 2001; 58(10)1442–1450, [CSA]
  • Siems W. G., Zollner H., Grune T., Esterbauer H. Metabolic fate of 4-hydroxynonenal in hepatocytes: 1,4-Dihydroxynonene is not the main product. J. Lipid Res. 1997; 38(3)612–622, [CSA]
  • Silva J. M., O'Brien P. J. Allyl alcohol- and acrolein-induced toxicity in isolated rat hepatocytes. Arch. Biochem. Biophys. 1989; 275(2)551–558, [CSA], [CROSSREF]
  • Simpson G. L., Ortwerth B. J. The non-oxidative degradation of ascorbic acid at physiological conditions. Biochim. Biophys. Acta 2000; 1501(1)12–24, [CSA]
  • Singh R., Barden A., Mori T., Beilin L. Advanced glycation end-products: A review. Diabetologia 2001; 44(2)129–146, [CSA], [CROSSREF]
  • Sitte N., Merker K., Von Zglinicki T., Grune T. Protein oxidation and degradation during proliferative senescence of human MRC-5 fibroblasts. Free Radical Biol. Med. 2000; 28(5)701–708, [CSA], [CROSSREF]
  • Skrzydlewska E., Elas M., Farbiszewski R., Roszkowska A. Effect of methanol intoxication on free-radical induced protein oxidation. J. Appl. Toxicol. 2000; 20(3)239–243, [CSA], [CROSSREF]
  • Sladek N. E., Landkamer G. J. Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase activity in cultured oxazaphosphorine-resistant L1210 and cross-linking agent-resistant P388 cell lines. Cancer Res. 1985; 45(4)1549–1555, [CSA]
  • Smith C. J., Hansch C. The relative toxicity of compounds in mainstream cigarette smoke condensate. Food Chem. Toxicol. 2000; 38(7)637–646, [CSA], [CROSSREF]
  • Smith C. K., Moore C. A., Elahi E. N., Smart A. T., Hotchkiss S. A. Human skin absorption and metabolism of the contact allergens, cinnamic aldehyde, and cinnamic alcohol. Toxicol. Appl. Pharmacol. 2000; 168(3)189–199, [CSA], [CROSSREF]
  • Smith D. J., Salmi M., Bono P., Hellman J., Leu T., Jalkanen S. Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. J. Exp. Med. 1998; 188(1)17–27, [CSA], [CROSSREF]
  • Sohn O. S., Fiala E. S., Requeijo S. P., Weisburger J. H., Gonzalez F. J. Differential effects of CYP2E1 status on the metabolic activation of the colon carcinogens azoxymethane and methylazoxymethanol. Cancer Res. 2001; 61(23)8435–8440, [CSA]
  • Sood C., O'Brien P. J. Molecular mechanisms of chloroacetaldehyde-induced cytotoxicity in isolated rat hepatocytes. Biochem. Pharmacol. 1993; 46(9)1621–1626, [CSA], [CROSSREF]
  • Sood C., O'Brien P. J. 2-Chloroacetaldehyde-induced cerebral glutathione depletion and neurotoxicity. Br. J. Cancer Suppl. 1996; 27: S287–S293, [CSA]
  • Spalding J. W. Toxicology and carcinogenesis studies of malondialdehyde sodium salt (3-hydroxy-2-propenal, sodium salt) in F344/N rats and B6C3F1 mice. NTP Tech. Rep. 1988; 331: 5–13, [CSA]
  • Spencer S. R., Xue L. A., Klenz E. M., Talalay P. The potency of inducers of NAD(P)H:(quinone-acceptor) oxidoreductase parallels their efficiency as substrates for glutathione transferases. Structural and electronic correlations. Biochem. J. 1991; 273(Pt 3)711–717, [CSA]
  • Spiteller P., Kern W., Reiner J., Spiteller G. Aldehydic lipid peroxidation products derived from linoleic acid. Biochim. Biophys. Acta 2001; 1531(3)188–208, [CSA]
  • Srivastava S., Watowich S. J., Petrash J. M., Srivastava S. K., Bhatnagar A. Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry 1999; 38(1)42–54, [CSA], [CROSSREF]
  • Stadtman E. R., Levine R. L. Protein oxidation. Ann. NY Acad. Sci. 2000; 899: 191–208, [CSA]
  • Stewart M. J., Malek K., Xiao Q., Dipple K. M., Crabb D. W. The novel aldehyde dehydrogenase gene, ALDH5, encodes an active aldehyde dehydrogenase enzyme. Biochem. Biophys. Res. Commun. 1995; 211(1)144–151, [CSA], [CROSSREF]
  • Sugimura T., Sato S. Mutagens-carcinogens in foods. Cancer Res. 1983; 43(5 Suppl.)2415s–2421s, [CSA]
  • Svensson S., Some M., Lundsjo A., Helander A., Cronholm T., Hoog J. O. Activities of human alcohol dehydrogenases in the metabolic pathways of ethanol and serotonin. Eur. J. Biochem. 1999; 262(2)324–329, [CSA], [CROSSREF]
  • Sverdrup G. M., Riggs K. B., Kelley T. J., Barrett R. E., Peltier R. G. Toxic emissions from a cyclone burner boiler with an ESP and with the SNOX demonstration and from a pulverized coal burner boiler with an ESP/wet flue gas desulfurization system. Government Reports Announcements & Indexes. 1994; 21: 16, [CSA]
  • Takahashi M., Fujii J., Miyoshi E., Hoshi A., Taniguchi N. Elevation of aldose reductase gene expression in rat primary hepatoma and hepatoma cell lines: Implication in detoxification of cytotoxic aldehydes. Int. J. Cancer 1995a; 62(6)749–754, [CSA]
  • Takahashi M., Lu Y. B., Myint T., Fujii J., Wada Y., Taniguchi N. In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: Identification of glycation sites. Biochemistry 1995b; 34(4)1433–1438, [CSA], [CROSSREF]
  • Takahashi M., Okamiya H., Furukawa F., Toyoda K., Sato H., Imaida K., Hayashi Y. Effects of glyoxal and methylglyoxal administration on gastric carcinogenesis in Wistar rats after initiation with N-methyl-N′-nitro-N-nitrosoguanidine. Carcinogenesis 1989; 10(10)1925–1927, [CSA]
  • Talesa V., Uotila L., Koivusalo M., Principato G., Giovannini E., Rosi G. Isolation of glyoxalase II from two different compartments of rat liver mitochondria. Kinetic and immunochemical characterization of the enzymes. Biochim. Biophys. Acta 1989; 993(1)7–11, [CSA]
  • Tatman D., Mo H. Volatile isoprenoid constituents of fruits, vegetables and herbs cumulatively suppress the proliferation of murine B16 melanoma and human HL-60 leukemia cells. Cancer Lett. 2002; 175(2)129–139, [CSA]
  • Taylor J. M., Jenner P. M., Jones W. I. A Comparison of the toxicity of some allyl, propenyl, and propyl compounds in the rat. Toxicol. Appl. Pharmacol. 1964; 84: 378–387, [CSA]
  • Teng S., Beard K., Pourahmad J., Moridani M., Easson E., Poon R., O'Brien P. J. The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes. Chem. Biol. Interact. 2001; 130–132(1–3)285–296, [CSA], [CROSSREF]
  • Thompson J. S., Brown S. A., Khurdayan V., Zeynalzadedan A., Sullivan P. G., Scheff S. W. Early effects of tribromoethanol, ketamine/xylazine, pentobarbitol, and isoflurane anesthesia on hepatic and lymphoid tissue in ICR mice. Comp Med. 2002; 52(1)63–67, [CSA]
  • Thornalley P. J., Stern A. The effect of glyceraldehyde on red cells. Haemoglobin status, oxidative metabolism and glycolysis. Biochim Biophys Acta 1984; 804(3)308–323, [CSA], [CROSSREF]
  • Thornalley P. J. Monosaccharide autoxidation in health and disease. Environ. Health Perspect. 1985; 64: 297–307, [CSA]
  • Thornalley P. J. The glyoxalase system in health and disease. Mol. Aspects Med. 1993; 14(4)287–371, [CSA], [CROSSREF]
  • Thornalley P. J. Pharmacology of methylglyoxal: Formation, modification of proteins and nucleic acids, and enzymatic detoxification—A role in pathogenesis and antiproliferative chemotherapy. Gen. Pharmacol. 1996; 27(4)565–573, [CSA]
  • Thornalley P. J. Glutathione-dependent detoxification of alpha-oxoaldehydes by the glyoxalase system: Involvement in disease mechanisms and antiproliferative activity of glyoxalase I inhibitors. Chem. Biol. Interact. 1998; 111–112: 137–151, [CSA], [CROSSREF]
  • Thornalley P. J. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch. Biochem. Biophys. 2003; 419(1)31–40, [CSA], [CROSSREF]
  • Thornalley P. J., Jahan I., Ng R. Suppression of the accumulation of triosephosphates and increased formation of methylglyoxal in human red blood cells during hyperglycaemia by thiamine in vitro. J. Biochem. (Tokyo) 2001; 129(4)543–549, [CSA]
  • Thornalley P. J., Langborg A., Minhas H. S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999; 344(Pt 1)109–116, [CSA], [CROSSREF]
  • Thornalley P. J., Tisdale M. J. Inhibition of proliferation of human promyelocytic leukaemia HL60 cells by S-D-lactoylglutathione in vitro. Leukocyte Res. 1988; 12(11–12)897–904, [CSA], [CROSSREF]
  • Thrasher J. D., Kilburn K. H. Embryo toxicity and teratogenicity of formaldehyde. Arch. Environ. Health 2001; 56(4)300–311, [CSA]
  • Tipnis U. R., He G. Y., Khan M. F. Differential induction of polyamine oxidase activity in liver and heart of iron-overloaded rats. J. Toxicol. Environ. Health 1997; 51(3)235–244, [CSA], [CROSSREF]
  • Tsukushi S., Katsuzaki T., Aoyama I., Takayama F., Miyazaki T., Shimokata K., Niwa T. Increased erythrocyte 3-DG and AGEs in diabetic hemodialysis patients: Role of the polyol pathway. Kidney Int. 1999; 55(5)1970–1976, [CSA], [CROSSREF]
  • Tsuruda L., Hou Y., Penning T. M. Stable expression of rat dihydrodiol dehydrogenase (AKR1C9) in human breast MCF-7 cells results in the formation of PAH-o-quinones and enzyme mediated cell death. Chem. Res. Toxicol. 2001; 14(7)856–862, [CSA], [CROSSREF]
  • Uchida K. Role of reactive aldehyde in cardiovascular diseases. Free Radical. Biol. Med. 2000; 28(12)1685–1696, [CSA], [CROSSREF]
  • Uchida K., Kanematsu M., Morimitsu Y., Osawa T., Noguchi N., Niki E. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins. J. Biol. Chem. 1998; 273(26)16058–16066, [CSA], [CROSSREF]
  • Uchida K., Stadtman E. R. Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. J. Biol. Chem. 1993; 268(9)6388–6393, [CSA]
  • Uchimura T., Nakano K., Hashiguchi T., Iwamoto H., Miura K., Yoshimura Y., Hanyu N., Hirata K., Imakuma M., Motomiya Y., Maruyama I. Elevation of N-(carboxymethyl)valine residue in hemoglobin of diabetic patients. Its role in the development of diabetic nephropathy. Diabetes Care 2001; 24(5)891–896, [CSA]
  • Udovikova E. A., Wojtczak L. Mitochondrial aldehyde reductase: identification and characterization in rat liver and kidney cortex. Int. J. Biochem. Cell. Biol. 1998; 30(5)597–608, [CSA], [CROSSREF]
  • Ueda Y., Miyata T., Goffin E., Yoshino A., Inagi R., Ishibashi Y., Izuhara Y., Saito A., Kurokawa K., Van Ypersele, De Strihou. Effect of dwell time on carbonyl stress using icodextrin and amino acid peritoneal dialysis fluids. Kidney Int. 2000; 58(6)2518–2524, [CSA], [CROSSREF]
  • Uemitsu N., Kawasaki H., Furuhashi T., Miyoshi K., Ohtaka T., Nomura A., Hasegawa T., Shimizu Y., Nakazawa M. Acute and subacute toxicity studies and local irritation study of glutaraldehyde. Oyo Yakuri 1976; 12: 11–32, [CSA]
  • Ueno H., Nakamuro K., Sayato Y., Okada S. DNA lesion in rat hepatocytes induced by in vitro and in vivo exposure to glyoxal. Mutat. Res. 1991; 260(1)115–119, [CSA], [CROSSREF]
  • Ukeda H., Hasegawa Y., Ishi T., Sawamura M. Inactivation of Cu,Zn-superoxide dismutase by intermediates of Maillard reaction and glycolytic pathway and some sugars. Biosci. Biotechnol. Biochem. 1997; 61(12)2039–2042, [CSA]
  • Umano K., Hagi Y., Shibamoto T. Volatile chemicals identified in extracts from newly hybrid citrus, dekopon (Shiranuhi mandarin Suppl. J.). J. Agric. Food Chem. 2002; 50(19)5355–5359, [CSA], [CROSSREF]
  • Usami N., Kitahara K., Ishikura S., Nagano M., Sakai S., Hara A. Characterization of a major form of human isatin reductase and the reduced metabolite. Eur. J. Biochem. 2001; 268(22)5755–5763, [CSA], [CROSSREF]
  • Vallari R. C., Pietruszko R. Kinetic mechanism of the human cytoplasmic aldehyde dehydrogenase E1. Arch. Biochem. Biophys. 1981; 212(1)9–19, [CSA], [CROSSREF]
  • van Iersel M. L., Ploemen J. P., Lo B. M., Federici G., van Bladeren P. J. Interactions of alpha, beta-unsaturated aldehydes and ketones with human glutathione S-transferase P1–1. Chem. Biol. Interact. 1997; 108(1–2)67–78, [CSA], [CROSSREF]
  • vander Jagt D. L. Glutathione: Chemical, biochemical, and medical aspects, O. Avramovic, D. Dolphin, R. Poulson. Wiley, New York 1989
  • vander Jagt D. L., Hunsaker L. A. Methylglyoxal metabolism and diabetic complications: Roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chem. Biol. Interact. 2003; 143–144: 341–351, [CSA], [CROSSREF]
  • vander Jagt D. L., Hunsaker L. A., Vander Jagt T. J., Gomez M. S., Gonzales D. M., Deck L. M., Royer R. E. Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem. Pharmacol. 1997a; 53(8)1133–1140, [CSA], [CROSSREF]
  • vander Jagt D. L., Kolb N. S., Vander Jagt T. J., Chino J., Martinez F. J., Hunsaker L. A., Royer R. E. Substrate specificity of human aldose reductase: identification of 4-hydroxynonenal as an endogenous substrate. Biochim. Biophys. Acta 1995; 1249(2)117–126, [CSA]
  • vander Jagt D. L., Robinson B., Taylor K. K., Hunsaker L. A. Reduction of trioses by NADPH-dependent aldo-keto reductases. Aldose reductase, methylglyoxal, and diabetic complications. J. Biol. Chem. 1992; 267(7)4364–4369, [CSA]
  • vander Jagt D. L., Torres J. E., Hunsaker L. A., Deck L. M., Royer R. E. Physiological substrates of human aldose and aldehyde reductases. Adv. Exp. Med. Biol. 1997b; 414: 491–497, [CSA]
  • Vasdev S., Longerich L., Gill V. Prevention of fructose-induced hypertension by dietary vitamins. Clin. Biochem. 2004; 37(1)1–9, [CSA], [CROSSREF]
  • Vasiliou V., Pappa A. Polymorphisms of human aldehyde dehydrogenases. Consequences for drug metabolism and disease. Pharmacology 2000; 61(3)192–198, [CSA], [CROSSREF]
  • Vasiliou V., Pappa A., Petersen D. R. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem. Biol. Interact. 2000b; 129(1–2)1–19, [CSA], [CROSSREF]
  • Vay D., Parodi M., Rolla R., Mottaran E., Vidali M., Bellomo G., Albano E. Circulating antibodies recognizing malondialdehyde-modified proteins in healthy subjects. Free Radical. Biol. Med. 2001; 30(3)277–286, [CSA], [CROSSREF]
  • Verzijl N., DeGroot J., Oldehinkel E., Bank R. A., Thorpe S. R., Baynes J. W., Bayliss M. T., Bijlsma J. W., Lafeber F. P., TeKoppele J. M. Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem. J. 2000; 350(Pt 2)381–387, [CSA], [CROSSREF]
  • Vidal F., Perez J., Morancho J., Pinto B., Richart C. Hepatic alcohol dehydrogenase activity in alcoholic subjects with and without liver disease. Gut 1990; 31(6)707–711, [CSA]
  • Vidal F., Toda R., Gutierrez C., Broch M., Fernandez-Muixi F., Lorenzo A., Richart C. Influence of chronic alcohol abuse and liver disease on hepatic aldehyde dehydrogenase activity. Alcohol 1998; 15(1)3–8, [CSA], [CROSSREF]
  • Vlassara H., Palace M. R. Diabetes and advanced glycation endproducts. J. Intern. Med. 2002; 251(2)87–101, [CSA], [CROSSREF]
  • Vogt-Moller P. Ist Avitaminosis B1 eine intoxication mit methylglyoxal. Biochem. Z. 1931; 233: 248–250, [CSA]
  • Walsh J. S., Reese M. J., Thurmond L. M. The metabolic activation of abacavir by human liver cytosol and expressed human alcohol dehydrogenase isozymes. Chem. Biol. Interact. 2002; 142(1–2)135–154, [CSA], [CROSSREF]
  • Wang R. S., Nakajima T., Honma T. Trichloroethylene inhibits aldehyde dehydrogenase only for aliphatic aldehydes of short chains in rats. Toxicology 1999; 132(1)9–18, [CSA], [CROSSREF]
  • Wang R. S., Nakajima T., Kawamoto T., Honma T. Effects of aldehyde dehydrogenase-2 genetic polymorphisms on metabolism of structurally different aldehydes in human liver. Drug Metab. Dispos. 2002; 30(1)69–73, [CSA], [CROSSREF]
  • Wells-Knecht K. J., Brinkmann E., Wells-Knecht M. C., Litchfield J. E., Ahmed M. U., Reddy S., Zyzak D. V., Thorpe S. R., Baynes J. W. New biomarkers of Maillard reaction damage to proteins. Nephrol. Dial. Transplant. 1996; 11(Suppl 5)41–47, [CSA]
  • Wells-Knecht K. J., Zyzak D. V., Litchfield J. E., Thorpe S. R., Baynes J. W. Mechanism of autoxidative glycosylation: Identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 1995; 34(11)3702–3709, [CSA], [CROSSREF]
  • Wermuth B., Burgisser H., Bohren K., von Wartburg J. P. Purification and characterization of human-brain aldose reductase. Eur. J. Biochem. 1982; 127(2)279–284, [CSA], [CROSSREF]
  • Wermuth B., Platts K. L., Seidel A., Oesch F. Carbonyl reductase provides the enzymatic basis of quinone detoxication in man. Biochem. Pharmacol. 1986; 35(8)1277–1282, [CSA], [CROSSREF]
  • Weschler C. J., Shields H. C. Potential reactions among indoor pollutants. Atmos. Environ. 1997; 31: 3487–3495, [CSA]
  • Wheeler R. W., Hearl F. J., McCawley M. (1980) An industrial hygiene characterization of exposure to diesel emissions in an underground coal mine. Health effects of diesel engine emissions: Proccedings of an international symposium. December, 3–51979, W. E. Peplko, R. M. Danner, N. A. Clarke. US Environmental Protection Agency, Health Effects Research Laboratory, Cincinnati, OH, EPA-600/9–80-0576
  • WHO. Hexamethlenetetramine. WHO Food Additives Series No.5. International Progamme on Chemical Safety, World Health Organization, Geneva 1974
  • WHO. Formaldehyde. Environmental Health Criteria 89. International Programme on Chemical Safety, World Health Organization, Geneva 1989
  • Wieslander A. P., Andren A. H., Nilsson-Thorell C., Muscalu N., Kjellstrand P. T., Rippe B. Are aldehydes in heat-sterilized peritoneal dialysis fluids toxic in vitro. Perit. Dial. Int. 1995a; 15(8)348–352, [CSA]
  • Wieslander A. P., Kjellstrand P. T., Rippe B. Heat sterilization of glucose-containing fluids for peritoneal dialysis: Biological consequences of chemical alterations. Perit. Dial. Int. 1995b; 15(7 Suppl)S52–S59, [CSA]
  • Willis M. S., Klassen L. W., Tuma D. J., Sorrell M. F., Thiele G. M. In vitro exposure to malondialdehyde-acetaldehyde adducted protein inhibits cell proliferation and viability. Alcohol Clin. Exp. Res. 2002; 26(2)158–164, [CSA]
  • Witz G. Biological interactions of alpha,beta-unsaturated aldehydes. Free Radical Biol. Med. 1989; 7(3)333–349, [CSA], [CROSSREF]
  • Wolpert M. K., Althaus J. R., Johns D. G. Nitroreductase activity of mammalian liver aldehyde oxidase. J. Pharmacol. Exp. Ther. 1973; 185(2)202–213, [CSA]
  • Wondrak G. T., Cervantes-Laurean D., Roberts M. J., Qasem J. G., Kim M., Jacobson E. L., Jacobson M. K. Identification of alpha-dicarbonyl scavengers for cellular protection against carbonyl stress. Biochem. Pharmacol. 2002; 63(3)361–373, [CSA], [CROSSREF]
  • Yabe-Nishimura C., Nishinaka T., Iwata K., Seo H. G. Up-regulation of aldose reductase by the substrate, methylglyoxal. Chem. Biol. Interact. 2003; 143–144: 317–323, [CSA], [CROSSREF]
  • Yamada S., others. Immunochemical detection of a lipofuscin-like fluorophore derived from malondialdehyde and lysine. J. Lipid Res. 2001; 42(8)1187–1196, [CSA]
  • Yamamoto K., Masubuchi Y., Narimatsu S., Kobayashi S., Horie T. Toxicity of ethacrynic acid in isolated rat hepatocytes. Toxicol. In Vitro 2002; 16(2)151–158, [CSA], [CROSSREF]
  • Yan L. J., Sohal R. S. Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc. Natl. Acad. Sci. USA 1998; 95(22)12896–12901, [CSA], [CROSSREF]
  • Yang C. F., Brush E. J. A spectrophotometric assay for alpha-ketoaldehydes using horse liver alcohol dehydrogenase. Anal. Biochem. 1993; 214(1)124–127, [CSA], [CROSSREF]
  • Yazdanpanah M., Luo X., Lau R., Greenberg M., Fisher L. J., Lehotay D. C. Cytotoxic aldehydes as possible markers for childhood cancer. Free Radical. Biol. Med. 1997; 23(6)870–878, [CSA], [CROSSREF]
  • Yin H., Crowder R. J., Jones J. P., Anders M. W. Reaction of trifluoroacetaldehyde with amino acids, nucleotides, lipid nucleophiles, and their analogs. Chem. Res. Toxicol. 1996; 9(1)140–146, [CSA], [CROSSREF]
  • Yu P. H., Zuo D. M. Aminoguanidine inhibits semicarbazide-sensitive amine oxidase activity: Implications for advanced glycation and diabetic complications. Diabetologia 1997; 40(11)1243–1250, [CSA], [CROSSREF]
  • Zervas E., Montagne X., Lahaye J. Emission of alcohols and carbonyl compounds from a spark ignition engine. Influence of fuel and air/fuel equivalence ratio. Environ. Sci. Technol. 2002; 36(11)2414–2421, [CSA], [CROSSREF]
  • Zhang C., Walker L. M., Hinson J. A., Mayeux P. R. Oxidant stress in rat liver after lipopolysaccharide administration: Effect of inducible nitric-oxide synthase inhibition. J. Pharmacol Exp. Ther. 2000; 293(3)968–972, [CSA]
  • Zhang J., He Q. Characteristics of aldehydes: Concentrations, sources, and exposures for indoor and outdoor residential microenvrionments. Eniron. Sci. Technol. 1994; 28: 146–152, [CSA], [CROSSREF]
  • Zhang W., He Q., Chan L. L., Zhou F., El Naghy M., Thompson E. B., Ansari N. H. Involvement of caspases in 4-hydroxy-alkenal-induced apoptosis in human leukemic cells. Free Radical Biol. Med. 2001; 30(6)699–706, [CSA], [CROSSREF]
  • Zhang X., McIntire W. S. Cloning and sequencing of a copper-containing, topa quinone-containing monoamine oxidase from human placenta. Gene 1996; 179(2)279–286, [CSA], [CROSSREF]
  • Zhang X. M., Chan C. C., Stamp D., Minkin S., Archer M. C., Bruce W. R. Initiation and promotion of colonic aberrant crypt foci in rats by 5-hydroxymethyl-2-furaldehyde in thermolyzed sucrose. Carcinogenesis 1993; 14(4)773–775, [CSA]
  • Zhao Z. S., Khan S., O'Brien P. J. The prevention of ferric nitrilotriacetate-induced nephro- and hepatotoxicity by methylenedioxybenzene antioxidants. Chem. Biol. Interact. 1997; 108(1–2)107–118, [CSA], [CROSSREF]
  • Ziegler D. New drugs to prevent or treat diabetic polyneuropathy. Int. Diab. Monit. 2001; 13: 1–10, [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.