2,355
Views
279
CrossRef citations to date
0
Altmetric
Research Article

General Background on the Hypothalamic-Pituitary-Thyroid (HPT) Axis

, &
Pages 11-53 | Published online: 10 Oct 2008

REFERENCES

  • Abel E. D., Kaulbach H. C., Campos-Barros A., Ahima R. S., Boers M. E., Hashimoto K., Forrest D., Wondisford F. E. Novel insight from transgenic mice into thyroid hormone resistance and the regulation of thyrotropin. J. Clin. Invest. 1999; 103: 271–279
  • Ain K. B., Refetoff S., Sarne D. H., Murata Y. Effect of estrogen on the synthesis and secretion of thyroxine-binding globulin by a human hepatoma cell line, Hep G2. Mol Endocrinol. 1988; 2: 313–323
  • Ain K. B., Mori Y., Refetoff S. Reduced clearance rate of thyroxine-binding globulin (TBG) with increased sialylation: A mechanism for estrogen-induced elevation of serum TBG concentration. J Clin Endocrinol Metab. 1987; 65: 689–696
  • Aizawa T., Greer M. A. Delineation of the hypothalamic area controlling thyrotropin secretion in the rat. Endocrinology 1981; 109: 1731–1738
  • Alkemade A., Friesema E. C., Unmehopa U. A., Fabriek B. O., Kuiper G. G., Leonard J. L., Wiersinga W. M., Swaab D. F., Visser T. J., Fliers E. Neuroanatomical pathways for thyroid hormone feedback in the human hypothalamus. J. Clin. Endocrinol. Metab. 2005; 90: 4322–4334
  • Alvarez-Dolado M., Ruiz M., Del Rio J. A., Alcantara S., Burgaya F., Sheldon M., Nakajima K., Bernal J., Howell B. W., Curran T., Soriano E., Munoz A. Thyroid hormone regulates reelin and dab1 expression during brain development. J Neurosci. 1999; 19: 6979–6993
  • Andersen S., Pedersen K. M., Bruun N. H., Laurberg P. Narrow individual variations in serum T(4) and T(3) in normal subjects: A clue to the understanding of subclinical thyroid disease. J. Clin. Endocrinol. Metab. 2002; 87: 1068–1072
  • Andersen S., Bruun N. H., Pedersen K. M., Laurberg P. Biologic variation is important for interpretation of thyroid function tests. Thyroid 2003; 13(11)1069–1078
  • Arntzenius A. B., Smit L. J., Schipper J., van der Heide D., Meinders A. E. Inverse relation between iodine intake and thyroid blood flow: Color Doppler flow imaging in euthyroid humans. J. Clin. Endocrinol. Metab. 1991; 73: 1051–1055
  • Auso E., Lavado-Autric R., Cuevas E., Escobar del Rey F., Morreale de Escobar G., Berbel P. Moderate and transient maternal hypothyroxinemia alters fetal neurodevelopment. Experimental evidence for early screening in pregnancy. Endocrinology 2004; 145(9)4037–4047
  • Bakker O., Beeren H. C.V., Wiersinga W. M. Desethylamiodarone is a noncompetitive inhibitor of the binding of thyroid hormone to the thyroid hormone beta-1 receptor protein. Endocrinology 1994; 134: 1665–1670
  • Barettino D., Ruiz M. D.M., Stunnenberg H. G. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 1994; 13: 3039–3049
  • Bartalena L., Bogazzi F., Braverman L. E., Martino E. Effects of amiodarone administration during pregnancy on neonatal thyroid function and subsequent neurodevelopment. J. Endocrinol. Invest. 2001; 24: 116–130
  • Barter R. A., Klaassen C. D. UDP-glucuronosyltransferase inducers reduce thyroid hormone levels in rats by an extrathyroidal mechanism. Toxicol. Appl. Pharmacol. 1992; 113: 36–42
  • Baxter J. D., Dillmann W. H., West B. L., Huber R., Furlow J. D., Fletterick R. J., Webb P., Apriletti J. W., Scanlan T. S. Selective modulation of thyroid hormone receptor action. J. Steroid. Biochem. Mol. Biol. 2001; 76: 31–42
  • Beeren H. C.V., Bakker O., Wiersinga W. M. Desethylamiodarone is a competitive inhibitor of the binding of thyroid hormone to the alpha-1 receptor protein. Mol. Cell. Endocrinol. 1995; 112: 15–19
  • Bernal J. Action of thyroid hormone in brain. J. Endocrinol. Invest. 2002; 25: 268–288
  • Bernal J., Guadano-Ferraz A., Morte B. Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 2003; 13: 1005–1012
  • Bernier-Valentin F., Kostrouch Z., Rabilloud R., Munari-Silem Y., Rousset B. Coated vesicles from thyroid cells carry iodinated thyroglobulin molecules: First indication for an internalization of the thyroid prohormone via a mechanism of receptor-mediated endocytosis. J. Biol. Chem. 1990; 265: 17373–17380
  • Bernstein G., Artz S. A., Hansen J., Oppenheimer J. H. Hepatic accumulation of 125I-thyroxine in the rat: Augmentation by phenobarbital and chlordane. Endocrinology 1968; 82: 406–409
  • Bertrand S., Brunet F. G., Escriva H., Parmentier G., Laudet V., Robinson-Rechavi M. Evolutionary genomics of nuclear receptors: From twenty-five ancestral genes to derived endocrine systems. Mol. Biol. Evol. 2004; 21: 1923–1937
  • Bhat N. R., Sarlieve L. L., Rao G. S. Investigations on myelination in vitro: Regulation by thyroid hormone in cultures of dissociated brain cells from embryonic mice. J. Biol. Chem. 1979; 254: 9342–9344
  • Botling J., Castro D. S., Oberg F., Nilsson K., Perlmann T. Retinoic acid receptor/retinoid X receptor heterodimers can be activated through both subunits providing a basis for synergistic transactivation and cellular differentiation. J. Biol. Chem. 1997; 272: 9443–9449
  • Boyages S. C., Halpern J. P. Endemic cretinism: Toward a unifying hypothesis. Thyroid 1993; 3: 59–69
  • Brabant G., Prank K., Ranft U., Schuermeyer T., Wagner T. O.F., Hauser H., Kummer B., Feistner H., Hesch R. D., Mühlen A. Physiological regulation of circadian and pulsatile thyrotropin secretion in normal man and woman. J. Clin. Endocrinol. Metab. 1990; 70: 403–409
  • Brabant G., Bergmann P., Kirsch C. M., Kohrle J., Hesch R. D., von zur Muhlen A. Early adaptation of thyrotropin and thyroglobulin secretion to experimentally decreased iodine supply in man. Metab. 1992; 41: 1093–1096
  • Bradley D. J., Towle H. C., Young W. S. Spatial and temporal expression of alpha-and beta-thyroid hormone receptor mRNAs, including the beta-2 subtype, in the developing mammalian nervous system. J Neurosci. 1992; 12: 2288–2302
  • Bradley D. J., Towle H. C., Young W. S. Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: Evidence for TR isoform-specific transcriptional regulation in vivo. Proc. Natl. Acad. Sci. USA. 1994; 91: 439–443
  • Ingbar's The Thyroid: A Fundamental and Clinical Text, 9th ed., L. E. Braverman, R. D. Utiger. Lippincott-Raven, Philadelphia, PA 2004
  • Bray G. A. Increased sensitivity of the thyroid in iodine-depleted rats to the goitrogenic effects of thyrotropin. J. Clin. Invest. 1968; 47: 1640–1647
  • Brent G. A. Maternal hypothyroidism: Recognition and management. Thyroid 1999; 9: 661–665
  • Briet J. M., van Wassenaer A. G., Dekker F. W., de Vijlder J. J.M., van Baar A., Kok J. Neontatal thyroxine supplementation in very preterm children: Developmental outcome evaluated at early school age. Pediatrics 1991; 107: 712–718
  • Briet J. M., van Wassenaer A. G., van Baar A., Dekker F. W., Kok J. H. Evaluation of the effect of thyroxine supplementation on behavioural outcome in very preterm infants. Dev. Med. Child. Neurol. 1999; 41: 87–93
  • Brooke C. The consequences of congenital hypothyroidism. Clin. Endocrinol. 1995; 42: 432–438
  • Brown R. S., Bellisario R. L., Botero D. Incidence of transient congenital hypothyroidism due to maternal thyrotropin receptor-blocking antibodies in over one million babies. J. Clin. Endo. Metab. 1996; 81: 1147–1151
  • Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid 1998; 8: 827–856
  • Burnside J., Darling D. S., Carr F. E., Chin W. W. Thyroid hormone regulation of the rat glycoprotein hormone alpha-subunit gene promoter activity. J. Biol. Chem. 1989; 264: 6886–6891
  • Cabello G., Vilaxa A., Spotorno A. E., Valladares J. P., Pickard M., Sinha A., McArthur J., Behncke I., Duerr A., Sullivan R., Gomperts B. D. Evolutionary adaptation of a mammalian species to an environment severely depleted of iodide. Pflugers Arch. 2003; 446: 42–45
  • Calaciura F., Mendoria G., Distefano M. Childhood IQ measurements in infants with transient congenital hypothyroidism. Clin. Endo. 1995; 43: 473–477
  • Calvo R. M., Jauniaux E., Gulbis B., Asuncion M., Gervy C., Contempre B., Morreale De Escobar G. Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J. Clin. Endocrinol. Metab. 2002; 87: 1768–1777
  • Capen C. C. Mechanisms of chemical injury of thyroid gland. Prog Clin Biol Res. 1994; 387: 173–191
  • Capen C. C. Mechanistic data and risk assessment of selected toxic end points of the thyroid gland. Toxicol Pathol. 1997; 25: 39–48
  • Carr F. E., Ridgway E. C., Chin W. W. Rapid simultaneous measurement of rat alpha-and thyrotropin (TSH) beta-subunit messenger ribonucleic acids (mRNAs) by solution hybridization:Regulation of TSH subunit mRNAs by thyroid hormones. Endocrinology 1985; 117: 1272–1278
  • Carr F. E., Need L. R., Chin W. W. Isolation and characterization of the rat thyrotropin beta-subunit gene. Differential regulation of two transcriptional start sites by thyroid hormone. J. Biol. Chem. 1987; 262: 981–987
  • Carr F. E., Chin W. W. Differential thyroid hormone-regulated rat thyrotropin beta gene expression detected by blot hybridization. Mol. Endocrinol. 1988; 2: 667–673
  • Carr F. E., Burnside J., Chin W. W. Thyroid hormones regulate rat thyrotropin beta gene promoter activity expressed in GH3 cells. Mol. Endocrinol. 1989; 3: 709–716
  • Carrasco N. Thyroid iodide transport: The Na+/I-symporter (NIS). The Thyroid: A Fundamental and Clinical Text, L. E. Braverman, R. D. Utiger. Lippincott Williams and Wilkins, Philadelphia 2000; 52–61
  • Chan S., Rovet J. Thyroid hormones in the fetal central nervous system development. Fetal Maternal Med Rev. 2003; 14: 177–208
  • Chard T. An Introduction to Radioimmunoassay and Related Techniques, T. S. Workand, E. Work. North-Holland, New York 1981
  • Chassande O., Fraichard A., Gauthier K., Flamant F., Legrand C., Savatier P., Laudet V., Samarut J. Identification of transcripts initiated from an internal promoter in the c-erbAa locus that encode inhibitors of retinoic acid receptor-a and triiodothyronine receptor activities. Mol. Endocrinol. 1997; 11: 1278–1290
  • Cheek A. O., Ide C. F., Bollinger J. E., Rider C. V., McLachlan J. A. Alteration of leopard frog (Rana pipiens) metamorphosis by the herbicide acetochlor. Arch. Environ. Contam. and Toxicol. 1999; 37: 70–77
  • Chiellini G., Apriletti J. W., al Yoshihara H., Baxter J. D., Ribeiro R. C., Scanlan T. S. A high-affinity subtype-selective agonist ligand for the thyroid hormone receptor. Chem Biol. 1998; 5: 299–306
  • Chih B., Scheiffele P. Is Reelin the answer to synapse elimination at the neuromuscular junction?. Sci STKE. 2003, 2003:pe45
  • Chin W. W., Carr F. E. Thyroid hormone regulation of the rat thyrotropin beta-subunit gene. Horm. Metab. Res. Suppl. 1987; 17: 82–86
  • Chino Y., Saito M., Yamasu K., Suyemitsu T., Ishihara K. Formation of the adult rudiment of sea urchins is influenced by thyroid hormones. Dev. Biol. 1994; 161: 1–11
  • Chopra I. J., Hershman J. M., Hornabrook R. W. Serum thyroid hormone and thyrotropin levels in subjects from endemic goiter regions of New Guinea. J. Clin. Endocrinol. Metab. 1975; 40: 326–333
  • Chopra I. J. Nature, source, and relative significance of circulating thyroid hormones. The Thyroid: A Fundamental and Clinical Text, 7th ed., L. E. Braverman, R. D. Utiger. Lippincott-Raven, Philadelphia 1996; 111–124
  • Chowdhury J. R., Chowdhury N. R., Moscioni A. D., Tukey R., Tephly T., Arias I. M. Differential regulation by triiodothyronine of substrate-specific uridinediphosphoglucuronate glucuronosyl transferases in rat liver. Biochim. Biophys. Acta. 1983; 761: 58–65
  • Clewell R. A., Merrill E. A., Yu K. O., Mahle D. A., Sterner T. R., Mattie D. R., Robinson P. J., Fisher J. W., Gearhart J. M. Predicting fetal perchlorate dose and inhibition of iodide kinetics during gestation: A physiologically-based pharmacokinetic analysis of perchlorate and iodide kinetics in the rat. Toxicol Sci. 2003; 73: 235–255
  • Col N. F., Surks M. I., Daniels G. H. Subclinical thyroid disease: Clinical applications. J. Am. Med. Assoc. 2004; 291: 239–243
  • Connelly J. F., Rickards A. L., Coakley J. C., Price G. J., Francis I., Mathur K. S., Wolfe R. Newborn screening for congenital hypothyroidism, Victoria, Australia, 1977–1997. Part 2: Treatment, progress and outcome. J. Pediatr. Endocrinol. Metab. 2001; 14: 1611–1634
  • Connors J. M., Hedge G. A. Feedback effectiveness of periodic versus constant triiodothyronine replacement. Endocrinology 1980; 106: 911–917
  • Consiglio E., Salvatore G., Rall J. E., Kohn L. D. Thyroglobulin interactions with thyroid plasma membranes. The existence of specific receptors and their potential role. J. Biol. Chem. 1979; 254: 5065–5076
  • Contempre B., Jauniaux E., Calvo R., Jurkovic D., Campbell S., Morreale de Escobar G. Detection of thyroid hormones in human embryonic cavities during the first trimester of pregnancy. J. Clin. Endocrinol. Metab. 1993; 77: 1719–1722
  • Coppola A., Hughes J., Esposito E., Schiavo L., Meli R., Diano S. Suppression of hypothalamic deiodinase type II activity blunts TRH mRNA decline during fasting. FEBS Lett. 2005; 579: 4654–4658
  • Corvilain B., Van Sande J., Dumont J. E. Inhibition by iodide of iodide binding to proteins: The “Wolff–Chaikoff” effect is caused by inhibition of H2O2 generation. Biochem. Biophys. Res. Commun. 1988; 154: 1287–1292
  • Cuppini R., Sartini S., Ambrogini P., Gallo G. Response of fast muscle innervation to hypothyroidism. J. Neurol. Sci. 1994; 127: 107–113
  • Cuppini R., Sartini S., Ambrogini P., Gallo G. Muscle reinnervation in hypothyroid rats. J. Peripher. Nerv. Syst. 1996; 1: 223–229
  • Custro N., Scafidi V., Gallo S., Notarbartolo A. Deficient pulsatile thyrotropin secretion in the low-thyroid-hormone state of severe nonthyroidal illness. Eur. J. Endocrinol. 1994; 130: 132–136
  • D'Agati P., Cammarata M. Comparative analysis of thyroxine distribution in ascidian larvae. Cell and Tissue Res. 2006; 323(3)529–535
  • Damante G., Di Lauro R. Thyroid-specific gene expression. Biochim. Biophys. Acta. 1994; 1218: 255–266
  • Davidson B., Soodak M., Neary J. T., Strout H. V., Kieffer J. D. The irreversible inactivation of thyroid peroxidase by methylmercaptoimidazole, thiouracil, and propylthiouracil in vitro and its relationship to in vivo findings. Endocrinology 1978; 103: 871–882
  • Davis P. J., Davis F. B. Nongenomic actions of thyroid hormone. Thyroid. 1996; 6: 497–504
  • Davis P. J., Davis F. B. Nongenomic actions of thyroid hormone on the heart. Thyroid. 2002a; 12: 459–466
  • Davis P. J., Tillmann H. C., Davis F. B., Wehling M. Comparison of the mechanisms of nongenomic actions of thyroid hormone and steroid hormones. J. Endocrinol. Invest. 2002b; 25: 377–388
  • Den Ouden A. L., Kok J. H., Verkerk P. H., Brand R., Verloove-Vanhorick S. P. The relation between neonatal thyroxine levels and neurodevelopmental outcome at age 5 and 9 years in a national cohort of very preterm and/or very low birth weight infants. Pediatr Res. 1996; 39: 142–145
  • Dent E. W., Kalil K. Axon branching requires interactions between dynamic microtubules and actin filaments. J. Neurosci. 2001; 21: 9757–9769
  • Derksen-Lubsen G., Verkerk P. H. Neuropsychologic development in early-treated congenital hypothyroidism: Analysis of literature data. Pediatric. Res. 1996; 39: 561–566
  • Diano S., Naftolin F., Goglia F., Horvath T. L. Fasting-induced increase in type II iodothyronine deiodinase activity and messenger ribonucleic acid levels is not reversed by thyroxine in the rat hypothalamus. Endocrinology 1998; 139: 2879–2884
  • Dittmer F., Ulbrich E. J., Hafner A., Schmahl W., Meister T., Pohlmann R., von Figura K. Alternative mechanisms for trafficking of lysosomal enzymes in mannose 6–phosphate receptor-deficient mice are cell type-specific. J. Cell. Sci. 1999; 112(10)1591–1597
  • Docter R., Friesema E. C.H., van Stralen P. G.J., Krenning E. P., Everts M. E., Visser T. J., Hennemann G. Expression of rat liver cell membrane transporters for thyroid hormone in Xenopus laevis oocytes. Endocrinology 1997; 138: 1841–1846
  • Doerge D. R., Chang H. C. Inactivation of thyroid peroxidase by soy isoflavones, in vitro and in vivo. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002a; 777: 269–279
  • Doerge D. R., Sheehan D. M. Goitrogenic and estrogenic activity of soy isoflavones. Environ. Health. Perspect. Suppl. 2002b; 110(S3)349–353
  • Dorea J. G. Iodine nutrition and breast feeding. J. Trace. Elem. Med. Biol. 2002; 16: 207–220
  • Dowling A. L.S., Martz G. U., Leonard J. L., Zoeller R. T. Acute changes in maternal thyroid hormone induce rapid and transient changes in specific gene expression in fetal rat brain. J. Neurosci. 2000; 20: 2255–2265
  • Dowling A. L.S., Zoeller R. T. Thyroid hormone of maternal origin regulates the expression of RC3/neurogranin mRNA in the fetal rat brain. Brain Res. 2000; 82: 126–132
  • Dremier S., Coulonval K., Perpete S., Vandeput F., Fortemaison N., Van Keymeulen A., Deleu S., Ledent C., Clement S., Schurmans S., Dumont J. E., Lamy F., Roger P. P., Maenhaut C. The role of cyclic AMP and its effect on protein kinase A in the mitogenic action of thyrotropin on the thyroid cell. Ann. NY Acad. Sci. 2002; 968: 106–121
  • Dunn A. D., Dunn J. T. Thyroglobulin degradation by thyroidal proteases: Action of purified cathepsin D. Endocrinology 1982a; 111: 280–289
  • Dunn A. D., Dunn J. T. Thyroglobulin degradation by thyroidal proteases: Action of thiol endopeptidases in vitro. Endocrinology 1982b; 111: 290–298
  • Dunn A. D., Myers H. E., Dunn J. T. The combined action of two thyroidal proteases releases T4 from the dominant hormone-forming site of thyroglobulin. Endocrinology 1996; 137: 3279–3285
  • Dunn J. T., Dunn A. D. Thyroglobulin: Chemistry, biosynthesis, and proteolysis. The Thyroid: A Fundamental and Clinical Text, Eighth Edition, L. E. Braverman, R. D. Utiger. Lippincott Williams and Wilkins, Philadelphia 2000; 91–104
  • Dyess E. M., Segerson T. P., Liposits Z., Paull W. K., Kaplan M. M., Wu P., Jackson I. M.D., Lechan R. M. Triiodothyronine exerts direct cell-specific regulation of thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus. Endocrinology 1988; 123: 2291–2297
  • Ekholm R., Wollman S. H. Site of iodination in the rat thyroid gland deduced from electron microscopic autoradiographs. Endocrinology 1975; 97: 1432–1444
  • Ekins R. P., Sinha A. K., Pickard M. R., Evans I. M., al Yatama F. Transport of thyroid hormones to target tissues. Acta. Med. Austr. 1994; 21: 26–34
  • Emerson C. H., Lew R., Braverman L. E., DeVito W. J. Serum thyrotropin concentrations are more highly correlated with serum triiodothyronine concentrations than with serum thyroxine concentrations in thyroid hormone-infused thyroidectomized rats. Endocrinology 1989; 124: 2415–2418
  • Emerson C. H., Cohen J. H., III, Young R. A., Alex S., Fang S. L. Gender-related differences of serum thyroxine-binding proteins in the rat. Acta. Endocrinol. (Copenh). 1990; 123: 72–78
  • Eng P. H., Cardona G. R., Fang S. L., Previti M., Alex S., Carrasco N., Chin W. W., Braverman L. E. Escape from the acute Wolff–Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein. Endocrinology 1999; 140: 3404–3410
  • Engler H., Taurog A., Nakashima T. Mechanism of inactivation of thyroid peroxidase by thioureylene drugs. Biochem. Pharmacol. 1982; 31: 3801–3806
  • Escobar-Morreale H. F., Obregon M. J., Escobar del Rey F., Morreale de Escobar G. Replacement therapy for hypothyroidism with thyroxine alone does not ensure euthyroidism in all tissues, as studied in thyroidectomized rats. J. Clin. Invest. 1995; 96: 2828–2838
  • Escobar-Morreale H. F., Escobar del Rey F., Obregon M. J., Morreale de Escobar G. Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology 1996; 137: 2490–2502
  • Eskandari S., Loo D. D., Dai G., Levy O., Wright E. M., Carrasco N. Thyroid Na+/I-symporter. Mechanism, stoichiometry, and specificity. J. Biol. Chem. 1997; 272: 27230–27238
  • Etling N., Larroche J. C. Histological and biochemical changes in neonatal thyroid tissues. Acta Paediatr. Scand. 1975; 64: 315–321
  • Etling N. Concentration of thyroglobulin, iodine contents of thyroglobulin and of iodoaminoacids in human neonates thyroid glands. Acta Paediatr. Scand. 1977; 66: 97–102
  • Everts M. E., Docter R., Moerings E. P.C.M., Koetsveld P. M.V., Visser T. J., Jong M. D., Krenning E. P., Hennemann G. Uptake of thyroxine in cultured anterior pituitary cells of euthyroid rats. Endocrinology 1994a; 134: 2490–2497
  • Everts M. E., Visser T. J., Moerings E. P.C.M., Docter R., Toor H. V., Tempelaars A. M.P., Jong M. D., Krenning E. P., Hennemann G. Uptake of triiodothyroacetic acid and its effect on thyrotropin secretion in cultured anterior pituitary cells. Endocrinology 1994b; 135: 2700–2707
  • Everts M. E., Visser T. J., Moerings E. P.C.M., Tempelaars A. M.P., Toor H. V., Docter R., Jong M. D., Krenning E. P., Hennemann G. Uptake of 3,5′,5,5′-tetraiodothyroacetic acid and 3,3′,5′-triiodothyronine in cultured rat anterior pituitary cells and their effects on thyrotropin secretion. Endocrinology 1995; 136: 4454–4461
  • Falcone M., Miyamoto T., Fierro-Renoy F., Macchia E., DeGroot L. J. Antipeptide polyclonal antibodies specifically recognize each human thyroid hormone receptor isoform. Endocrinology 1992; 131: 2419–2429
  • Farwell A. P., Dubord-Tomasetti S. A. Thyroid hormone regulates the expression of laminin in the developing rat cerebellum. Endocrinology 1999a; 140: 4221–4227
  • Fekete C., Mihaly E., Luo L. G., Kelly J., Clausen J. T., Mao Q., Rand W. M., Moss L. G., Kuhar M., Emerson C. H., Jackson I. M., Lechan R. M. Association of cocaine-and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. J. Neuroscience 2000; 20: 9224–9234
  • Feng X., Jiang Y., Meltzer P., Yen P. M. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol. Endocrinology 2000; 14: 947–955
  • Filetti S., Rapoport B. Evidence that organic iodine attenuates the adenosine 3′,5′-monophosphate response to thyrotropin stimulation in thyroid tissue by an action at or near the adenylate cyclase catalytic unit. Endocrinology 1983; 113: 1608–1615
  • Fink I. L., Bailey T. J., Gustafson T. A., Markham B. E., Morkin E. Complete amino acid sequence of human thyroxine-binding globulin deduced from cloned DNA: Close homology to the serine antiproteases. Proc. Natl. Acad. Sci. USA. 1986; 83: 7708–7712
  • Flamant F., Poguet A. L., Plateroti M., Chassande O., Gauthier K., Streichenberger N., Mansouri A., Samarut J. Congenital hypothyroid Pax8(−/−) mutant mice can be rescued by inactivating the TRalpha gene. Mol. Endocrinol. 2002; 16: 24–32
  • Flamant F., Samarut J. Thyroid hormone receptors: Lessons from knockout and knock-in mutant mice. Trends Endocrinol. Metab. 2003; 14: 85–90
  • Forrest D., Erway L. C., Ng L., Altschuler R., Curran T. Thyroid hormone receptor beta is essential for development of auditory function. Nature Genet. 1996a; 13: 354–357
  • Forrest D., Hanebuth E., Smeyne R. J., Everds N., Stewart C. L., Wehner J. M., Curran T. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor β: Evidence for tissue-specific modulation of receptor function. EMBO J. 1996b; 15: 3006–3015
  • Francis G., Riley W. Congenital familial transient hypothyroidism secondary to transplacental thyrotropin-blocking autoantibodies. Am. J. Dis. Child. 1987; 141: 1081–1083
  • Francois M., Bonfils P., Leger J., Czernichow P., Narcy P. J. Role of congenital hypothyroidism in hearing loss in children. Pediatrics 1993; 123: 444–446
  • Franklyn J. A., Wood D. F., Balfour N. J., Ramsden D. B., Docherty K., Chin W. W., Sheppard M. C. Effect of hypothyroidism and thyroid hormone replacement in vivo on pituitary cytoplasmic concentrations of thyrotropin-β and alpha-subunit messenger ribonucleic acids. Endocrinology 1987; 120: 2279–2288
  • Friedrichs B., Tepel C., Reinheckel T., Deussing J., von Figura K, Herzog V., Peters C., Saftig P, Brix K. Thyroid functions of mouse cathepsins B, K, and L. J. Clin. Invest. 2003; 111: 1733–1745
  • Friesema E. C., Docter R., Moerings E. P.C.M., Stieger B., Hagenbuch B., Meier P. J., Krenning E. P., Hennemann G., Visser T. J. Identification of thyroid hormone transporters. Biochem. Biophys. Res. Commun. 1999; 254: 497–501
  • Friesema E. C., Grueters A., Barrett T. G., Kuiper G. G., Visser T. J. Functional analysis of missense mutations in the MCT8 T3 transporter in boys with severe psychomotor retardation. Thyroid 2004; 14: 761, Abstr. 243
  • Friesema E. C., Jansen J., Milici C., Visser T. J. Thyroid hormone transporters. Vitam Horm. 2005; 70: 137–167
  • Fuggle P. W., Grant D. B., Smith I., Murphy G. Intelligence, motor skills and behaviour at 5 years in early-treated congenital hypothyroidism. Eur. J. Pediatr. 1991; 150: 570–574
  • Fukuda H., Yasuda N., Greer M. A. Changes in plasma thyrotrophin, thyroxine, and triiodothyronine after acute or chronic administration of iodide to iodine-deficient rats. Endocrinology 1975; 97: 1196–1204
  • Gauger K. J., Kato Y., Haraguchi K., Lehmler H. J., Robertson L. W., Bansal R., Zoeller R. T. Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors. Environ. Health Perspect. 2004; 112: 516–523
  • Gauthier K., Chassande O., Plateroti M., Roux J. P., Legrand C., Pain B., Rousset B., Weiss R., Trouillas J., Samarut J. Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post-natal development. EMBO J. 1999; 18: 623–631
  • Gauthier K., Aubert D., Chassande O., Flamant F., Samarut J. Null mutant mice for thyroid hormone receptors. Methods Mol. Biol. 2002; 202: 13–29
  • Glass C. K., Rosenfeld M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 2000; 14: 121–141
  • Glinoer D. Potential consequences of maternal hypothyroidism on the offspring: evidence and implications. Horm. Res. 2001; 55: 109–114
  • Gloss B., Trost S., Bluhm W., Swanson E., Clark R., Winkfein R., Janzen K., Giles W., Chassande O., Samarut J., Dillmann W. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 2001; 142: 544–550
  • Goffinet A. M. Events governing organization of postmigratory neurons: Studies on brain development in normal and reeler mice. Brain Res. 1984; 319: 261–296
  • Gothe S., Wang Z., Ng L., Kindblom J. M., Barros A. C., Ohlsson C., Vennstrom B., Forrest D. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev. 1999; 13: 1329–1341
  • Gottschalk B., Richman R., Lewandowski L. Subtle speech and motor deficits of children with congenital hypothyroidism treated early. Dev. Med. Child. Neurol. 1994; 36: 216–220
  • Grasberger H., Golcher H. M., Fingerhut A., Janssen O. E. Loop variants of the serpin thyroxine-binding globulin: implications for hormone release upon limited proteolysis. Biochem J. 2002; 365: 311–316
  • Greer M. A., Sato N., Wang X., Greer S. E., McAdams S. Evidence that the major physiological role of TRH in the hypothalamic paraventricular nuclei may be to regulate the set point for thyroid hormone negative feedback on the pituitary thyrotroph. Neuroendocrinology 1993; 57: 569–575
  • Greer M. A., Goodman G., Pleus R. C., Greer S. E. Health effects assessment for environmental perchlorate contamination: The dose response for inhibition of thyroidal radioiodine uptake in humans. Environ. Health Perspect. 2002; 110: 927–937
  • Guadano-Ferraz A., Benavides-Piccione R., Venero C., Lancha C., Vennstrom B., Sandi C., DeFelipe J., Bernal J. Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol. Psychiatry 2003; 8: 30–38
  • Guadano-Ferraz A., Escamez M. J., Morte B., Vargiu P., Bernal J. Transcriptional induction of RC3/neurogranin by thyroid hormone: Differential neuronal sensitivity is not correlated with thyroid hormone receptor distribution in the brain. Mol. Brain Res. 1997; 49: 37–44
  • Gutekunst R., Smolarek H., Hasenpusch U., Stubbe P., Friedrich H. J., Wood W. G., Scriba P. C. Goitre epidemiology: Thyroid volume, iodine excretion, thyroglobulin and thyrotropin in Germany and Sweden. Acta. Endocrinol. (Copenh.) 1986; 112: 494–501
  • Hack M., Taylor H. G., Klein N., Eiben R., Schatschneider C., Mercuri-Minich N. School-age outcomes in children with birth weights under 750 g. N. Engl. J. Med. 1994; 331: 753–759
  • Haddow J. E., Palomaki G. E., Allan W. C., Williams J. R., Knight G. J., Gagnon J., O'Heir C. E., Mitchell M. L., Hermos R. J., Waisbren S. E., Faix J. D., Klein R. Z. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 1999; 341: 549–555
  • Hadley M. E. Endocrinology, 5th ed. Prentice Hall, Upper Saddle River, NJ 2000
  • Hagenbuch B., Meier P. J. Organic anion transporting polypeptides of the OATP/SLC21 family: Phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 2004; 447: 653–665
  • Haisenleder D. J., Ortolano G. A., Dalkin A. C., Yasin M., Marshall J. C. Differential actions of thyrotropin (TSH)-releasing hormone pulses in the expression of prolactin and TSH subunit messenger ribonucleic acid in rat pituitary cells in vitro. Endocrinology 1992; 130: 2917–2923
  • Hamilton J. A., Benson M. D. Transthyretin: A review from a structural perspective. Cell. Mol. Life Sci. 2001; 58: 1491–1521
  • Hansen P. S., Brix T. H., Sorensen T. I., Kyvik K. O., Hegedus L. Major genetic influence on the regulation of the pituitary-thyroid axis: a study of healthy Danish twins. J. Clin. Endocrinol. Metab. 2004; 89: 1181–1187
  • Harel G., Kane J. P., Shamoun D. S., Magner J. A., Szabo M. Effect of thyroid hormone deficiency on glycosylation of rat TSH secreted in vitro. Horm. Metab. Res. 1993; 25: 278–280
  • Hashimoto K., Curty F. H., Borges P. P., Lee C. E., Abel E. D., Elmquist J. K., Cohen R. N., Wondisford F. E. An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc. Natl. Acad. Sci. USA. 2001; 98: 3998–4003
  • Hashizume K., Miyamoto T., Kobayashi M., Suzuki S., Ichikawa K., Yamauchi K., Ohtsuka H., Takeda T. Cytosolic 3,5,3′-triiodo L-thyronine (T3)-binding protein (CTBP) regulation of nuclear T3 binding: evidence for the presence of T3–CTBP complex-binding sites in nuclei. Endocrinology 1989; 124: 2851–2856
  • Hashizume K., Suzuki S., Ichikawa K., Takeda T. Purification of cytosolic 3,5,3′-triiodo-L-thyronine(T3)-binding protein(CTBP) which regulates nuclear T3 translocation. Biochem. Biophys. Res. Commun. 1991; 174: 1084–1089
  • Hermanson O., Glass C. K., Rosenfeld M. G. Nuclear receptor coregulators: Multiple modes of modification. Trends. Endocrinol. Metab. 2002; 13: 55–60
  • Herzog V. Transcytosis in thyroid follicle cells. J. Cell. Biol. 1983; 97: 607
  • Heyerdahl S. Longterm outcome in children with congenital hypothyroidism. Acta Paediat. 2001; 90: 1220–1222
  • Heyland A., Reitzel A. M., Hodin J. Thyroid hormones determine developmental mode in sand dollars (Echinodermata: Echinoidea). Evol Dev. 2004; 6: 382–392
  • Hindmarsh P. Optimisation of thyroxine dose in congenital hypothyroidism. Arch. Dis. Child. 2002; 86: 73–75
  • Hodin R. A., Lazar M. A., Chin W. W. Differential and tissue-specific regulation of the multiple rat c-erbA messenger RNA species by thyroid hormone. J. Clin. Invest. 1990; 85: 101–105
  • Hollenberg S. M., Evans R. M. Multiple and cooperative transactivation domains of human glucocorticoid receptor. Cell 1988; 55: 899–906
  • Hood A., Hashmi R., Klaassen C. D. Effects of microsomal enzyme inducers on thyroid-follicular cell proliferation, hyperplasia, and hypertrophy. Toxicol. Appl. Pharmacol. 1999; 160: 163–170
  • Hood A., Klaassen C. D. Differential effects of microsomal enzyme inducers on in vitro thyroxine (T(4)) and triiodothyronine (T(3)) glucuronidation. Toxicol. Sci. 2000a; 55: 78–84
  • Hood A., Klaassen C. D. Effects of microsomal enzyme inducers on outer-ring deiodinase activity toward thyroid hormones in various rat tissues. Toxicol. Appl. Pharmacol. 2000b; 163: 240–248
  • Hood A., Allen M. L., Liu Y., Liu J., Klaassen C. D. Induction of T(4) UDP-GT activity, serum thyroid stimulating hormone, and thyroid follicular cell proliferation in mice treated with microsomal enzyme inducers. Toxicol. Appl. Pharmacol. 2003; 188: 6–13
  • Horlein A. J., Naar A. M., Torchia J., Gloss B., Kurokawa R., Ryan A., Kamei Y., Soderstrom M., Glass C. K., Rosenfeld M. G. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377: 305–404
  • Howdeshell K. L. A model of the development of the brain as a construct of the thyroid system. Environ. Health. Perspect. 2002; 110: 337–348, (suppl 3)
  • Hrytsiuk I., Gilbert R., Logan S., Pindoria S., Brook C. G. Starting dose of levothyroxine for the treatment of congenital hypothyroidism: a systematic review. Arch. Pediatr. Adolesc. Med. 2002; 156: 485–491
  • Hu X., Lazar M. A. Transcriptional repression by nuclear hormone receptors. Trends. Endocrinol. Metab. 2000; 11: 6–10
  • Hume R., Richard K., Kaptein E., Coughtrie M., Visser T. Metabolism of iodothyronines in human fetal brain. American Thyroid Association, Portland, OR 1998, American Thyroid Association Abstracts
  • Ibarrola N., Rodriguez-Pena A. Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development. Brain Res. 1997; 752: 285–293
  • Ichikawa K., Hashizume K. Cellular binding proteins of thyroid hormones. Life Sci. 1991; 49: 1513–1522
  • Iniguez M., Rodriguez-Pena A., Ibarrola N., Aguilera M., Morreale de Escobar G., Bernal J. Thyroid hormone regulation of RC3, a brain-specific gene encoding a protein kinase-C substrate. Endocrinology 1993; 133: 467–473
  • Iniguez M. A., DeLecea L., Guadano-Ferraz A., Morte B., Gerendasy D., Sutcliffe J. G., Bernal J. Cell-specific effects of thyroid hormone on RC3/neurogranin expression in rat brain. Endocrinology 1996; 137: 1032–1041
  • Ishaik G., Mirabella G., Asztalos E., Perlman K., Rovet J. Hypothyroxinemia of prematurity and the development of attention and memory in infants with low risk prematurity. A Pilot Study. J. Dev. Behav. Pediatr. 2000; 21: 172–179
  • Ishikawa K., Taniguchi Y., Inoue K., Kurosumi K., Suzuki M. Immunocytochemical delineation of the thyrotrophic area: Origin of thyrotropin-releasing hormone in the median eminence. Neuroendocrinology 1988; 47: 384–388
  • Itoh Y., Esaki T., Kaneshige M., Suzuki H., Cook M., Sokoloff L., Cheng S. Y., Nunez J. Brain glucose utilization in mice with a targeted mutation in the thyroid hormone alpha or beta receptor gene. Proc. Natl. Acad. Sci. USA. 2001; 98: 9913–9918
  • Jackson I. M.D., Wu P., Lechan R. M. Immunohistochemical localization in the rat brain of the precursor for thyrotropin releasing hormone. Science 1985; 229: 1097–1099
  • Janssen O. E., Golcher H. M., Grasberger H., Saller B., Mann K., Refetoff S. Characterization of T(4)-binding globulin cleaved by human leukocyte elastase. J. Clin. Endocrinol. Metab. 2002; 87: 1217–1222
  • Johansson C., Vennstrom B., Thoren P. Evidence that decreased heart rate in thyroid hormone receptor-a1–deficient mice is an intrinsic defect. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998; 275: R640–R646
  • Kakucska I., Rand W., Lechan R. M. Thyrotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is dependent upon feedback regulation by both triiodothyronine and thyroxine. Endocrinology 1992; 130: 2845–2850
  • Kambe F., Nomura Y., Okamoto T., Seo H. Redox regulation of thyroid-transcription factors, Pax-8 and TTF-1, is involved in their increased DNA-binding activities by thyrotropin in rat thyroid FRTL-5 cells. Mol. Endocrinol. 1996a; 10: 801–812
  • Kambe F., Seo H. Mediation of the hormone-and serum-dependent regulation of thyroglobulin gene expression by thyroid-transcription factors in rat thyroid FRTL-5 cells. J Endocrinol. 1996b; 150: 287–298
  • Kato H., Fukuda T., Parkison C., McPhie P., Cheng S. Y. Cytosolic thyroid hormone-binding protein is a monomer of pyruvate kinase. Proc. Natl. Acad. Sci. USA. 1989; 86: 7861–7865
  • Kester M. H.A., Martinez de Mena R., Obregon M. J., Marinkovic D., Visser T. J., Hume R., Morreale de Escobar G. Iodothyronine levels in the human developing brain: Major regulatory roles of iodothyronine deiodinases in different areas. J. Clin. Endocrinol. Metab. 2004; 89: 3117–3128
  • Khan N. S., Schussler G. C., Holden J. B., Finkelstein A. Thyroxine-binding globulin cleavage in cord blood. J. Clin. Endocrinol. Metab. 2002; 87: 3321–3323
  • Khan M. A., Hansen L. G. Ortho-substituted polychlorinated biphenyl (PCB) congeners (95 or 101) decrease pituitary response to thyrotropin releasing hormone. Toxicol. Lett. 2003; 144: 173–182
  • Kilby M. D. Thyroid hormones and fetal brain development. Clin. Endocrinol (Oxf). 2003; 59: 280–281
  • Kinugawa K., Yonekura K., Ribeiro R. C., Eto Y., Aoyagi T., Baxter J. D., Camacho S. A., Bristow M. R., Long C. S., Simpson P. C. Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ. Res. 2001; 89: 591–598
  • Kitamura S., Jinno N., Ohta S., Kuroki H., Fujimoto N. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A. Biochem. Biophys. Res. Commun. 2002; 293: 554–559
  • Klaassen C. D., Hood A. M. Effects of microsomal enzyme inducers on thyroid follicular cell proliferation and thyroid hormone metabolism. Toxicol. Pathol. 2001; 29: 34–40
  • Klein I., Ojamaa K. Thyrotoxicosis and the heart. Endocrinol Metab. Clin. N. Am. 1998; 27: 51–62
  • Klein N. K., Hack M., Breslau N. Children who were very low birth weight: Development and academic achievement at nine years of age. J. Dev. Behav. Pediatr. 1989; 10: 32–37
  • Klein R. History of congenital hypothyroidism. Neonatal Thyroid Screening, G. N. Burrow, J. H. Dussault. Raven Press, New York 1980; 51–59
  • Klein R., Mitchell M. L. Neonatal screening for hypothyroidism. The Thyroid: A Fundamental and Clinical Text, L. E. Braverman, R. D. Utiger. Lippincott-Raven, Philadelphia 1996; 984–988
  • Klein R., Mitchell M. L. Maternal hypothyroidism and child development. A review. Horm. Res. 1999; 52: 55–59
  • Klein R. Z., Sargent J. D., Larsen P. R., Waisbren S. E., Haddow J. E., Mitchell M. L. Relation of severity of maternal hypothyroidism to cognitive development of offspring. J. Med. Screen. 2001; 8: 18–20
  • Kobayashi M., Hashizume K., Suzuki S., Ichikawa K., Takeda T. A novel NADPH-dependent cytosolic 3,5,3′-triiodo-L-thyronine-binding protein (CTBP; 5.1S) in rat liver: A comparison with 4.7S NADPH-dependent CTBP. Endocrinology 1991; 129: 1701–1708
  • Koenig R. J. Thyroid hormone receptor coactivators and corepressors. Thyroid 1998; 8: 703–713
  • Kohrle J. The deiodinase family: Selenoenzymes regulating thyroid hormone availability and action. Cell. Mol. Life. Sci. 2000; 57: 1853–1863
  • Koibuchi N., Chin W. W. ROR alpha gene expression in the perinatal rat cerebellum: Ontogeny and thyroid hormone regulation. Endocrinology 1998; 139: 2335–2341
  • Koibuchi N., Liu Y., Fukuda H., Takeshita A., Yen P. M., Chin W. W. ROR alpha augments thyroid hormone receptor-mediated transcriptional activation. Endocrinology 1999; 140: 1356–1364
  • Koibuchi N., Chin W. W. Thyroid hormone action and brain development. Trends. Endocrinol. Metab. 2000; 11: 123–128
  • Kolaja K. L., Klaassen C. D. Dose-response examination of UDP-glucuronosyltransferase inducers and their ability to increase both TGF-beta expression and thyroid follicular cell apoptosis. Toxicol. Sci. 1998; 46: 31–37
  • Koller K. J., Wolff R. S., Warden M. K., Zoeller R. T. Thyroid hormones regulate levels of thyrotropin-releasing hormone mRNA in the paraventricular nucleus. Proc. Natl. Acad. Sci. USA. 1987; 84: 7329–7333
  • Kooistra L., Laane C., Vulsma T., Schellekens J. M.H., van der Meere J. J., Kalverboer A. F. Motor and cognitive development in children with congenital hypothyroidism. J Pediatr. 1994; 124: 903–909
  • Kooistra L., van der Meere J. J., Vulsma T., Kalverboer A. F. Sustained attention problems in children with early treated congenital hypothyroidism. Acta Paediatr. 1996; 85: 425–429
  • Korkman M., Liikanen A., Fellman V. Neuropsychological consequences of very low birth weight and asphyxia at term: Follow-up until school-age. J. Clin Exp. Neuropsychol. 1996; 18: 220–233
  • Kostrouch Z., Munari-Silem Y., Rajas F., Bernier-Valentin F., Rousset B. Thyroglobulin internalized by thyrocytes passes through early and late endosomes. Endocrinology 1991; 129: 2202–2211
  • Kostrouch Z., Bernier-Valentin F., Munari-Silem Y., Rajas F., Rabilloud R., Rousset B. Thyroglobulin molecules internalized by thyrocytes are sorted in early endosomes and partially recycled back to the follicular lumen. Endocrinology 1993; 132: 2645–2653
  • Kragie L. Membrane iodothyronine transporters, Part II: Review of protein biochemistry. Endocr Res. 1996; 22: 95–119
  • Krawiec L., Chester H. A., Bocanera L. V., Pregliasco L. B., Juvenal G. J., Pisarev M. A. Thyroid autoregulation: Evidence for an action of iodoarachidonates and iodide at the cell membrane level. Horm. Metab. Res. 1991; 23: 321–325
  • Kretschmer X. C., Baldwin W. S. CAR and PXR: Xenosensors of endocrine disrupters?. Chem. Biol. Interact. 2005; 155(3)111–128
  • LaFranchi S. Congenital hypothyroidism: Etiologies, diagnosis, and management. Thyroid 1999a; 9: 735–740
  • LaFranchi S. Thyroid function in the preterm infant. Thyroid 1999b; 9: 71–78
  • Lagradi G., Emerson C. H., Ahima R. S., Flier J. S., Lechan R. M. Leptin prevents fasting-induced suppression of prothyrotropin-releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology 1997; 138: 2569–2576
  • Lakshmy R., Rao P. S. Effect of thiocyanate induced hypothyroidism on 5′deiodinase activity and T3 receptors in developing rat brain. Indian. J. Exp. Biol. 1999; 37: 1065–1069
  • Landry S., Chapieski M. Visual attention during toy exploratory in preterm infants: Effects of medical risk and maternal interactions. Infant. Behav. Dev. 1988; 11: 187–204
  • Laurberg P., Nohr S. B., Pedersen K. M., Hreidarsson A. B., Andersen S., Bulow Pedersen I., Knudsen N., Perrild H., Jorgensen T., Ovesen L. Thyroid disorders in mild iodine deficiency. Thyroid 2000; 10: 951–963
  • Lavado-Autric R., Auso E., Garcia-Velasco J. V., Arufe Mdel C., Escobar del Rey F., Berbel P., Morreale de Escobar G. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J. Clin. Invest. 2003; 111: 1073–1082
  • Lazar M. A. Thyroid hormone receptors: Multiple forms, multiple possibilities. Endocr. Rev. 1993; 14: 184–193
  • Lazar M. A. Thyroid hormone receptors: Update (1994). Endocr. Rev. Monogr. 1994; 3: 280–283
  • Lechan R. M., Wu P., Jackson I. M.D. Immunolocalization of the thyrotropin-releasing hormone prohormone in the rat central nervous system. Endocrinology 1986; 119: 1210–1216
  • Lechan R. M., Kakucska I. Feedback regulation of thyrotropin-releasing hormone gene expression by thyroid hormone in the hypothalamic paraventricular nucleus. Functional Anatomy of the Neuroendocrine Hypothalamus, D. J. Chadwick, J. Marsh. John Wiley & Sons, Budapest, Hungary 1992; 144–164
  • Lechan R. M., Qi Y., Jackson I. M.D., Mahdavi V. Identification of thyroid hormone receptor isoforms in thyrotropin-releasing hormone neurons of the hypothalamic paraventricular nucleus. Endocrinology 1994; 135: 92–100
  • Leneman M., Buchanan L., Rovet J. Where what visuospatial processing in adolescents with congenital hypothyroidism. J. Int. Neuropsychol. Soc. 2001; 7: 556–562
  • Leo C., Chen J. D. The SRC family of nuclear receptor coactivators. Gene 2000; 245: 1–11
  • Leonard J. L., Farwell A. P. Thyroid hormone-regulated actin polymerization in brain. Thyroid 1997; 7: 147–151
  • Lim W., Nguyen N. H., Yang H. Y., Scanlan T. S., Furlow J. D. A thyroid hormone antagonist that inhibits thyroid hormone action in vivo. J. Biol. Chem. 2002; 277: 35664–35670
  • Linke M., Herzog V., Brix K. Trafficking of lysosomal cathepsin B-green fluorescent protein to the surface of thyroid epithelial cells involves the endosomal/lysosomal compartment. J. Cell. Sci. 2002a; 115: 4877–4889
  • Linke M., Jordans S., Mach L., Herzog V., Brix K. Thyroid stimulating hormone upregulates secretion of cathepsin B from thyroid epithelial cells. Biol. Chem. 2002b; 383: 773–784
  • Lippman S. S., Amr S., Weintraub B. D. Discordant effects of thyrotropin (TSH)-releasing hormone on pre-and posttranslational regulation of TSH biosynthesis in rat pituitary. Endocrinology 1986; 119: 343–348
  • Liu J., Liu Y., Barter R. A., Klaassen C. D. Alteration of thyroid homeostasis by UDP-glucuronosyltransferase inducers in rats: A dose-response study. J. Pharmacol. Exp. Ther. 1995; 273: 977–985
  • Lucas A., Morley R., Fewtrell M. S. Low triiodothyronine concentration in preterm infants and subsequent intelligence quotient (IQ) at 8 year follow up. Br. Med. J. 1996; 312: 1132–1133, discussion 1133–1134
  • Lucas A., Morley R., Cole T. J. Randomised trial of early diet in preterm babies and later intelligence quotient. Br. Med. J. 1998; 317: 1481–1487
  • Luciana M., Lindeke L., Georgieff M., Mills M., Neslon C. A. Neurobehavioral evidence for working-memory deficits in school-aged children with histories of prematurity. Dev. Med. Child. Neurol. 1999; 41: 521–533
  • Magner J. A., Kane J., Chou E. T. Intravenous thyrotropin (TSH)-releasing hormone releases human TSH that is structurally different from basal TSH. J. Clin. Endocrinol. Metab. 1992; 74: 1306–1311
  • Man E. B., Jones W. S. Thyroid function in human pregnancy. V. Incidence of maternal serum low butanol-extractable iodines and of normal gestational TBG and TBPA capacities; Retardation of 8–month-old infants. Am. J. Obstet. Gynecol. 1969; 104: 898–908
  • Man E. B., Holden R. H., Jones W. S. Thyroid function in human pregnancy. VII. Development and retardation of 4–year-old progeny of euthyroid and of hypothyroxinemic women. Am. J. Obstet Gynecol. 1971a; 109: 12–19
  • Man E. B., Jones W. S., Holden R. H., Mellits E. D. Thyroid function in human pregnancy. VIII. Retardation of progeny aged 7 years; Relationships to maternal age and maternal thyroid function. Am. J. Obstet. Gynecol. 1971b; 111: 905–916
  • Man E. B. Thyroid function in pregnancy and infancy: Maternal hypothyroxinemia and retardation of progeny. Crit. Rev. Clin. Lab. Sci. 1972; 3: 203–225
  • Mangelsdorf D. J., Evans R. M. The RXR heterodimers and orphan receptors. Cell 1995; 83: 841–850
  • Mansouri A., Chowdhury K., Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet. 1998; 19: 87–90
  • Manzano J., Morte B., Scanlan T. S., Bernal J. Differential effects of triiodothyronine and the thyroid hormone receptor beta-specific agonist GC-1 on thyroid hormone target genes in the brain. Endocrinology 2003; 144: 5480–5487
  • Martin J. B., Reichlin S. Clinical Neuroendocrinology, 2nd ed. F.A. Davis, Philadelphia 1987
  • Matsui T. Transcriptional regulation of a Purkinje cell-specific gene through a functional interaction between ROR alpha and RAR. Genes. Cells. 1997; 2: 263–272
  • Matsuura N., Konishi J. Transient hypothyroidism in infants born to mothers with chronic thyroiditis—A nationwide study of twenty-three cases. The Transient Hypothyroidism Study Group. Endocrinol. Jpn. 1990; 37: 369–379
  • Matysiak-Scholze U., Nehls M. The structural integrity of ROR alpha isoforms is mutated in staggerer mice: Cerebellar coexpression of ROR alpha1 and ROR alpha4. Genomics 1997; 43: 78–84
  • McClain R. M. The significance of hepatic microsomal enzyme induction and altered thyroid function in rats. Implications for thyroid gland neoplasia. Toxicol. Pathol. 1989; 17: 294–306
  • McKenna N. J., O'Malley B. W. Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 2002a; 108: 465–474
  • McKenna N. J., O'Malley B. W. Minireview: Nuclear receptor coactivators—An update. Endocrinology 2002b; 143: 2461–2465
  • McKinney J., Fannin R., Jordan S., Chae K., Rickenbacher U., Pedersen L. Polychlorinated biphenyls and related compound interactions with specific binding sites for thyroxine in rat liver nuclear extracts. J. Med. Chem. 1987; 30: 79–86
  • McKinney J. D., Waller C. L. Polychlorinated biphenyls as hormonally active structural analogues. Environ. Health. Perspect. 1994; 102: 290–297
  • McKinney J. D., Waller C. L. Molecular determinants of hormone mimicry: Halogenated aromatic hydrocarbon environmental agents. J. Toxicol. Environ. Health B. 1998; 1: 27–58
  • Mendel C. M., Weisiger R. A., Jones A. L., Cavalieri R. R. Thyroid hormone-binding proteins in plasma facilitate uniform distribution of thyroxine within tissues: A perfused rat liver study. Endocrinology 1987; 120: 1742–1749
  • Merchenthaler I., Liposits Z. Mapping of thyrotropin-releasing hormone (TRH) neuronal systems of rat forebrain projecting to the median eminence and the OVLT. Immunocytochemistry combined with retrograde labeling at the light and electron microscopic levels. Acta. Biol. Hung. 1994; 45: 361–374
  • Messier N., Langlois M. F. Triac regulation of transcription is T(3) receptor isoform-and response element-specific. Mol. Cell. Endocrinol. 2000; 165: 57–66
  • Mestman J. H., Goodwin T. M., Montoro M. M. Thyroid disorders of pregnancy. Endocrinol. Metab. Clin. North. Am. 1995; 24: 41–71
  • Mestman J. H. Hyperthyroidism in pregnancy. Endocrinol. Metab. Clin. North. Am. 1998; 27: 127–149
  • Mestman J. H. Diagnosis and management of maternal and fetal thyroid disorders. Curr. Opin. Obstet. Gynecol. 1999; 11: 167–175
  • Meyer M. E., Gronemeyer H., Turcotte B., Bocquel M. T., Tasset D., Chambon P. Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 1989; 57: 433–422
  • Miao G. G., Smeyne R. J., D'Arcangelo G., Copeland N. G., Jenkins N. A., Morgan J. I., Curran T. Isolation of an allele of reeler by insertional mutagenesis. Proc. Natl. Acad. Sci. USA. 1994; 91: 11050–11054
  • Michalkiewicz M., Huffman L. J., Connors J. M., Hedge G. A. Alterations in thyroid blood flow induced by varying levels of iodine intake in the rat. Endocrinology 1989; 125: 54–60
  • Midgley J. E. Direct and indirect free thyroxine assay methods: Theory and practice. Clin. Chem. 2001; 47: 1353–1363
  • Mikoshiba K., Aruga J., Okano H. Molecular biology of myelin basic protein: gene rearrangement and expression of anti-sense RNA in myelin-deficient mutants. Comp. Biochem. Physiol. C. 1991; 98: 51–61
  • Miquelis R., Alquier C., Monsigny M. The N-acetylglucosamine-specific receptor of the thyroid. Binding characteristics, partial characterization, and potential role. J. Biol. Chem. 1987; 262: 15291–15298
  • Miquelis R., Courageot J., Jacq A., Blanck O., Perrin C., Bastiani P. Intracellular routing of GLcNAc-bearing molecules in thyrocytes: Selective recycling through the Golgi apparatus. J. Cell. Biol. 1993; 123: 1695–1706
  • Mirabella G., Feig D., Astzalos E., Perlman K., Rovet J. F. The effect of abnormal intrauterine thyroid hormone economies on infant cognitive abilities. J. Pediatr. Endocrinol. Metab. 2000; 13: 191–194
  • Mirell C. J., Yanagisawa M., Lau R., Pekary A. E., Chin W. W., Hershman J. M. Influence of thyroidal status on pituitary content of thyrotropin β-and alpha-subunit, growth hormone, and prolactin messenger ribonucleic acids. Mol. Endocrinol. 1987; 1: 408–412
  • Miyazaki W., Iwasaki T., Takeshita A., Kuroda Y., Koibuchi N. Polychlorinated biphenyls suppress thyroid hormone receptor-mediated transcription through a novel mechanism. J. Biol. Chem. 2004; 279: 18195–18202
  • Monaco H. L. The transthyretin-retinol-binding protein complex. Biochim. Biophys. Acta. 2000; 1482: 65–72
  • Moraitis A. N., Giguere V., Thompson C. C. Novel mechanism of nuclear receptor corepressor interaction dictated by activation function 2 helix determinants. Mol Cell Biol. 2002; 22: 6831–6841
  • Moreau X., Lejeune P. J., Jeanningros R. Kinetics of red blood cell T3 uptake in hypothyroidism with or without hormonal replacement, in the rat. J. Endocrinol. Invest. 1999; 22: 257–261
  • Mori J., Suzuki S., Kobayashi M., Inagaki T., Komatsu A., Takeda T., Miyamoto T., Ichikawa K., Hashizume K. Nicotinamide adenine dinucleotide phosphate-dependent cytosolic T(3) binding protein as a regulator for T(3)-mediated transactivation. Endocrinology 2002; 143: 1538–1544
  • Moriyama K., Tagami T., Akamizu T., Usui T., Saijo M., Kanamoto N., Hataya Y., Shimatsu A., Kuzuya H., Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab. 2002; 87: 5185–5190
  • Morrealede Escobar G., Obregon M. J., Escobar del Rey F. Transfer of thyroid hormones from the mother to the fetus. Research in Congenital Hypothyroidism, F. Delang, D. A. Fisher, D. Glinoer. Plenum Press, New York 1988; 15–28
  • Morreale de Escobar G., Calvo R., Obregon M. J., Escobar del Rey F. Contribution of maternal thyroxine to fetal thyroxine pools in normal rats near term. Endocrinology 1990; 126: 2765–2767
  • Morreale de Escobar G. M., Obregon M. J., Calvo R., Pedraza P., Escobar del Rey F. Iodine deficiency, the hidden scourge: The rat model of human neurological cretinism. Recent Research Developments in Neuroendocrinology—Thyroid Hormone and Brain Maturation, C. E. Hendrich. Research Signpost, TrivandrumIndia 1997; 55–70
  • Morreale de Escobar G., Obregon M. J., Escobar del Rey F. Is neurophysiological development related to maternal hypothyroidism or to maternal hypothyroxinemia?. J. Clin. Endocrinol. Metab. 2000; 85: 3975–3987
  • Morte B., Manzano J., Scanlan T., Vennstrom B., Bernal J. Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc. Natl. Acad. Sci. USA. 2002; 99: 3985–3989
  • Nagasaka A., Hidaka H. Effect of antithyroid agents 6–propyl-2–thiouracil and 1–mehtyl-2–mercaptoimidazole on human thyroid iodine peroxidase. J. Clin. Endocrinol. Metab. 1976; 43: 152–158
  • Nakagawa H., Ohtaki S. Partial purification and characterization of two thiol proteases from hog thyroid lysosomes. Endocrinology 1984; 115: 33–40
  • Nakagawa H., Ohtaki S. Thyroxine (T4) release from thyroglobulin and its T4–containing peptide by thyroid thiol proteases. Endocrinology 1985; 116: 1433–1439
  • Nave K. A. Neurological mouse mutants and the genes of myelin. J. Neurosci. Res. 1994; 38: 607–612
  • Nguyen N. H., Apriletti J. W., Cunha Lima S. T., Webb P., Baxter J. D., Scanlan T. S. Rational design and synthesis of a novel thyroid hormone antagonist that blocks coactivator recruitment. J. Med. Chem. 2002; 45: 3310–3320
  • Nikrodhanond A. A., Ortiga-Carvalho T. M., Shibusawa N., Hashimoto K., Liao X. H., Refetoff S., Yamada M., Mori M., Wondisford F. E. Dominant Role of Thyrotropin-releasing Hormone in the Hypothalamic-Pituitary-Thyroid Axis. J. Biol. Chem. 2006; 281(8)5000–7
  • Nishii Y., Hashizume K., Ichikawa K., Miyamoto T., Suzuki S., Takeda T., Yamauchi K., Kobayashi M., Yamada T. Changes in cytosolic 3,5,3′-tri-iodo-L-thyronine (T3) binding activity during administration of L-thyroxine to thyroidectomized rats: cytosolic T3–binding protein and its activator act as intracellular regulators for nuclear T3 binding. J. Endocrinology 1989; 123: 99–104
  • Nishii Y., Hashizume K., Ichikawa K., Takeda T., Kobayashi M., Nagasawa T., Katai M., Kobayashi H., Sakurai A. Induction of cytosolic triiodo-L-thyronine (T3) binding protein (CTBP) by T3 in primary cultured rat hepatocytes. Endocr. J. 1993; 40: 399–404
  • Norris D. O. Vertebrate Endocrinology, 3rd ed. Academic Press, San Diego 1996; 634
  • Ogasawara M., Di Lauro R., Satoh N. Ascidian homologs of mammalian thyroid peroxidase genes are expressed in the thyroid-equivalent region of the endostyle. J. Exp. Zool. 1999; 285: 158–169
  • Ohtaki S., Nakagawa H., Nakamura M., Yamazaki I. One-and two-electron oxidations of tyrosine, monoiodotyrosine, and diiodotyrosine catalyzed by hog thyroid peroxidase. J. Biol. Chem. 1982; 257: 13398–13403
  • Onate S. A., Tsai S. Y., Tsai M. J., O'Malley B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 1995; 270: 1354–1357
  • Oppenheimer J. H. The nuclear receptor-triiodothyronine complex: Relationship to thyroid hormone distribution, metabolism, and biological action. Molecular Basis of Thyroid Hormone Action, J. H. Oppenheimer, H. H. Samuels. Academic Press, New York 1983; 1–35
  • Oppenheimer J. H., Schwartz H. L., Strait K. A. Thyroid hormone action 1994: The plot thickens. Eur. J. Endocrinol. 1994; 130: 15–24
  • Oppenheimer J. H., Schwartz H. L. Molecular basis of thyroid hormone-dependent brain development. Endocrine Rev. 1997; 18: 462–475
  • Ortega E., Osorio A., Ruiz E. Inhibition of 5′DI and 5′DII L-tiroxine (T4) monodeiodinases. Effect on the hypothalamo-pituitary ovarian axis in adult hypothyroid rats treated with T4. Biochem. Mol Biol. Int. 1996; 39: 853–860
  • Osty J., Jego L., Francon J., Blondeau J. P. Characterization of triiodothyronine transport and accumulation in rat erythrocytes. Endocrinology 1988; 123: 2303–2311
  • Pacaud D., Huot C., Gattereau A., Brown R. S., Glorieux J., Dussault J. H., Van Vliet G. Outcome in three siblings with antibody-mediated transient congenital hypothyroidism. J. Pediatr. 1995; 127: 275–277
  • Pachucki J., Wang D., Christophe D., Miot F. Structural and functional characterization of the two human ThOX/Duox genes and their 5′-flanking regions. Mol. Cell. Endocrinology 2004; 214: 53–62
  • Palacios-Romero R., Mowbray J. Evidence for the rapid direct control both in vivo and in vitro of the efficiency of oxidative phosphorylation by 3,5,3′-tri-iodo-L-thyronine in rats. Biochem. J. 1979; 184: 527–538
  • Palha J. A., Fernandes R., de Escobar G. M., Episkopou V., Gottesman M., Saraiva M. J. Transthyretin regulates thyroid hormone levels in the choroid plexus, but not in the brain parenchyma: Study in a transthyretin-null mouse model. Endocrinology 2000; 141: 3267–3272
  • Palha J. A. Transthyretin as a thyroid hormone carrier: Function revisited. Clin. Chem. Lab. Med. 2002; 40: 1292–1300
  • Pasca di Magliano M., Di Lauro R., Zannini M. Pax8 has a key role in thyroid cell differentiation. Proc. Natl. Acad. Sci. USA. 2000; 97: 13144–13149
  • Peeters R. P., van den Beld A. W., Attalki H., van Toor H., de Rijke Y. B., Kuiper G. J.M., Lamberts S. W.J., Janssen J., Uitterlinden A. G., Visser T. J. A new polymorphism in the type II deiodinase gene is associated with circulating thyroid hormone parameters. Am. J. Physiol. Endocrinol Metab. 2005; 289: E75–E81
  • Petanceska S., Devi L. Sequence analysis, tissue distribution, and expression of rat cathepsin S. J. Biol. Chem. 1992; 267: 26038–26043
  • Pickard M. R., Sinha A. K., Ogilvie L. M., Leonard A. J., Edwards P. R., Ekins R. P. Maternal hypothyroxinemia influences glucose transporter expression in fetal brain and placenta. J. Endocrinol. 1999; 163: 385–394
  • Pinna G., Hiedra L., Prengel H., Broedel O., Eravci M., Meinhold H., Baumgartner A. Extraction and quantification of thyroid hormones in selected regions and subcellular fractions of the rat brain. Brain. Res. Proc. 1999; 4: 19–28
  • Pinna G., Brodel O., Visser T., Jeitner A., Grau H., Eravci M., Meinhold H., Baumgartner A. Concentrations of seven iodothyronine metabolites in brain regions and the liver of the adult rat. Endocrinology 2002; 143: 1789–1800
  • Pisarev M. A., Gartner R. Autoregulatory actions of iodine. The Thyroid: A Fundamental and Clinical Text, L. E. Braverman, R. D. Utiger. Lippincott Williams and Wilkins, Philidelphia 2000; 85–90
  • Pop V. J., de Vries E., van Baar A. L., Waelkens J. J., de Rooy H. A., Horsten M., Donkers M. M., Komproe I. H., van Son M. M., Vader H. L. Maternal thyroid peroxidase antibodies during pregnancy: A marker of impaired child development?. J. Clin. Endocrinol. Metab. 1995; 80: 3561–3566
  • Pop V. J., Kuijpens J. L., van Baar A. L., Verkerk G., van Son M. M., de Vijlder J. J., Vulsma T., Wiersinga W. M., Drexhage H. A., Vader H. L. Low maternal free thyroxine concentrations during early pregnancy are associated with impaired psychomotor development in infancy. Clin. Endocrinol. (Oxf) 1999; 50: 149–155
  • Porterfield S. P., Hendrich C. E. Tissue iodothyronine levels in fetuses of control and hypothyroid rats at 13 and 16 days gestation. Endocrinology 1992; 131: 195–200
  • Potter B. J., Mano M. T., Belling G. B., Martin D. M., Cragg B. G., Chavadej J., Hetzel B. S. Restoration of brain growth in fetal sheep after iodized oil administration to pregnant iodine-deficient ewes. J. Neurol. Sci. 1984; 66: 15–26
  • Power D. M., Elias N. P., Richardson S. J., Mendes J., Soares C. M., Santos C. R. Evolution of the thyroid hormone-binding protein, transthyretin. Gen. Comp. Endocrinol. 2000; 119: 241–255
  • Prummel M. F., Brokken L. J., Meduri G., Misrahi M., Bakker O., Wiersinga W. M. Expression of the thyroid-stimulating hormone receptor in the folliculo-stellate cells of the human anterior pituitary. J. Clin. Endocrinol. Metab. 2000; 85: 4347–4353
  • Prummel M. F., Brokken L. J., Wiersinga W. M. Ultra short-loop feedback control of thyrotropin secretion. Thyroid 2004; 14: 825–829
  • Qatanani M., Zhang J., Moore D. D. Role of the constitutive androstane receptor in xenobiotic-induced thyroid hormone metabolism. Endocrinology 2005; 146: 995–1002
  • Quattrocchi C. C., Huang C., Niu S., Sheldon M., Benhayon D., Cartwright J., Jr., Mosier D. R., Keller F., D'Arcangelo G. Reelin promotes peripheral synapse elimination and maturation. Science 2003; 301: 649–653
  • Rapoport B., West M. N., Ingbar S. H. Inhibitory effect of dietary iodine on the thyroid adenylate cyclase response to thyrotropin in the hypophysectomized rat. J. Clin. Invest. 1975; 56: 516–519
  • Readhead C., Hood L. The dysmyelinating mouse mutations shiverer (shi) and myelin deficient (shimld). Behav. Genet. 1990; 20: 213–234
  • Refetoff S. Inherited thyroxine-binding globulin abnormalities in man. Endocr. Rev. 1989; 10: 275–293
  • Reichlin S., Martin J. B., Mitnick M., Boshans R. L., Grimm Y., Bollinger J., Gordon J., Malacara J. The hypothalamus in pituitary-thyroid regulation. Recent. Prog. Horm. Res. 1972; 28: 229–286
  • Reuss M. L., Paneth N., Susser M. Does the loss of placental hormones contribute to neurodevelopmental disabilities in preterm infants?. Dev. Med. Child. Neurol. 1994; 36: 743–747
  • Reuss M. L., Paneth N., Pinto-Martin J. A., Lorenz J. M., Susser M. The relation of transient hypothyroxinemia in preterm infants to neurologic development at two years of age. N. Engl. J. Med. 1996; 334: 821–827
  • Reuss M. L., Leviton A., Paneth N., Susser M. Thyroxine values from newborn screening of 919 infants born before 29 weeks' gestation. Am. J. Public. Health 1997; 87: 1693–1697
  • Rice D. S., Curran T. Role of the reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 2001; 24: 1005–1039
  • Richardson S. J., Monk J. A., Shepherdley C. A., Ebbesson L. O.E., Sin F., Power D. M., Frappell P. B., Kohrle J., Renfree M. B. Developmentally regulated thyroid hormone distributor proteins in marsupials, a reptile, and fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005; 288: R1264–R1272
  • Ring P., Bjorkman U., Ekholm R. Localization of the incorporation of 3H-galactose and 3H-sialic acid into thyroglobulin in relation to the block of intracellular transport induced by monensin: Studies with isolated porcine thyroid follicles. Cell. Tissue. Res. 1987; 250: 149–156
  • Robbins J. Thyroid hormone transport proteins and the physiology of hormone binding. The Thyroid: A Fundamental and Clinical Text, L. E. Braverman, R. D. Utiger. Lippincott Williams and Wilkins, Philaldelphia 2000; 105–120
  • Robbins J. Transthyretin from discovery to now. Clin. Chem. Lab. Med. 2002; 40: 1183–1190
  • Romijn J. A., Adriaanse R., Brabant G., Prank K., Endert E., Wiersinga W. M. Pulsatile secretion of thyrotropin during fasting: A decrease of thyrotropin pulse amplitude. J. Clin. Endocrinol. Metab. 1990; 70: 1631–1636
  • Rondeel J. M.M., deGreef W. J., van der Schoot P., Karels B., Klootwijk W., Visser T. J. Effect of thyroid status and paraventricular area lesions on the release of thyrotropin-releasing hormone and catecholamines into hypophysial portal blood. Endocrinology 1988; 123: 523–527
  • Rondeel J. M.M., de Greef W. J., van der Vaart P. D.M., van der Schoot P., Visser T. J. In vivo hypothalamic release of thyrotropin-releasing hormone after electrical stimulation of the paraventricular area: Comparison between push-pull perfusion technique and collection of hypophysial portal blood. Endocrinology 1989; 125: 971–975
  • Rose S., Feldman J. Infant visual attention: Stability of individual differences from 6 to 8 months. Dev. Psychol. 1987; 23: 490–498
  • Rosenberg I. N., Goswami A. Purification and characterization of a flavoprotein from bovine thyroid with iodotyrosine deiodinase activity. J. Biol. Chem. 1979; 254: 12318
  • Rosenfeld M. G., Glass C. K. Coregulator codes of transcriptional regulation by nuclear receptors. J. Biol. Chem. 2001; 276: 36865–36868
  • Ross G., Boatright S., Auld P. A., Nass R. Specific cognitive abilities in 2–year-old children with subependymal and mild intraventricular hemorrhage. Brain. Cogn. 1996; 32: 1–13
  • Roti E., Minelli R., Gardini E., Braverman L. E. The use and misuse of thyroid hormone. Endocrine. Rev. 1993; 14: 401–423
  • Rouaze-Romet M., Vranckx R., Savu L., Nunez E. A. Structural and functional microheterogeneity of rat thyroxine-binding globulin during ontogenesis. Biochem. J. 1992; 286(1)125–130
  • Rovet J., Ehrlich R., Sorbara D. Intellectual outcome in children with fetal hypothyroidism: Implications for neonatal diagnosis. J. Pediatr. 1987; 110: 700–704
  • Rovet J., Ehrlich R., Sorbara D. Neurodevelopment in infants and preschool children with congenital hypothyroidism: Etiological and treatment factors affecting outcome. J. Pediatr. Psychol. 1992; 17: 187–213
  • Rovet J. F., Walker W., Bliss B., Buchanan L., Ehrlich R. Long-term sequelae of hearing impairment in congenital hypothyroidism. J. Pediatr. 1996; 128: 776–783
  • Rovet J. F. Congenital hypothyroidism: Long-term outcome. Thyroid 1999; 9: 741–748
  • Rovet J. F., Hepworth S. Attention problems in adolescents with congenital hypothyroidism: A multicomponential analysis. J. Int. Neuropsychol. Soc. 2001a; 7: 734–744
  • Rovet J. F., Hepworth S. L. Dissociating attention deficits in children with ADHD and congenital hypothyroidism using multiple CPTs. J. Child. Psychol. Psychiatr. 2001b; 42: 1049–1056
  • Rovet J. F., Daneman D. Congenital hypothyroidism: A review of current diagnostic and treatment practices in relation to neuropsychologic outcome. Paediatr. Drugs. 2003; 5(3)141–149
  • Sadow P. M., Chassande O., Gauthier K., Samarut J., Xu J., O'Malley B. W., Weiss R. E. Specificity of thyroid hormone receptor subtype and steroid receptor coactivator-1 on thyroid hormone action. Am. J. Physiol. Endocrinol. Metab. 2003; 284: E36–46
  • Saigal S., Roenbaum P., Szatmari P., Campbell D. Learning disabilities and school problems in a regional cohort of extremely low birthweight (< 1000 g) children: A comparison with matched term controls. J. Dev. Behav. Pediatrics 1991; 12: 294–300
  • Salerno M., Militerni R., Bravaccio C., Micillo M., Capalbo D., Di M. S., Tenore A. Effect of different starting doses of levothyroxine on growth and intellectual outcome at four years of age in congenital hypothyroidism. Thyroid 2002; 12: 45–52
  • Sap J., Munoz A., Damm K., Goldberg Y., Ghysdael J., Lentz A., Beug H., Vennstrom B. The c-erbA protein is a high affinity receptor for thyroid hormone. Nature 1986; 324: 635–640
  • Savin S., Cvejic D., Nedic O., Radosavljevic R. Thyroid hormone synthesis and storage in the thyroid gland of human neonates. J. Pediatr. Endocrinol. Metab. 2003; 16: 521–528
  • Savu L., Vranckx R., Maya M., Gripois D., Blouquit M. F., Nunez E. A. Thyroxine-binding globulin and thyroxine-binding prealbumin in hypothyroid and hyperthyroid developing rats. Biochim. Biophys. Acta. 1989; 992: 379–384
  • Scanlon M. F., Toft A. D. Regulation of thyrotropin secretion. The Thyroid: A Fundamental and Clinical Text, 8th ed., L. E. Braverman, R. D. Utiger. Lippincott William and Wilkins, Philadelphia 2000; 234–253
  • Schilling J. S. Hyperthyroidism: Diagnosis and management of Graves' disease. Nurse. Pract. 1997; 22: 72, 75–78, (passim); quiz 96–77
  • Schneider M. J., Fiering S. N., Pallud S. E., Parlow A. F., St. Germain D. L., Galton V. A. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 2001; 15: 2137–2148
  • Schreiber G. The evolution of transthyretin synthesis in the choroid plexus. Clin. Chem. Lab. Med. 2002a; 40: 1200–1210
  • Schreiber G. The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis. J. Endocrinol. 2002b; 175: 61–73
  • Schueler P. A., Schwartz H. L., Strait K. A., Mariash C. N., Oppenheimer J. H. Binding of 3,5,3′-triiodothyronine (T3) and its analogs to the in vitro translational products of c-erbA protooncogenes: Differences in the affinity of the alpha and beta forms for the acetic acid analog and failure of the human testis and kidney alpha-2 products to bind T3. Mol. Endocrinol. 1990; 4: 227–234
  • Schussler G. C. The thyroxine-binding proteins. Thyroid 2000; 10: 141–149
  • Schwartz H. L. Effect of thyroid hormone on growth and development. Molecular Basis of Thyroid Hormone Action, J. H. Oppenheimer, H. H. Samuels. Academic Press, New York 1983; 413–444
  • Schwartz H. L., Strait K. A., Ling N. C., Oppenheimer J. H. Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity. J. Biol. Chem. 1992; 267: 11794–11799
  • Segal J. Acute effect of thyroid hormone on the heart: An extranuclear increase in sugar uptake. J. Mol. Cell. Cardiol. 1989; 21: 323–334
  • Segersen T. P., Hoefler H., Childers H., Wolfe H. J., Wu P., Jackson I. M.D., Lechan R. M. Localization of thyrotropin-releasing hormone prohormone messenger ribonucleic acid in rat brain by in situ hybridization. Endocrinology 1987a; 121: 98–107
  • Segersen T. P., Kauer J., Wolfe H. C., Mobtaker H., Wu P., Jackson I. M.D., Lechan R. M. Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science 1987b; 238: 78–80
  • Sellin J. H., Vassilopoulou-Sellin R. The gastrointestinal tract and liver in thyrotoxicosis. The Thyroid: A Fundamental and Clinical Text, 8th ed., L. E. Braverman, R. D. Utiger. Lippincott Williams and Wilkins, Philadelphia 2000; 622–626
  • Shibusawa N., Hollenberg A. N., Wondisford F. E. Thyroid hormone receptor DNA binding is required for both positive and negative gene regulation. J. Biol. Chem. 2003; 278: 732–738
  • Shupnik M. A., Ridgway E. C. Thyroid hormone control of thyrotropin gene expression in rat anterior pituitary cells. Endocrinology 1987; 121: 619–624
  • Siegel L. S., Saigal S., Rosenbaum P., Morton R. A., Young A., Berenbaum S., Stoskopf B. Predictors of development in preterm and full-term infants: A model for detecting the at risk child. J. Pediatr. Psychol. 1982; 7: 135–148
  • Sigman M., Beckwith L., Parmelee A. Infant attention in relation to intellectual abilities in childhood. Dev. Psychol. 1986; 22: 789–792
  • Singh R., Upadhyay G., Kumar S., Kapoor A., Kumar A., Tiwari M., Godbole M. M. Hypothyroidism alters the expression of Bcl-2 family genes to induce enhanced apoptosis in the developing cerebellum. J. Endocrinol. 2003; 176: 39–46
  • Smeds S. A microgel electrophoretic analysis of the colloid proteins in single rat thyroid follicles. I. The qualitative protein composition of the colloid in normal thyroids. Endocrinology 1972a; 91: 1288–1299
  • Smeds S. A microgel electrophoretic analysis of the colloid proteins in single rat thyroid follicles. II. The protein concentration of the colloid single rat thyroid follicles. Endocrinology 1972b; 91: 1300–1306
  • Smit B. J., Kok J. H., de Vries L. S., van Wassenaer A. G., Dekker F. W., Ongerboer de Visser B. W. Motor nerve conduction velocity in very preterm infants in relation to L-thyroxine supplementation. J. Pediatr. 1998a; 132: 64–69
  • Smit B. J., Kok J. H., de Vries L. S., van Wassenaer A. G., Dekker F. W., Ongerboer de Visser B. W. Somatosensory evoked potentials in very preterm infants in relation to L-thyroxine supplementation. Pediatrics 1998b; 101: 865–869
  • Smit B. J., Kok J. H., Vulsma T., Briet J. M., Boer K., Wiersinga W. M. Neurologic development of the newborn and young child in relation to maternal thyroid function. Acta Paediatr. 2000; 89: 291–295
  • Song M. K., Grieco D., Rall J. E., Nikodem V. M. Thyroid hormone-mediated transcriptional activation of rat liver malic enzyme gene by dehydroepiandrosterone. J. Biol. Chem. 1989; 264: 18981–18985
  • Song S., Daneman D., Rovet J. The influence of etiology and treatment factors on intellectual outcome in congenital hypothyroidism. J. Dev. Behav. Pediatr. 2001; 22: 376–384
  • Spaulding S. W. Biological actions of thyrotropin. The Thyroid: A Fundamental and Clinical Text, L. E. Braverman, R. D. Utiger. Lippincott Williams and Wilkins, Philadelphia 2000; 227–233
  • Spencer C. A., Wang C. C. Thyroglobulin measurement: Techniques, clinical benefits, and pitfalls. Endocrinol. Metab. Clin. North. Am. 1995; 24: 841–863
  • Spiro M. J., Spiro R. G. Biosynthesis of sulfated asparagine-linked complex carbohydrate units of calf thyroglobulin. Endocrinology 1988; 123: 56–65
  • St. Germain D. L., Croteau W. Ligand-induced inactivation of type I iodothyronine 5′-deiodinase: Protection by propylthiouracil in vivo and reversibility in vitro. Endocrinology 1989; 125: 2735–2744
  • St. Germain D. L., Galton V. A. The deiodinase family of selenoproteins. Thyroid 1997; 7: 655–668
  • Stachelek S. J., Kowalik T. F., Farwell A. P., Leonard J. L. Myosin V plays an essential role in the thyroid hormone-dependent endocytosis of type II iodothyronine 5′-deiodinase. J. Biol. Chem. 2000; 275: 31701–31707
  • Stachelek S. J., Tuft R. A., Lifschitz L. M., Leonard D. M., Farwell A. P., Leonard J. L. Real-time visualization of processive myosin 5a-mediated vesicle movement in living astrocytes. J. Biol. Chem. 2001; 276: 35652–35659
  • Sterling K., Milch P. O., Brenner M. A., Lazarus J. H. Thyroid hormone action: The mitochondrial pathway. Science 1977; 197: 996–999
  • Sterling K. Direct thyroid hormone activation of mitochondria: The role of adenine nucleotide translocase. Endocrinology 1986; 119: 292–295
  • Sterling K., Brenner M. A. Thyroid hormone action: Effect of triiodothyronine on mitochondrial adenine nucleotide translocase in vivo and in vitro. Metabolism 1995; 34: 193–199
  • Stockigt J. R. Serum thyrotropin and thyroid hormone measurements and assessment of thyroid hormone transport. The Thyroid: A Fundamental and Clinical Text, L. E. Braverman, R. D. Utiger. Lippincott-Raven, Philadelphia 2000; 376–392
  • Storey N. M., O'Bryan J. P., Armstrong D. L. Rac and Rho mediate opposing hormonal regulation of the ether-a-go-go-related potassium channel. Curr. Biol. 2002; 12: 27–33
  • Strait K. A., Schwartz H. L., Perez-Castillo A., Oppenheimer J. H. Relationship of c-erbA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. J. Biol. Chem. 1990; 265: 10514–10521
  • Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes. Dev. 1998; 12: 599–606
  • Stubner D., Gartner R., Greil W., Gropper K., Brabant G., Permanetter W., Horn K., Pickardt C. R. Hypertrophy and hyperplasia during goitre growth and involution in rats—separate bioeffects of TSH and iodine. Acta. Endocrinol. (Copenh.) 1987; 116: 537–548
  • Surks M. I., Ortiz E., Daniels G. H., Sawin C. T., Col N. F., Cobin R. H., Franklyn J. A., Hershman J. M., Burman K. D., Denke M. A., Gorman C., Cooper R. S., Weissman N. J. Subclinical thyroid disease: Scientific review and guidelines for diagnosis and management. J. Am. Med. Assoc. 2004; 291: 228–238
  • Suzuki S., Hashizume K., Ichikawa K., Takeda T. Ontogenesis of the high affinity NADPH-dependent cytosolic 3,5,3′-triiodo-L-thyronine-binding protein in rat. Endocrinology 1991; 129: 2571–2574
  • Suzuki S., Mori J. I., Kobayashi M., Inagaki T., Komatsu A., Yamashita K., Takeda T., Miyamoto T., Ichikawa K., Hashizume K. Presence of functional domains in NADPH-dependent cytosolic 3,5,3′-Triiodo-L-thyronine (T3)-binding protein (p38CTBP) molecule: Analyses with deletion mutants. Horm. Metab. Res. 2003a; 35: 577–582
  • Suzuki S., Mori J., Kobayashi M., Inagaki T., Inaba H., Komatsu A., Yamashita K., Takeda T., Miyamoto T., Ichikawa K., Hashizume K. Cell-specific expression of NADPH-dependent cytosolic 3,5,3′-triiodo-L-thyronine-binding protein (p38CTBP). Eur. J. Endocrinology 2003b; 148: 259–268
  • Tai H., Kubota N., Kato S. Involvement of nuclear receptor coactivator SRC-1 in estrogen-dependent cell growth of MCF-7 cells. Biochem. Biophys. Res. Commun. 2000; 267: 311–316
  • Takeda T., Suzuki S., Liu R. T., DeGroot L. J. Triiodothyroacetic acid has unique potential for therapy of resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 1995; 80: 2033–2040
  • Takeuchi Y., Murata Y., Sadow P., Hayashi Y., Seo H., Xu J., O'Malley B. W., Weiss R. E., Refetoff S. Steroid receptor coactivator-1 deficiency causes variable alterations in the modulation of t(3)-regulated transcription of genes in vivo. Endocrinology 2002; 143: 1346–1352
  • Tani Y., Mori Y., Miura Y., Okamoto H., Inagaki A., Saito H., Oiso Y. Molecular cloning of the rat thyroxine-binding globulin gene and analysis of its promoter activity. Endocrinology 1994; 135: 2731–2736
  • Taurog A. The biosynthesis of thyroxine. Mayo. Clin. Proc. 1964; 39: 569
  • Taurog A., Nakashima T. Dissociation between degree of iodination and iodoamino acid distribution in thyroglobulin. Endocrinology 1978; 103: 633–640
  • Taurog A., Dorris M. L., Yokoyama N., Slaughter C. Purification and characterization of a large, tryptic fragment of human thyroid peroxidase with high catalytic activity. Arch. Biochem. Biophys. 1990; 278: 333–341
  • Taurog A., Dorris M. L., Doerge D. R. Minocycline and the thyroid: Antithyroid effects of the drug, and the role of thyroid peroxidase in minocycline-induced black pigmentation of the gland. Thyroid 1996; 6: 211–219
  • Taurog A. Hormone Synthesis: Thyroid Iodine Metabolism. The Thyroid: A Fundamental and Clinical Text, 8th ed., L. E. Braverman, R. D. Utiger. Lippincott-Raven, Philadelphia 2000; 61–85
  • Taurog A. Hormone synthesis: Thyroid iodine metabolism. The Thyroid: A Fundamental and Clinical Text, Ninth Edition, L. E. Braverman, R. D. Utiger. Lippincott-Raven, Philadelphia 2004; 61–85
  • Taylor T., Weintraub B. D. Thyrotropin (TSH)-releasing hormone regulation of TSH subunit biosynthesis and glycosylation in normal and hypothyroid rat pituitaries. Endocrinology 1985; 116: 1968–1976
  • Taylor T., Gesundheit N., Weintraub B. D. Effects of in vivo bolus versus continuous TRH administration on TSH secretion, biosynthesis, and glycosylation in normal and hypothyroid rats. Mol. Cell. Endocrinol. 1986; 46: 253–261
  • Taylor T., Wondisford F. E., Blaine T., Weintraub B. D. The paraventricular nucleus of the hypothalamus has a major role in thyroid hormone feedback regulation of thyrotropin synthesis and secretion. Endocrinology 1990; 126: 317–324
  • Theodoropoulou M., Arzberger T., Gruebler Y., Korali Z., Mortini P., Joba W., Heufelder A. E., Stalla G. K., Schaaf L. Thyrotrophin receptor protein expression in normal and adenomatous human pituitary. J. Endocrinol. 2000; 167: 7–13
  • Thompson C. C., Potter G. B. Thyroid hormone action in neural development. Cereb. Cortex 2000; 10: 939–945
  • Ueta Y., Levy A., Chowdrey H. S., Lightman S. L. Hypothalamic nitric oxide synthase gene expression is regulated by thyroid hormones. Endocrinology 1995a; 136: 4182–4187
  • Ueta Y., Levy A., Chowdrey H. S., Lightman S. L. Inhibition of hypothalamic nitric oxide synthase gene expression in the rat paraventricular nucleus by food deprivation is independent of serotonin depletion. J. Neuroendocrinol. 1995b; 7: 861–865
  • van den Hove M. F., Beckers C., Devlieger H., de Zegher F., De Nayer P. Hormone synthesis and storage in the thyroid of human preterm and term newborns: Effect of thyroxine treatment. Biochimie 1999; 81: 563–570
  • Van Heuverswyn B., Streydio C., Brocas H., Refetoff S., Dumont J., Vassart G. Thyrotropin controls transcription of the thyroglobulin gene. Proc. Natl. Acad. Sci. USA. 1984; 81: 5941–5945
  • Van Sande J., Grenier G., Willems C., Dumont J. E. Inhibition by iodide of the activation of the thyroid cyclic 3′,5′-AMP system. Endocrinology 1975; 96: 781–786
  • van Wassenaer A. G., Kok J. H., de Vijlder J. J., Briet J. M., Smit B. J., Tamminga P., van Baar A., Dekker F. W., Vulsma T. Effects of thyroxine supplementation on neurologic development in infants born at less than 30 weeks' gestation. N. Engl. J. Med. 1997; 336: 21–26
  • van Wassenaer A. G., Kok J. H., Dekker F. W., Endert E., de Vijlder J. J. Thyroxine administration to infants of less than 30 weeks gestational age decreases plasma tri-iodothyronine concentrations. Eur. J. Endocrinol. 1998; 139: 508–515
  • van Wassenaer A. G., Stulp M. R., Valianpour F., Tamminga P., Ris Stalpers C., de Randamie J. S., van Beusekom C., de Vijlder J. J. The quantity of thyroid hormone in human milk is too low to influence plasma thyroid hormone levels in the very preterm infant. Clin. Endocrinol. (Oxf.) 2002; 56: 621–627
  • Vassart G. Specific synthesis of thyroglobulin on membrane bound thyroid ribosomes. FEBS Lett. 1972; 22: 53–56
  • Veronikis I. E., Alex S., Fang S. L., Wright G., Wu S. Y., Chanoine J. P., Emerson C. H., Braverman L. E. Serum iodothyronine concentrations in intestinally decontaminated rats treated with a 5′-deiodinase type I inhibitor 6–anilino-2–thiouracil. Eur. J. Endocrinol. 1996; 134: 519–523
  • Vigone M. C., Fugazzola L., Zamproni I., Passoni A., Di Candia S., Chiumello G., Persani L., Weber G. Persistent mild hypothyroidism associated with novel sequence variants of the DUOX2 gene in two siblings. Hum. Mutat. 2005; 26: 395
  • Vogel M. W., Sinclair M., Qiu D., Fan H. Purkinje cell fate in staggerer mutants: Agenesis versus cell death. J. Neurobiol. 2000; 42: 323–337
  • Vohr B., García Coll C., Flanagan P., Oh W. Effects of intraventricular hemorrhage and socioeconomic status on perceptual, cognitive, and neurologic status of low birth weight infants at 5 years of age. J. Pediatr. 1992; 121: 280–285
  • Vranckx R., Savu L., Maya M., Nunez E. A. Characterization of a major development-regulated serum thyroxine-binding globulin in the euthyroid mouse. Biochem. J. 1990; 271: 373–379
  • Vranckx R., Rouaze-Romet M., Savu L., Mechighel P., Maya M., Nunez E. A. Regulation of rat thyroxine-binding globulin and transthyretin: Studies in thyroidectomized and hypophysectomized rats given tri-iodothyronine or/and growth hormone. J. Endocrinol. 1994; 142: 77–84
  • Wang D., De Deken X., Milenkovic M., Song Y., Pirson I., Dumont J. E., Miot F. Identification of a novel partner of duox: EFP1, a thioredoxin-related protein. J. Biol. Chem. 2005; 280: 3096–3103
  • Wang H., LeCluyse E. L. Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes. Clin. Pharmacokinet. 2003; 42: 1331–1357
  • Waxman D. J. P450 gene induction by structurally diverse xenochemicals: Central role of nuclear receptors CAR, PXR, and PPAR. Arch. Biochem. Biophys. 1999; 369: 11–23
  • Webb P., Nguyen N. H., Chiellini G., Yoshihara H. A., Cunha Lima S. T., Apriletti J. W., Ribeiro R. C., Marimuthu A., West B. L., Goede P., Mellstrom K., Nilsson S., Kushner P. J., Fletterick R. J., Scanlan T. S., Baxter J. D. Design of thyroid hormone receptor antagonists from first principles. J. Steroid. Biochem. Mol. Biol. 2002; 83: 59–73
  • Weinberger C., Thompson C. C., Ong E. S., Lebo R., Gruol D. J., Evans R. M. The c-erbA gene encodes a thyroid hormone receptor. Nature 1986; 324: 641–646
  • Weintraub B. D., Gesundheit N., Taylor T., Gyves P. W. Effect of TRH on TSH glycosylation and biological action. Ann. NY Acad. Sci. 1989; 553: 205–213
  • Weiss R. E., Murata Y., Cua K., Hayashi Y., Seo H., Refetoff S. Thyroid hormone action on liver, heart, and energy expenditure in thyroid hormone receptor beta-deficient mice. Endocrinol. 1998; 139: 4945–4952
  • Weiss R. E., Gehin M., Xu J., Sadow P. M., O'Malley B. W., Chambon P., Refetoff S. Thyroid function in mice with compound heterozygous and homozygous disruptions of SRC-1 and TIF-2 coactivators: Evidence for haploinsufficiency. Endocrinology 2002; 143: 1554
  • Wenzel A., Franz C., Breous E., Loos U. Modulation of iodide uptake by dialkyl phthalate plasticisers in FRTL-5 rat thyroid follicular cells. Mol. Cell. Endocrinol. 2005; 244: 63–71
  • Wetzel B. K., Spicer S. S., Wollman S. H. Changes in fine structure and acid phosphatase localization in rat thyroid cells following thyrotropin administration. J. Cell. Biol. 1965; 25: 593–618
  • Williams G. R. Cloning and characterization of two novel thyroid hormone receptor b isoforms. Mol. Cell. Biol. 2000; 20: 8329–8342
  • Wolff D. J., Marks N. The antithyroid agent 6–n-propyl-2–thiouracil is a mechanism-based inactivator of the neuronal nitric oxide synthase isoform. Arch. Biochem. Biophys. 2002; 407: 83–94
  • Wolff J., Chaikoff I. L., Goldberg R. C. The temporary nature of the inhibitory action of excess iodide on organic iodine synthesis in normal thyroid. Endocrinology 1949; 45: 504
  • Wolff J. Perchlorate and the thyroid gland. Phamacol. Rev. 1998; 50: 89–105
  • Wolke D., Meyer R. Cognitive status, language attainment, and prereading skills of 6–year-old very preterm children and their peers: The Bavarian Longitudinal Study. Dev. Med. Child. Neurol. 1999; 41: 94–109
  • Wollman S. H., Ekholm R. Site of iodination in hyperplastic thyroid glands deduced from autoradiographs. Endocrinology 1981; 108: 2082–2085
  • Wondisford F. E., Magner J. A., Weintraub B. D. Thyrotropin. The Thyroid: A Fundamental and Clinical Text, L. E. Braverman, R. D. Utiger. Lippincott-Raven, Philadelphia 1996a; 190–206
  • Wondisford F. E., Magner J. A., Weintraub B. D. Chemistry and biosynthesis of thyrotropin. The Thyroid: A Fundamental and Clinical Text, L. E. Braverman, R. D. Utiger. Lippincott-Raven, Philadelphia 1996b; 190–206
  • Wondisford F. E. Thyroid hormone action: Insight from transgenic mouse models. J. Investig. Med. 2003; 51: 215–220
  • Wonerow P., Neumann S., Gudermann T., Paschke R. Thyrotropin receptor mutations as a tool to understand thyrotropin receptor action. J. Mol. Med. 2001; 79: 707–721
  • Wrutniak-Cabello C., Casas F., Cabello G. Thyroid hormone action in mitochondria. J. Mol. Endocrinol. 2001; 26: 67–77
  • Wu Y., Xu B., Koenig R. J. Thyroid hormone response element sequence and the recruitment of retinoid X receptors for thyroid hormone responsiveness. J. Biol. Chem. 2001; 276: 3929–3936
  • Yamada M., Rogers D., Wilber J. F. Exogenous triiodothyronine lowers thyrotropin-releasing hormone concentrations in the specific hypothalamic nucleus (paraventricular) involved in thyrotropin regulation and also in posterior nucleus. Neuroendocrinology 1989; 50: 560–563
  • Yamada-Okabe T., Aono T., Sakai H., Kashima Y., Yamada-Okabe H. 2,3,7,8–tetrachlorodibenzo-p-dioxin augments the modulation of gene expression mediated by the thyroid hormone receptor. Toxicol. Appl. Pharmacol. 2004; 194: 201–210
  • Yen P. M. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 2001; 81: 1097–1142
  • Yen P. M., Feng X., Flamant F., Chen Y., Walker R. L., Weiss R. E., Chassande O., Samarut J., Refetoff S., Meltzer P. S. Effects of ligand and thyroid hormone receptor isoforms on hepatic gene expression profiles of thyroid hormone receptor knockout mice. EMBO Rep. 2003; 4: 581–587
  • Yokoyama N., Taurog A. Porcine thyroid peroxidase: Relationship between the native enzyme and an active, highly purified tryptic fragment. Mol. Endocrinol. 1988; 2: 838–844
  • Yoon C. H. Developmental mechanism for changes in cerebellum of “staggerer” mouse, a neurological mutant of genetic origin. Neurology 1972; 22: 743–754
  • Yoshida A., Sasaki N., Mori A., Taniguchi S., Mitani Y., Ueta Y., Hattori K., Sato R., Hisatome I., Mori T., Shigemasa C., Kosugi S. Different electrophysiological character of I−, ClO4–, and SCN− in the transport by Na+/I−symporter. Biochem. Biophys. Res. Commun. 1997; 231: 731–734
  • Yoshida A., Sasaki N., Mori A., Taniguchi S., Ueta Y., Hattori K., Tanaka Y., Igawa O., Tsuboi M., Sugawa H., Sato R., Hisatome I., Shigemasa C., Grollman E. F., Kosugi S. Differences in the electrophysiological response to I-and the inhibitory anions SCN− and ClO− 4, studied in FRTL-5 cells. Biochim. Biophys. Acta. 1998; 1414: 231–237
  • Zandieh-Doulabi B., Platvoet-ter Schiphorst M., van Beeren H. C., Labruyere W. T., Lamers W. H., Fliers E., Bakker O., Wiersinga W. M. TR(beta)1 protein is preferentially expressed in the pericentral zone of rat liver and exhibits marked diurnal variation. Endocrinology 2002; 143: 979–984
  • Zandieh-Doulabi B., Dop E., Schneiders M., Schiphorst M. P., Mansen A., Vennstrom B., Dijkstra C. D., Bakker O., Wiersinga W. M. Zonal expression of the thyroid hormone receptor alpha isoforms in rodent liver. J. Endocrinol. 2003; 179: 379–385
  • Zavacki A. M., Larsen P. R. CARs and drugs: A risky combination. Endocrinology 2005; 146: 992–994
  • Zhang J., Lazar M. A. The mechanism of action of thyroid hormones. Annu. Rev. Physiol. 2000; 62: 439–466
  • Zhang X., Jeyakumar M., Bagchi M. K. Ligand-dependent cross-talk between steroid and thyroid hormone receptors—Evidence for a common transcriptional coactivor(s). J. Biol. Chem. 1996; 271: 14825–14833
  • Zheng W., Lu Y. M., Lu G. Y., Zhao Q., Cheung O., Blaner W. S. Transthyretin, thyroxine, and retinol-binding protein in human cerebrospinal fluid: Effect of lead exposure. Toxicol. Sci. 2001; 61: 107–114
  • Zhou T., Ross D. G., DeVito M. J., Crofton K. M. Effects of short-term in vivo exposure to polybrominated diphenyl ethers on thyroid hormones and hepatic enzyme activities in weanling rats. Toxicol. Sci. 2001; 61: 76–82
  • Zhou T., Taylor M. M., DeVito M. J., Crofton K. M. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption. Toxicol. Sci. 2002; 66: 105–116
  • Zoeller R. T., Wolff R. S., Koller K. J. Thyroid hormone regulation of messenger ribonucleic acid encoding thyrotropin (TSH)-releasing hormone is independent of the pituitary gland and TSH. Mol. Endocrinol. 1988; 2: 248–252
  • Zoeller R. T., Kabeer N., Albers H. E. Cold exposure elevates cellular levels of messenger ribonucleic acid encoding thyrotropin-releasing hormone in paraventricular nucleus despite elevated levels of thyroid hormones. Endocrinology 1990; 127: 2955–2962
  • Zoeller R. T. Transplacental thyroxine and fetal brain development. J. Clin. Invest. 2003; 111: 954–957
  • Zoeller R. T., Rovet J. Timing of thyroid hormone action in the developing brain: Clinical observations and experimental findings. J. Neuroendocrinol. 2004; 16(10)809–818

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.