667
Views
75
CrossRef citations to date
0
Altmetric
Research Article

The Hypothalamic-Pituitary-Thyroid (HPT) Axis in Frogs and Its Role in Frog Development and Reproduction

, , &
Pages 117-161 | Published online: 10 Oct 2008

REFERENCES

  • Abe T., Kakyo M., Sakagami H., Tokui T., Nishio T., Tanemoto M., Nomura H., Hebert S. C., Matsumo S., Kondo H., Yawo H. Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J. Biol. Chem. 1998; 27(35)22395–22401
  • Achen M. G., Harms P. J., Thomas T., Richardson S. J., Wettenhall R. E., Schreiber G. Protein synthesis at the blood–brain barrier: The major protein secreted by amphibian choroids plexus is a lipocalin. J. Biol. Chem. 1992; 26(32)23170–23174
  • Adkins E. Hormonal basis of sexual differentiation in Japanese quail. J. Comp. Physiol. Psychol. 1975; 89: 61–71
  • Allen B. M. The results of extirpation of the anterior lobe of the hypophysis and of the thyroid of Rana pipiens larvae. Science 1916; 44: 755–758
  • Allen B. M. The influence of the thyroid gland and hypophysis upon growth and development of amphibian larvae. Q. Rev. Biol. 1929; 4: 325–352
  • Allran J. W., Karasov W. H. Effects of atrazine and nitrate on Northern leopard frog (Rana pipiens) larvae exposed in the laboratory from posthatch through metamorphosis. Environ. Toxicol. Chem. 2000; 19: 3850–2542
  • Alnemri E. S., Livingston D. J., Nicholson D. W., Salvesen G., Thornberry N. A., Wong W. W., Yuan J. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171
  • Ankley G., Mihaich E., Stahl, Tillitt D., Colborn T. Overview of a workshop on screening methods for detecting potential (anti-) estrogenic/androgenic chemicals in wildlife. Environ. Toxicol. Chem. 1998; 7: 68–87
  • Ashley H., Frieden E. Metabolism and distribution of triiodothyronine and thyroxine in the bullfrog tadpole. Gen. Comp. Endocrinol. 1972; 18: 22–31
  • Atkinson B. G., Just J. J. Biochemical and histological changes in the respiratory system of Rana catesbeiana larvae during normal and induced metamorphosis. Dev. Biol. 1975; 45: 151–165
  • Atkinson B. G. Biological basis of tissue regression and synthesis. Metamorphosis: A problem in Developmental Biology, 2nd ed., L. I. Gilbert, E. Frieden. Plenum Press, New York 1981; 397–444
  • Atkinson B. G. Metamorphosis: Model systems for studying gene expression in postembryonic development. Dev. Genet. 1994; 15: 313–319
  • Baiser W. V., Hertoghe J., Eeckhaut W. Thyroid Insufficiency: Is TSH measurement the only diagnostic tool?. J. Nutr. Environ. Med. 2000; 10: 105–113
  • Baker B. S., Tata J. R. Prolactin prevents the autoinduction of thyroid hormone receptor mRNAs during amphibian metamorphosis. Dev. Biol. 1992; 149: 463–467
  • Balinsky J. B., Cragg M. M., Baldwin E. The adaptation of amphibian waste nitrogen excretion to dehydration. Comp. Biochem. Physiol. 1961; 3: 236–244
  • Balls M., Clothier R. H., Rowles J. M., Kiteley N. A., Bennett G. W. TRH distribution levels, and significance during the development of Xenopus laevis. Metamorphosis: The Eighth Symposium of the British Society for Developmental Biology, B. Balls, M. Bownes. Clarendon Press, OxfordEngland 1985a; 260–272
  • Metamorphosis, M. Balls, M. Bownes. Clarendon Press, OxfordUK 1985b
  • Banker D., Bigler J., Eisenman R. The thyroid hormone receptor gene (c-erb Aα) is expressed in advance of thyroid hormone naturation during the early embryonic development of Xenopus laevis. Mol. Cell. Biol. 1991; 11: 5079–5089
  • Barsano C. P., De Groot L. Nuclear cytoplasmic interrelationships. Molecular basis of thyroid hormone action, J. Oppenheimer, H. Samuels. Academic Press, New York 1983; 139–177
  • Battelle. Frog Metamorphosis Assay Demonstration Study. 2005, OECD—Phase I. USEPA Contract No. 68-W-01-023
  • Becker K. B., Schneider M. J., Davey J. C., Galton V. A. The type III 5-deiodinase in Rana catesbeiana tadpoles is encoded by a thyroid hormone-responsive gene. Endocrinology 1995; 136: 4424–4431
  • Bennett T. P., Frieden E. Metamorphosis and biochemical adaptation in amphibians. Comparative Biochemistry, M. Florkin, H. S. Mason. Academic Press, New York 1962; vol. 4: 483–556
  • Benvenga S., Robbins J. Lipoprotein–thyroid hormone interactions. Trends. Endocrinol Metab. 1993; 4: 194–198
  • Blondeau J. P., Osty J., Francon J. Characterization of the thyroid hormone transport system of isolated hepatocytes. J. Biol. Chem. 1988; 263: 2685–2692
  • Bray T., Sicard R. E. Correlation among the changes in the levels of thyroid hormones, thyrotropin and thyrotropin-releasing hormone during the development of Xenopus laevis. Exp. Cell. Biol. 1982; 50: 101–107
  • Bridges C. M. Long-term effects of pesticide exposure at various life stages of the southern leopard frog (Rana sphenocephala). Arch. Environ. Contam. Toxicol. 2000; 39: 91–96
  • Britson C. A., Threlkeld S. T. Abundance, metamorphosis, developmental, and behavioral abnormalities in Hyla chrysoscelis tadpoles following exposure to three agrichemicals and methyl mercury in outdoor mesocosms. Bull. Environ. Contam. Toxicol. 1998; 61: 154–161
  • Brooks A. R., Sweeney G., Old R. W. Structure and functional expression of a cloned Xenopus thyroid hormone receptor. Nucleic Acid Res. 1989; 17: 9395–9405
  • Brown D. D., Wang Z., Kanamori A., Eliceiri B., Furlow J. D., Schwartzman R. Amphibian metamorphosis: A complex program of gene expression changes controlled by the thyroid hormone. Recent Prog. Hormone Res. 1995; 50: 309–315
  • Brown D. D., Wang Z., Furlow J. D., Kanamori A., Schwartzman R. A., Remo B. F., Pinder A. The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis. Proc. Natl. Acad. Sci. USA 1996; 93: 1924–1929
  • Brown G. W., Jr., Cohen P. P. Biosynthesis of urea in metamorphosing tadpoles. The Chemical Basis of Development, W. McElroy, B. Glass. Johns Hopkins Press, Baltimore, MD 1958; 495–513
  • Brown G. W., Jr., Brown W. R., Cohen P. P. Comparative biochemistry of urea synthesis. J. Biol. Chem. 1959; 234: 1775–1780
  • Broyles R. H. Changes in the blood during amphibian metamorphosis. Metamorphosis: A Problem in Developmental Biology, 2nd ed., L. I. Gilbert, E. Frieden. Plenum Press, New York 1981; 461–490
  • Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid 1998; 8: 827–856
  • Buchholz D. R., Hsia S. C.V., Liezhen F., Shi Y. B. A dominant-negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes. Mol. Cell. Biol. 2003; 23: 6750–6758
  • Buckbinder L., Brown D. D. Thyroid hormone-induced gene expression changes in the developing frog limb. J. Biol. Chem. 1992; 267: 25786–25791
  • Buckbinder L., Brown D. D. Expression of the Xenopus laevis prolactin and thyrotropin genes during metamorphosis. Proc. Natl. Acad. Sci. USA 1993; 90: 3820–3824
  • Carr J. A., Norris D. O. Immunohistochemical localization of corticotropin releasing factor-and arginine vasotocin-like immunoreactivities in the brain and pituitary of the American bullfrog (Rana catesbeiana) during development and metamorphosis. Gen. Comp. Endocrinol. 1990; 87: 180–188
  • Cartensen H., Burgers A. C.J., Li C. H. Demonstration of aldosterone and corticosterone as the principal steroids formed in incubates of adrenals of the American bullfrog (Rana catesbeiana) and stimulation of their production by mammalian adrenocorticotropin. Gen. Comp. Endocrinol. 1961; 1: 37–50
  • Ceusters R., Darras W. M., Kuhn E. R. Difference in thyroid function between male and female frogs (Rana temporia L.) with increasing temperature. Gen. Comp. Endocrinol. 1978; 36(4)598–603
  • Chang L., Munro S. L., Richardson S. J., Schreiber G. Evolution of thyroid hormone binding by transthyretins in birds and mammals. Eur. J. Biochem. 1999; 259: 534–542
  • Cheek A. O., Ide C. F., Bollinger J. E., Rider C. V., McLachlan J. A. Alteration of leopard frog (Rana pipiens) metamorphosis by the herbicide acetochlor. Arch. Environ. Contam. Toxicol. 1999; 37: 70–77
  • Chen J. D., Evans R. M. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 1995; 377: 454–457
  • Chen Y., Hu H., Atkinson G. Characterization and expression of C/EBP-like genes in the liver of Rana catesbeiana tadpoles during spontaneous and thyroid hormone-induced metamorphosis. Dev. Gen. 1994; 15: 366–377
  • Cheng S. Y. Thyroid Hormone Metabolism—Regulation and Clinical Implications, S. Y. Wu. Blackwell Scientific, Boston 1991; 145–166
  • Clemons G. K., Nicoll C. S. Effects of antisera to bullfrog prolactin and growth hormone on metamorphosis of Rana catesbeiana tadpoles. Gen. Comp. Endocrinol. 1977; 31: 495–497
  • Cohen M. A., Kelley D. B. Androgen-induced proliferation in the developing larynx of Xenopus laevis is regulated by thyroid hormone. Dev. Biol. 1996; 178: 113–123
  • Cohen P. P. Biochemical differentiation during amphibian metamorphosis. Science 1970; 168: 533–543
  • Cohen R. N., Brzostek S., Kim B., Chorev M., Wondisford F. E., Hollenberg A. N. The specificity of interactions between nuclear hormone receptors and coreceptors is mediated by distinct amino acid sequences within the interacting domains. Mol. Endocrin. 2001; 15: 1049–1061
  • Chemically–induced alterations in sexual and functional development: The wildlife/human connection, T. Colborn, C. Clement. Princeton Scientific, Princeton, NJ 1992
  • Cole K. D., Little G. H. Bile pigments and bilirubin UDP-glucuronyl transferase during metamorphosis of Rana catesbeiana tadpoles. Comp. Biochem. Physiol. 1983; B76: 503–506
  • Collingwood T. N., Urnov F. D., Krishna V., Chatterjee K., Wolfee A. P. Chromatin remodeling by the thyroid hormone receptor in regulation of the thyroid-stimulating hormone α-subunit promoter. J. Biol. Chem. 2001; 276: 34227–34234
  • Cryns V., Yuan J. Proteases to die for. Genes Dev. 1998; 12: 1551–1470
  • Davey J. C., Becker K. B., Schneider M. J., St. Germain D. L., Galton W. A. Cloning of a cDNA for the type II iodothyronine deiodinase. J. Biol. Chem. 1995; 270: 26786–26789
  • Davis P. J., Davis F. B. Nongenomic actions of thyroid hormone. Thyroid 1996; 6: 497–504
  • de Brabandere V. I., Hou P., Stockl D., Thienpont L. M., De Leenheer A. P. Isotope dilution-liquid chromatography/electrospray ionization-tandem mass spectrophotometry for the determination of serum thyroxine as a potential reference method. Rapid. Commun. Mass. Spectrophotom. 1998; 16: 1099–1103
  • de Luze A., Sachs L., Denebeux B. Thyroid hormone-dependent transcriptional regulation of exogenous genes transferred into Xenopus muscle in vivo. Proc. Natl. Acad. Sci. USA 1993; 90: 7322–7326
  • Debouck C., Goodfellow P. N. DNA microarrays in drug discovery and development. Nat. Genet. 1999; 21: 48–50
  • Degitz S. J., Holcombe G. W., Flynn K. M., Kosian P. A., Korte J. J., Tietge J. E. Progress towards development of an amphibian-based thyroid screening assay using Xenopus laevis. Organismal and thyroidal responses to the model compounds 6-propylthiouracil, methimazole, and thyroxine. Toxicol. Sci. 2005; 87(2)353–64
  • Dent J. N. Survey of amphibian metamorphosis. Metamorphosis: A Problem in Developmental Biology, W. Etkin, I. L. Gilbert. Appleton-Crofts, New York 1968; 271–311
  • Denver R. J. Several hypothalamic peptides stimulate in vitro thyrotropin secretion by pituitaries of anuran amphibians. Gen. Comp. Endocrinol. 1988; 72: 383–393
  • Denver R. J., Licht P. Neuropeptide stimulation of thyrotropin secretion in the larval bullfrog: Evidence for a common neuroregulator of thyroid and interregnal activity during metamorphosis. J. Exp. Zool. 1989; 252: 101–104
  • Denver R. J. Acceleration of anuran amphibian metamorphosis by corticotropin releasing hormone-like peptides. Gen. Comp. Endocrinol. 1993; 91: 38–51
  • Denver R. J. Neuroendocrine control of amphibian metamorphosis. Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, I. L. Gilbert, J. R. Tata, B. G. Atkinson. Academic Press, New York 1996; 433–464
  • Denver R. J. Environmental stress as a developmental cue: Corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Hormones Behav. 1997a; 31: 169–179
  • Denver R. J. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. Am. Zool. 1997b; 37: 172–184
  • Denver R. J. Hormonal correlates of environmentally induced metamorphosis in the western spadefoot toad Scaphiopus hammondii. Gen. Comp. Endocrinol. 1998; 119: 326–336
  • Denver R. J., Glennemeier K. A., Boorse G. C. Endocrinology of Complex Lifecycles: Amphibians. Hormones, Brain and Behavior, A. A. Pfaff, A. Etgen, S. Fahrbach, R. Moss, R. Rubin. Academic Press, San Diego 2002; 469–513
  • Divino C. M., Schussler G. C. Receptor-mediated uptake and internalization of transthyretin. J. Biol. Chem. 1990; 265(3)1425–1429
  • Dodd M. H.I., Dodd J. M. The biology of metamorphosis. Physiology of Amphibia, B. Lofts. Academic Press, New York 1976; 467–599
  • Duggan D. J., Bittner M., Chen Y., Meltzer P., Trent J. M. Expression profiling using cDNA microarrays. Nature Genetics 1999; 21: 10–14
  • Dumont J. N. Oogenesis in Xenopus laevis. I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 1972; 136: 153–180
  • Eddy L., Lipner H. Amphibian metamorphsis: The role of thyrotropin-like hormone. Gen. Comp. Endocrinol. 1976; 29: 333–336
  • EDSTAC (Endocrine Disruptor Screening and Testing Advisory Committee). Final Report from the Endocrine Disruptor Screening and Testing Advisory Committee. August, 1998, http://www.epa.gov/oppintr/opptendo/finalrpt.htm
  • Ekins R. P. Immunoassay, DNA analysis, and other ligand binding assay techniques: From electropherograms to multiplexed, ultrasensitive microarrays on a chip. J. Chem. Ed. 1999; 76: 769–780
  • Eliceiri B., Brown D. D. Quantitation of endogenous thryroid hormone receptors α and β during embryogenesis and metamorphosis in Xenopus laevis. J. Biol. Chem. 1994; 269: 24459–24465
  • Ellis H. M., Horovitz H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 1986; 44: 817–829
  • Etkin W., Lehrer R. Excess growth in tadpoles after transplantation of adenohypophysis. Endocrinology 1960; 67: 457–466
  • Etkin W. Metamorphosis. Physiology of the Amphibian, J. Moore. Academic Press, New York 1964; 427–468
  • Etkin W. Hormonal control of amphibian metamorphosis. Metamorphosis: A Problem in Developmental Biology. Appleton, New York 1968; 313–348
  • Evans R. M. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889–895
  • Favre-Young H., Dif F., Roussille F., Demeneix B. A., Kelly P. A. Cross-talk between signal transducer and activator of transcription (Stat5) and thyroid hormone receptor-β 1 (TR β 1) signaling pathways. Mol. Endocrinol. 2000; 14: 1411–1424
  • Fort D. J., Stover E. L. Effect of low-level copper and pentachlorophenol exposure on various early life stages of Xenopus laevis. Environmental Toxicology and Risk Assessment: Biomarkers and Risk Assessment, D. A. Bengtson, D. S. Henshel. American Society for Testing and Materials, Philadelphia, PA 1996; vol. 5: 188–203, ASTM STP 1306
  • Fort D. J., Stover E. L. Development of short-term, whole embryo assays to evaluate detrimental effects on amphibian limb development and metamorphosis using X. laevis. Environmental Toxicology and Risk Assessment: Modeling and Risk Assessment, F. J. Dwyer, T. R. Doane, M. L. Hinman. American Society for Testing and Materials, Philadelphia, PA 1997; vol. 6: 376–390, ASTM STP 1317
  • Fort D. J., Rogers R. L., Morgan L. A., Miller M. F., Clark P. A., White J. A., Paul R. R., Stover E. L. Preliminary validation of a short-term morphological assay to evaluate adverse effects on amphibian metamorphosis and thyroid function using Xenopus laevis. J. Appl. Toxicol. 2000; 20: 419–42
  • Fort D. J., Stover E. L., Bantle J. A., Dumont J. N., Finch R. A. Evaluation of a reproductive toxicity assay using Xenopus laevis: Boric acid, cadmium, and ethylene glycol monomethyl ether. J. Appl. Toxicol. 2001a; 21: 41–52
  • Fort D. J., Rogers R. L., Paul R. R., Miller M. F., Clark P., Stover E. L., Yoshioko J., Rolland R., Quimby F., Sower S. A., Reed K. L., Babbitt K. J. Effects of pond water, sediment, and sediment extract samples from New Hampshire USA, on early Xenopus development and metamorphosis: Comparison to native species. J. Appl. Toxicol. 2001b; 21: 199–209
  • Fort D. J., Rogers R. L., Thomas J. H., Buzzard B. O., Noll A. M., Spaulding C. D. The comparative sensitivity of Xenopus tropicalis Xenopus laevis as test species for the FETAX model. J. Appl. Toxicol. 2004; 24(6)443–457
  • Fox H. Amphibian Morphogenesis. Humana Press, Clifton, NJ 1983
  • Frieden E., Naile B. Biochemistry of amphibian metamorphosis: I Enhancement of induced metamorphosis by glucocorticoids. Science 1955; 121: 37–39
  • Frieden E. Biochemical adaptation and anuran metamorphosis. Am. Zool. 1961; 1: 115–149
  • Frieden E. Biochemistry of amphibian metamorphosis. Metamorphosis: A Problem in Developmental Biology, W. Etkin, L. I. Gilbert. Appleton, New York 1968; 349–398
  • Frieden E., Just J. J. Hormonal responses in amphibian metamorphosis. Action of Hormones on Molecular Processes, G. Litwack. Academic Press, New York 1970; vol. 1: 1–53
  • Friesema E. C.H., Docter R., Moerings E. P.C.M., Stieger B., Hagenbuch B., Meier P. J., Krenning E. P., Hennemann G., Visser T. J. Identification of thyroid hormone transporters. Biochem. Biophys. Res. Commun. 1999; 254: 497–501
  • Friesema E. C.H., Docter R. Krenning E. P., Everts M. E., Hennemann G., Visser T. J. Rapid sulfation of 3,3',5'-triiodothyronine in native Xenopus laevis oocytes. Endocrinology 1998; 139: 596–600
  • Furlow J. D., Brown D. D. In vitro and in vivo analysis of the regulation of a trascription factor gene by thyroid hormone during Xenopus laevis metamorphosis. Mol. Endocrinol. 1999; 13(12)2076–2089
  • Galton V. A. Binding of thyroid hormones in serum and liver cytosol of Rana catesbeiana tadpoles. Endocrinology 1980; 107: 61–69
  • Galton V. A., Munck K. Metabolism of thyroxine in Rana catesbeiana tadpoles during metamorphic climax. Endocrinology 1981; 109(4)1127–1131
  • Galton V. A. Thyroid hormone action in amphibian metamorphosis. Molecular Basis of Thyroid Hormone Action, J. H. Oppenheimer, H. H. Samuels. Academic Press, New York 1983; 445–483
  • Galton V. A., St. German D. L., Whittemore S. Cellular uptake of 3,5,3′-triiodothyronine and thyroxine by red blood and thymus cells. Endocrinology 1986; 118: 1918–1923
  • Galton V. A. The role of 3,5,3′-triiodothyronine in the physiological action of thryroxine in the premetamorphic tadpole. Endocrinology 1989; 124: 2427–2433
  • Galton V. A. Mechanisms underlying the acceleration of thyroid hormone-induced tadpole metamorphosis by corticosterone. Endocrinol. (Baltimore) 1990; 127: 2997–3002
  • Galton V. A., Morganelli C. M., Schneider M. J., Yee K. The role of thyroid hormone in the regulation of hepatic carbamyl phosphate synthetase activity in Rana catesbeiana. Endocrinology 1991; 129: 2298–2304
  • Gancedo B., Corpas I., Alonso-Gomez A. L., Delgado M. J., Morreale de Escobar G., Alonso-Bedate M. Corticotropin-releasing factor stimulates metamorphosis and increases thyroid hormone concentration in prometamorphic Rana catesbeiana. Endocrinology 1992; 87: 6–13
  • Gao X., Kalkhoven E., Peterson-Maduro J., van der Birg B., Destree O. H.J. Expression of the glucocorticoid receptor gene is regulated during early embryogenesis of Xenopus laevis. Biochim. Biophys. Acta. 1994; 1218(2)194–198
  • Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell. Biol. 1992; 119: 493–501
  • Giguere V., Hollenberg S. M., Rosenfeld M. G., Evans R. M. Functional domains of human glucocorticoid receptor. Cell 1986; 46: 645–652
  • Gilbert L. I., Frieden E. Metamorphosis: A Problem in Developmental Biology, 2nd ed. Plenum Press, New York 1981
  • Godowski P. J., Picard D., Yamamoto K. R. Signal transduction and transcriptional regulation by glucocorticoid receptor–LexA fusion proteins. Science 1988; 241: 812–816
  • Goleman W. L., Urquidi L. J., Anderson T. A., Smith E. E., Kendall R. J., Carr J. A. Environmentally relevant concentrations of ammonium perchlorate inhibit development and metamorphosis in Xenopus laevis. Environ. Toxicol. Chem. 2002; 21: 424–430
  • Gona A. G., Uray N. J., Hauser K. F. Neurogenesis of the frog cerebellum. Developmental Neurobiology of the Frog, E. D. Pollack, H. D. Bibb. Alan R. Liss, New York 1988; 255–276
  • Gonzalez G. C., Lederis K. Sauvagine-like and corticotropin-releasing factor-like imunoreactivity in the brain of the bullfrog (Rana catesbeiana). Cell Tissue Res. 1988; 253: 29–37
  • Goos H. J., Zwanenbeek H. C., van Oordt P. G. Hypothalamic neurosecretion and metamorphosis in Xenopus laevis. II. The effect of thryroxine following treatment with propylthiouracil. Arch. Anat. Histol. Embryol. 1968; 51: 267–274
  • Gosner K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetology 1960; 16: 183–190
  • Gracia-Navarro F., Lamacz M., Tonon M., Vaudry H. Pituitary adenylate cyclase-activating polypeptide stimulates calcium mobilization in amphibian pituitary cells. Endocrinology 1992; 131: 1069–1074
  • Gray K. M., Janssens P. A. Gonadal hormones inhibit the induction of metamorphosis by thyroid hormones in Xenopus laevis tadpoles in vivo, but not in vitro. Gen. Comp. Endocrinol. 1990; 77: 202–211
  • Green S., Chambon P. Nuclear receptors enhance our understanding of transcription regulation. Trends. Gen. 1988; 4: 309–313
  • Greenspan F. S. Basic and Clinical Endocrinology, F. S. Greenspan, G. J. Strewler. Appelton and Lange, Stamford, CT 1997; 192–262
  • Gudernatsch J. F. Feeding experiments on tadpoles. I. Influence of specific organs given as food on growth and differentiation: A contribution to the knowledge of organs with internal secretion. Arch. Entwicklungsmech Org. 1912; 35: 457–483
  • Guiochon-Mantel A., Loosfelt H., Lescop Sar P., Atger S. M., Perrot-Applanat M., Milgrom E. Mechanism of nuclear localization of the progesterone receptor: Evidence for interaction between monomers. Cell 1989; 57: 1147–1154
  • Gutleb Ac., Appelman J. Bronkhorst M., van den Berg J. H.J., Miurk A. J. Effects of oral exposure to polychlorinated byphenyls (PCBs) on the development and metamorphosis of two amphibian species (Xenopus laevis Rana temporaria). Sci. Total. Environ. 2000; 262: 147–157
  • Han Y., Watling D., Rogers N. C., Stark G. R. JAK2 and STAT5, but not JAK1 and STAT1, are required for prolactin-induced beta-lactoglobulin transcription. Mol. Endocrinol. 1997; 11: 1180–1188
  • Hanaoka Y. Effect of phenylthiourea upon posterior hypothalactomized tadpoles of Rana pipiens. Gen. Comp. Endocrinol. 1967; 9: 24–30
  • Hayes T. B., Chan R., Licht P. Interaction of temperature and steroids on larval growth, development and metamorphosis in a toad (Bufo boreas). J. Exp. Zool. 1993; 266: 206–215
  • Hayes T. B. An histological examination of the effects of corticosterone in larvae of the western toad, Bufo boreas (Anura: Bufonidae), and the Oriental fire bellied toad, Bombina orientalis (Anura: Discoglossidae). J. Morphol. 1995a; 226: 297–307
  • Hayes T. B. Interdependence of corticosterone and thyroid hormones in larval growth and development in the western toad (Bufo boreas). I. Thyroid hormone dependent and independent effects of corticosterone on growth and development. J. Exp. Zool. 1995b; 271: 95–102
  • Hayes T. B., Wu T. H. Interdependence of corticosterone and thyroid hormones in larval growth and development in the western toad (Bufo boreas). II. Regulation of corticosterone and thyroid hormones. J. Exp. Zool. 1995c; 271: 103–111
  • Hayes T. B., Wu T. H. The role of corticosterone in anuran metamorphosis and its potential role in stress-induced metamorphosis. Proceedings of the 17th Conference of the European Society of Comparative Endocrinology. Neth. J. Zool. 1995d; 45: 107–109
  • Hayes T. B. Steroid as potential modulators of thyroid hormone activity in anuran metamorphosis. Am. Zool. 1997a; 37: 185–194
  • Hayes T. B. Hormonal mechanisms as potential constraints on evolution: Examples from the Anura. Am. Zool. 1997b; 37: 482–490
  • Hayes T. B. Endocrine disruptors in amphibians: potential impacts and the usefulness of amphibian screens for detecting endocrine disrupting compounds. Science J. 1998; 68: 557–568
  • Hayes T. B. Endocrine Disruption in Amphibians. Ecotoxicology of Amphibians and Reptiles, D. W. Sparling, G. Linder, C. A. Bishop. SETAC Press, Pensacola, FL 2000; 573–593
  • Heery D. M., Kalkoven E. Hoare S., Parker M. G. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 1997; 387: 733–736
  • Hollenberg S. M., Evans R. M. Multiple and cooperative transactivation domains of human glucocorticoid receptor. Cell 1988; 55: 899–906
  • Horlein A. J., Naar A. M., Torchia J., Gloss B., Kurokawa R., Ryan A., Kamei Y., Soderstrom M., Glass C. K., Rosenfeld M. G. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 1995; 377: 305–404
  • Hoskins S. G. Metamorphosis of the amphibian eye. J. Neurobiol. 1990; 21: 970–989
  • Hourdry J., Dauca M. Cytological and cytochemical changes in the intestinal epithelium during anuran metamorphosis. Int. Rev. Cytol. 1977; 5: 337–385
  • Huang H., Brown D. D. Prolactin is not a juvenile hormone in Xenopus laevis metamorphosis. Proc. Natl. Acad. Sci. USA 2000; 97: 195–199
  • Huang H., Cai L. Q., Remo B. F., Brown D. D. Timing of metamorphosis and the onset of the negative feedback loop between the thyroid gland and the pituitary is controlled by type II iodothyronine deiodinase in Xenopus laevis. Proc. Natl. Acad. Sci. USA 2001; 98: 7348–7353
  • Huang M., Marsh-Armstrong N., Brown D. D. Metamorphosis is inhibited in transgenic Xenopus laevis tadpoles that overexpress type III deiodinase. Proc. Natl. Acad. Sci. USA 1999; 96: 962–967
  • Hughes A. F.W. The development of the primary sensory system in Xenopus laevis (Daudin). J. Anat. 1957; 91: 323–338
  • Inaba T., Frieden E. Changes in ceruloplasmin during anuran metamorphosis. J. Biol. Chem. 1967; 242: 4789–4796
  • Ishizuya-Oka A., Shimozawa A. Development of connective tissue in the digestive tract of the larval and metamorphosing Xenopus laevis. Ant. Anz. 1987; 164: 81–93
  • Jackson I. M.D., Reichlin S. Thyrotropin-releasing hormone: Abundance in the skin of the frog, Rana pipiens. Science 1977; 198: 414–415
  • Jacobs G. F., Goyvaertws M. P., Vandorpe G., Quaghebeur A. M., Kuhn E. R. Luteinizing hormone-releasing hormone as a potent stimulator of the thyroidal axis in ranid frogs. Gen. Comp. Endocrinol. 1988; 70: 274–283
  • Jacobs G. F.M., Kuhn E. R. Thyroid hormone feedback regulation of the secretion of bioactive thyrotropin in the frog. Gen. Comp. Endocrinol. 1992; 88: 415–423
  • Jaffe R. C. Plasma concentration of corticocosterone during Rana catesbeiana tadpole metamorphosis. Gen. Comp. Endocrinol. 1981; 44: 314–318
  • Jolivet-Jaudet G., Leloup-Hatey J. Variations in aldosterone and corticosterone plasma levels during metamorphosis in Xenopus laevis tadpoles. Gen. Comp. Endocrinol. 1984; 56: 59–65
  • Jorgensen E. C. Thyroid hormones and analogs. II. Structure–activity relationships. Hormonal Proteins and Peptides, C. H. Li. Academic Press, New York 1978; 107–199
  • Jung R. E., Walker M. K. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on development of anuran amphibians. Environ. Toxicol. Chem. 1997; 16: 230–240
  • Just J. J., Atkinson B. G. Hemoglobin transition in the bullfrog Rana catesbeiana during spontaneous and induced metamorphosis. J. Exp. Zool. 1972; 182: 271–280
  • Just J. J., Kraust-Just J., Check D. A. Survey of chordate metamorphosis. Metamorphosis: A Problem in Developmental Biology, L. I. Gilbert, E. Frieden. Plenum Press, New York 1981; 265–326
  • Kaltenbach J. C. Amphibian metamorphosis: Influence of thyroid and steroid hormones. Current Trends in Comparative Endocrinology, B. Lofts, W. N. Holmes. Hong Kong University Press, Hong Kong 1985; 533–534
  • Kaltenbach J. C. Endocrinology of amphibian metamorphosis. Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, L. I. Gilbert, J. R. Tata, B. G. Atkinson. Academic Press, New York 1996; 403–431
  • Kaltenbach J. C., Faszewski E. E., Nytch K. E., Potter C. H., Shanthakumar N., Fakin A. Glycoconjugate localization in larval and adult skin of the bullfrog, Rana catesbeiana: A lectin histochemical study. J. Morphol. 2004; 261(2)184–95
  • Kanamori A., Brown D. D. The regulation of thyroid hormone receptor β genes by thyroid hormone in Xenopus laevis. J. Biol. Chem. 1992; 267: 739–745
  • Kang L., Marin M., Kelley D. Developmental and regional expression of thyroid hormone receptor genes duringXenopus metamorphosis. Development 1994; 112: 933–943
  • Kavlock R. J., Daston G. P., DeRosa C., Fenner-Crisp P., Gray L. E., Kaattari S., Lucier G., Luster M., Mac M. J., Maczka C., Miller R., Moore J., Rolland R., Scott G., Sheehan D. M., Sinks T., Tilson H. A. Research needs for the risk assessment of health and environmental effect of endocrine disruptors: A report of the USEPA-sponsored workshop. Environ. Health Perspect. 1996; 104: 15740
  • Kawahara A, Kohara S., Sugimoto Y., Amano M. A change in the hepatocyte population is responsible for the progressive increase of vitellogenin synthetic capacity at and after metamorphosis of Xenopus laevis. Dev. Biol. 1987; 122: 139–145
  • Kawahara A., Baker B. S., Tata J. R. Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis. Development 1991; 112: 933–943
  • Kelley D. B., Dennison J. The vocal motor neurons of Xenopus laevis: Development of sex differences in axon number. J. Comp. Neurol. 1990; 164: 63–78
  • Kelley D. B. Sexual differentiation in Xenopus laevis. The Biology of Xenopus, R. C. Tinsley, H. R. Kobel. Clarendon Press, OxfordUK 1996; 143–193
  • Kerr J. F.R., Harmon B., Searle J. An electron-microscope study of cell eletion in the anuran tadpole tail during spontaneous metamorphosis with special reference apoptosis of striated muscle fibres. J. Cell. Sci. 1974; 14: 571–585
  • Khan J., Saal L. H., Bittner M. L., Chen Y., Trent J. M., Meltzer P. S. Expression profiling in cancer using cDNA microarrays. Electrophoresis 1999; 20: 223–229
  • Kikuyama S., Niki K., Mayumi M., Kawamura K. Retardation of thyroxine-induced metamorphosis by Amphenone B in toad tadpole. J. Endocrinol. 1982; 29: 659–662
  • Kikuyama S., Niki K., Mayumi M., Shibayama R., Nishikawa M., Shitake N. Studies on corticoid action on the toad tadpoles in vitro. Gen. Comp. Endocrinol. 1983; 52: 395–399
  • Kikuyama S., Suzuki M. R., Iwamuro S. Elevation of plasma aldosterone levels of tadpoles at metamorphic climax. Gen. Comp. Endocrinol. 1986; 63: 186–190
  • Kikuyama S., Kawamura K., Tanaka S., Yamamoto K. Aspects of amphibian metamorphosis: Hormonal control. International Review of Cytol. 1993; 145: 105–148
  • King J. A., Miller R. P. TRH, GH-RIH, and LH-RH in metamorphosing Xenopus laevis. Gen. Comp. Endocrinol. 1981; 44: 20–27
  • Kinoshita T., Sasaki F., Watanabe K. Autolysis and heterolysis of the epidermal cells in anuran tadpole tail regression. J. Morphol. 1985; 185: 269–275
  • Kloas W., Lutz I., Einspanier R. Amphibians as models to study endocrine disruptors: II. Estrogenic activity of environmental chemical in vitro and in vivo. Sci. Total Environ. 1999; 225: 59–68
  • Kobayashi H. Effect of deoxycorticosterone acetate on metamorphosis induced bythyroxine in anuran tadpoles. Endocrinology 1958; 62: 371–377
  • Kollros J. J. Transitions in the nervous systems during amphibian metamorphosis. Metamorphosis: A Problem in Developmental Biology, L. I. Gilbert, E. Frieden. Plenum Press, New York 1981; 445–459
  • Koopdonk-Kool J. M., van Lopik-Peterse M. C., Veenboer G. J., Visser T. J., Schoenmakers C. H., de Vijlder J. J. Quantification of type III iodothyronine deiodinase activity using thin-layer chromatography and phosphor screen autoradiography. Anal. Biochem. 1993; 214: 329–331
  • Kordylewski L. Light and electron microscopic observation of the development of intestinal musculature in Xenopus. Anat. Forsch. 1983; 97: 19–734
  • Krain L. P., Denver R. J. Developmental expression and hormonal regulation of glucocorticoid and thyroid hormone receptors during metamorphosis in Xenopus laevis. J. Endocrinol. 2004; 181(1)91–104
  • Kroll K. L., Gehart J. C. Transgenic X. laevis embryos from eggs transplanted with nuclei of transfected cultures cells. Science 1994; 266: 650–653
  • Kroll K. L., Amaya E. Transgenic X. laevis embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 1996; 122: 3173–3183
  • Krug E. C., Honn K. V., Battista J., Nicoll C. S. Corticosteroids in serum of Rana catesbeiana during development and metamorphosis. Gen. Comp. Endocrinol. 1983; 52: 232–241
  • Kühn E. R., Kikuyama A., Yamamoto K., Darras V. M. In vivo release of prolactin in Rana ridibunda following an intravenous injection of thyrotropin-releasing hormone. Gen. Comp. Endocrinol. 1985; 60(1)86–89
  • Langlois M. F., Zanger K., Monden T., Safer J. D., Hollenberg A. N., Wondisford F. E. A unique role of the beta-2 thyroid hormone receptor isoform in negative regulation by thyroid hormone. Mapping of a novel amino-terminal domain important for ligand-independent activation. J. Biol. Chem. 1997; 272: 24927–24933
  • Lapiere C. M., Gross J. Animal collagenase and collage metabolism. Mechanisms of Hard Tissue Destruction, R. F. Sognnaes. American Association for the Advancement of Science, Washington, D.C. 1963; 663–694
  • Lazar M. A. Thyroid hormone receptors: Multiple forms, multiple possibilities. Endocr Rev 1993; 14: 184–193
  • Leatherland J. F. Effects of 17b-estradiol and methyl testosterone on the activity of the thyroid gland in rainbow trout,Salmo gairdneri Richardson. Gen. Comp. Endocrinol. 1985; 60: 343–352
  • Lee Y., Mahdavi V. The D domain of the thyroid hormone receptor α 1 specifies positive and negative transcriptional regulation functions. J. Biol. Chem. 1993; 268: 2021–2028
  • Leloup J., Buscagalia M. La triiodothyronine: Hormone de la metamorphose des amphibiens. CR Acad. Sci. 1977; 284: 2261–2263
  • Leloup-Hatey J., Buscagalia M., Jolivet-Jaudet G., Leloup J. Interenal function during metamorphosis in anuran larvae. Biology and Physiology of Amphibians, W. Hanke. Gustav Fischer Verlag, New York 1990; 139–154
  • Levy O., Riedel G. D.C, Ginter C. S., Paul E. M., Lebowitz A. N., Carrasco N. Characterization of the thryroid Na+/I− symporter with an anti-COOH terminus antibody. Proc. Natl. Acad. Sci. USA 1997; 94: 5568–5573
  • Liang V. C., Sedgwick T., Shi Y. B. Characterization of the Xenopus homolog of an immediate early gene associated with cell activation: Sequence analysis and regulation of its expression by thyroid hormone during amphibian metamorphosis. Cell Res. 1997; 7(2)179–193
  • Lister A., Van Der Kraak G. Modulation of goldfish testicular testosterone production in vitro by tumor necrosis factor alpha, interleukin-1beta, and macrophage conditioned media. J. Exp. Zool. 2002; 292: 477–486
  • Macchi I. A., Phillips J. G. In vitro effect of adrenocorticotropin on corticoid secretion in the turtle, snake, and bullfrog. Gen. Comp. Endocrinol. 1966; 6: 170–182
  • MacKenzie D. S., Licht P., Papkoff H. Thyrotropin from amphibian (Rana catesbeiana) pituitaries and evidence of heterothyrotropic activity of bullfrog luteinizing hormone in reptiles. Gen. Comp. Endocrinol. 1978; 36: 566–574
  • Manzon R. G., Denver R. J. Regulation of pituitary thyrotropin gene expression during Xenopus metamorphosis: Negative feedback is functional throughout metamorphosis. J. Endocrinol. 2004; 182(2)273–285
  • May F. E., Knowland J. The role of thyroxine in the transition of vitellogenin synthesis from noninducibility to inducibility during metamorphosis in Xenopus laevis. J. Dev. Biol. 1980; 77(2)419–30
  • McAvoy J. W., Dixon K. E. Cell proliferation and renewal in the small intestinal epithelium of metamorphosing and adult Xenopus laevis. J. Exp. Zool. 1977; 202: 129–138
  • McCutcheon F. H. Hemoglobin function during the life history of the bullfrog. J. Cell. Comp. Physiol. 1936; 8: 63–81
  • McMaster M. E., Jardine J. J., Ankley G. T., Benson W. H., Greeley M. S., Jr., Gross T. S., Guillette L. J., Jr., MacLatchy D. L., Orlando E. F., Van Der Kraak G. J., Muntkittrick K. R. An interlaboratory study on the use of steroid hormones in examining endocrine disruption. Environ. Toxicol. Chem. 2001; 20: 2081–2087
  • Mellstrom B., Naranjo J. R., Santos A., Gonzalez A. M., Bernal J. Independent expression of the alpha and beta c-erbA genes in developing rat brain. Mol. Endocrinol. 1991; 5: 1339–1350
  • Millar R. P., Nicolson S., King J. A., Louw G. N. Functional significance of TRH in metamorphosing and adult anurans. Thyrotropin-Releasing Hormone, E. C. Griffiths, G. W. Bennett. Raven, New York 1983; 217–227
  • Mimnagh K. M., Bolaffi J. L., Montgomery N. M., Kaltenbach J. C. Thyrotropin-releasing hormone (RRH): Immunohistochemical distribution in tadpole and frog brain. Gen. Comp. Endocrinol. 1987; 66: 394–404
  • Miranda L. A., Paz D. A., Dezi R. E., Pisanó A. Immunocytochemical and morphometric study of TSH, PRL, GH, and ACTH cells in Bufo arenarum larvae with inhibited thyroid function. Gen. Comp. Endocrinol. 1995; 98: 166–176
  • Moller B., Bjorkhem I., Falk O., Lantto O., Larsson A. Identification of thyroxine in human breast milk by gas chromatography–mass spectrometry. J. Endocrinol. Metab. 1983; 56: 30–34
  • Moulton J. M., Jurand A., Fox H. A cytological study of Mauthner's cells in Xenopus laevis and Rana temporaria during metamorphosis. J. Embryol. Exp. Morphol. 1968; 19: 415–431
  • Munro A. F. The ammonia and urea excretion of different species of amphibian development. J. Biochem. 1953; 54: 29–36
  • Nieuwkoop P. D., Faber J. Normal Table of Xenopus laevis. Garland, New York 1994
  • Niki K., Yoshizato K., Kikuyama S. Augmentation of nuclear binding capacity of triiodothyronine be aldosterone in tadpole tail. Proc. Jpn. Acad. 1981; 57: 271–275
  • Nishikawa A., Shimizu-Nishikawa K., Miller L. Spatial, temporal and hormonal regulation of epidermal keratin expression during development of the frog, Xenopus laevis. Dev. Biol. 1992; 151: 145–153
  • Norris D. O., Duvall D., Greendale K., Gern W. A. Thyroid function in pre-and postspawning neotenic tiger salamanders (Ambystoma tigrinum). Gen. Comp. Endocrinol. 1977; 33(4)512–517
  • Norris D. O. Vertebrate Endocrinology, 3rd ed. Academic Press, San Diego 1996; 634
  • Nuwaysir E. F., Bittner M., Trent J., Barrett J. C., Afshari C. A. Microarrays and toxicology: The advent of toxicogenomics. Mol. Carcinogen 1999; 24: 153–159
  • Oberste-Berghaus C., Zanger K., Hashimoto K., Cohen R. N., Hollenberg A. N., Wondisford F. E. Thyroid hormone-independent interaction between the thyroid hormone 2 amino terminus and coactivators. J. Biol. Chem. 2000; 275: 1787–1792
  • OECD. Compilation of Comments on Draft DRP on Amphibian Metamorphosis Assay. Organisation for Economic Co-operation and Development, Washington Center. 2003; 52, www.oecdwash.org
  • OECD. DRP No. 46, Detailed Review Paper on Amphibian Metamorphosis Assay for the Detection of Thyroid Active Substances. Organisation for Economic Co-operation and Development, Washington Center 2004, www.oecdwash.org
  • Okada R., Iwata T., Kato T., Kikuchi M, Yamamoto K., Kikuyama S. Cloning of bullfrog thyroid-stimulating hormone (TSH) β subunit cDNA: Expression of TSHβ mRNA during metamorphosis. Gen. Comp. Endocrinol. 2000; 119(2)224–231
  • Okada R., Yamamoto K., Koda A., Ito Y., Hayashi H., Tanaka S., Hanaoka Y., Kikuyama S. Development of radioimmunoassay for bullfrog thyroid-stimulating hormone (TSH): effects of hypothalamic releasing hormones on the release of TSH from the piuitaryin vitro. Gen. Comp. Endocrinol. 2004; 135(1)42–50
  • Olivereau M., Vandesande F., Boucique E., Ollevier F., Oliveau J. M. Immunocytochemical localization and spatial relation to the adenohypophysis of a somatostatin-like and a corticotropin-releasing factor-like peptide in the brain of the four amphibian species. Cell. Tissue. Res. 1987; 274: 317–324
  • Oofusa K., Tooi O., Kashiwagi A., Kashiwagi K., Kondo Y., Watanabe Y., Sawada T., Fujikawa K., Yoshizato K. Expression of thyroid hormone receptor beta a gene assayed by transgenic Xenopus laevis carrying its promoter sequences. Mol. Cellular Endocrinol. 2001; 18: 97–110
  • Opitz R., Bögi C., Levy G., Lutz I., Kloas W. (2002a) Bioassay development for detection of chemical affecting thyroid system in Xenopus laevis tadpoles. Proceedings of the Second Status Seminar Endocrine Disrupters, BerlinGermany, 2001, 217–219
  • Opitz R., Levy G., Lutz I., Kloas W. Development of molecular biomarkers to detect thyroid-disrupting activities of environmental chemicals in Xenopus laevis tadpoles. Proceedings of the 21st Conference of European Comparative Endocrinologiests (German), R. Keller, H. Dircksen, D. Sedlmeier, H. Vaudry. Monduzzi Editore S.P.A., Bonn 2002b; 99–102
  • Opitz R., Braunbeck T., Bogi C., Pickford D. B., Nentwig G., Oehlmann J., Tooi O., Lutz I., Kloas W. Description and initial evaluation of a Xenopus metamorophosis assay for detection of thyroid system-disrupting activities of environmental compounds. Environ. Toxicol. Chem. 2005; 24(3)653–664
  • Oppenheimer J. H., Schwartz H. L., Mariash C. N., Kinlaw W. B., Wong N. C. W., Freake H. C. Advances in our understanding of thyroid hormone action at the cellular level. Endocrinology Rev. 1987; 8: 288–308
  • Oppenheimer J. H. Thyroid hormone action at the cellular level. Science 1979; 203: 971–979
  • Packard G. C., Packard M. J. The influence of acclimation temperature on the metabolic response of frog tissue to thyroxine administered in vivo. Gen. Comp. Endocrinol. 1975; 27(2)162–168
  • Paik W., Cohen P. P. Biochemical studies on amphibian metamorphosis. I. The effect of thyroxine on protein synthesis in the tadpole. J. Gen. Physiol. 1960; 43: 683–696
  • Parmentier M., Libert F., Maenhaut C., Lefort A., Gerard C., Perret J., Van Sande J., Dumont J. E., Vassart G. Molecular cloning of the thyrotropin receptor. Science 1989; 246: 1620–1622
  • Picard D., Yamamoto K. R. Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. J. EMBO 1987; 6: 3333–3340
  • Pierce J. G., Parsons T. F. Glycoprotein hormones: Structure and function. Annual Rev. Physiol. 1981; 50: 465–495
  • Prapunpoj P., Yamauchi K., Nishiyama N., Richardson S. J., Schreiber G. Evolution of structure, ontogeny of gene expression, and function of Xenopus laevis transthyretin. Am. J. Physiol. Regul. Integrative Comp. Physiol. 2000; 279: R2026–R2041
  • Puzianowska-Kuznicka M., Damjanovski S., Shi Y. B. Both thyroid hormone and 9-cis retinoic acid receptors are required to efficiently mediate the effects of thyroid hormone on embryonic development and specific gene regulation in Xenopus laevis. Mol. Cell. Biol. 1997; 17: 4738–4749
  • Rabelo E. M.L., Tata J. R. Thyroid hormone potentiates estrogen activation of vitellogenin genes and autoinduction of estrogen receptor in adult Xenopus hepatocytes. Mol. Cell. Endocrinol. 1993; 96: 37–44
  • Rabelo E. M.L., Baker B. S., Tata J. R. Interplay between thyroid hormone and estrogen in modulating expression of their receptor and vitellogenin genes during Xenopus metamorphosis. Mech. Dev. 1994; 45: 49–57
  • Regard E. Cytophysiology of the amphibian thyroid gland through larval development and metamorphosis. Int. Rev. Cytol. 1978; 52: 81–118
  • Ribiero R. C.J., Cavelieri R. R., Lomri N., Rahmaoui C. M., Baxter J. D., Scharschmidt B. F. Thyroid hormone export regulates cellular hormone content and response. J. Biol. Chem. 1996; 271: 17147–17151
  • Richards C. M., Nace G. W. Gynogenetic and hormonal sex reversal used in tests of the XX–XY hypothesis of sex determination in Rana pipiens. Growth 1978; 42: 319–331
  • Richardson S. J., Bradley A. J., Duan W., Wettenhall R. E., Harms P. J., Babon J. J., Southwell B. R., Nicol S., Donnellan S. C., Schreiber G. Evolution of marsupial and other vertebrate thyroxine-binding plasma proteins. Am. J. Physiol. 1994; 266: R1359–1370, (4 pt 2)
  • Riddiford L. M. Molecular aspects of juvenile hormone action in insect metamorphosis. Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, L. I. Gilbert, J. R. Tata, B. G. Atkinson. Academic Press, New York 1996; 223–251
  • Riggs A. The metamorphosis of hemoglobin in the bullfrog. J. Gen. Physiol. 1951; 35: 23–40
  • Ritchie J. W.A., Peter G. J., Shi Y. B., Taylor P. M. Thyroid hormone transport by 4F2hc-IU12 heterodimers expressed in Xenopus oocytes. J. Endocrinology 1999; 163: R5–R9
  • Ritchie J. W., Shi Y. B., Hayashi Y., Baird F. E., Muchekehu R. W., Christie G. R., Taylor P. M. A role for thyroid hormone transporters in transcriptional regulation by thyroid hormone receptors. Mol. Endocrinol. 2003; 17: 653–661
  • Rivier J., Rivier C., Vale W. Synthetic competitive antagonists of corticotropin-releasing factor: Effect on ACTH secretion in the rat. Science 1984; 224: 889–891
  • Robbins J. Thyroxine transport and the free hormone hypothesis. Endocrinology 1992; 131: 546–547
  • Robertson J. C., Watson J., Kelley D. B. Laryngeal nerve axon number in premetamorphic Xenopus laevis is androgen dependent: Abstract. Soc. Neurosci. 1991; 18: 1320
  • Robertson J. C., Kelley D. Gonadal and laryngeal development in hypothyroid tadpoles. Am. Zool. 1992; 32: 86A
  • Robertson J. C., Kelley D. B. Thyroid hormone controls the onset of androgen sensitivity in the developing larynx of Xenopus laevis. Dev. Biol. 1996; 176: 108–123
  • Rollins-Smith L. A., Barker K. S., Davis A. T. Involvement of glucocorticoids in the reorganization of the amphibian immune system at metamorphosis. Dev. Immunol. 1997a; 5: 145–152
  • Rollins-Smith L. A., Flajnik M. F., Blair P. J., Davis A. T., Green W. F. Involvement of thyroid hormones in the expression of MHC class antigens during ontogeny in Xenopus. Dev. Immunol. 1997b; 5: 133–144
  • Rollins-Smith L. A. Metamorphosis and the amphibian immune system. Immunol. Rev. 1998; 166: 221–230
  • Rose M. F., Rose S. R. Melatonin accelerates metamorphosis in Xenopus laevis. J. Pineal. Res. 1998; 24: 90–95
  • Rosenkilde P. The thyroid hormones in amphibia in Hormones and Evolution, E. J.W. Barrington. Academic Press, New York 1979; 437–491
  • Rosenkilde P. The role of thyroid hormones in adult amphibians. Gunma Symposium on Endocrinology, Phylogenetic Aspects of Thyroid Hormone Actions. Institute of Endocrinology, Gunma University, Center for Academic Publications, Tokyo 1982; 91–106
  • Rossi A. Tavole cronologiche dello svilluppo embryionale e larvale del “Bufo bufo.”. Mont. Zool. Ital. 1959; 66: 133
  • Roth P. Action antogoniste du propionate de testosterone dans la metamorphose experimentale des batraciens provoquee par thyroxine. Bull. Mus. Natl. Hist. Nat. (Paris) 1941; 13: 500–502
  • Roth P. Sur l'action antagoniste des substances oestrogenes dans la metamorphose experimentale des amphibiens (3e note). Bull. Mus. Natl. Hist. Natl. (Paris) 1948; 20: 408–415
  • Rowe I., Coen L., Le Blay K., Le Mevel S., Demeneix B. A. Autonomous regulation of muscle fibre fate during metamorphosis in Xenopus tropicalis. Dev. Dynamics 2002; 224: 381–390
  • Ruben L. N., Clothier R. H., Murphy G. L., Marshall J. D., Lee R., Pham T., Nol C., Shiigi S. Thyroid function and immune reactivity during metamorphosis Xenopus laevis, the South African clawed toad. Gen. Comp. Endocrinol. 1989; 76: 128–138
  • Sakai M., Hanoaka Y., Tanaka S., Hayashi H., Kikuyama S. Thyrotropic activity of various adenohypophysis hormones of the bullfrog. Zool. Sci. 1991; 8: 929–934
  • Schneider M. J., Galton V. A. Effect of glucocorticoids on thyroid hormone action in cultured red blood cells from Rana catesbeiana tadpoles. Endocrinology 1995; 136: 1435–1440
  • Schneider M. J., Fiering S. N., Pallud S. E., Parlow A. F., St. Germain D. L., Galton V. A. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol. Endocrinol. 2001; 15: 2137–2148
  • Schreiber G., Richardson S. J. The evolution of gene expression, structure, and function of transthyretin. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 1997; 116(2)137–160
  • Schussler G. C. The thyroxine-binding proteins. Thyroid 2000; 10: 141–149
  • Shi Y. F., Sahai B. M., Green D. R. Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes. Nature 1989; 339: 625–626
  • Shi Y. B., Brown D. D. The earliest changes in gene expression in tadpole intestine induced by thyroid hormone. J. Biol. Chem. 1993; 268: 20312–20317
  • Shi Y. B., Ishizuya-Oka A. Biphasic intestinal development in amphibians: Embryogenesis and remodeling during metamorphosis. Current Topics in Dev. Biol. 1996; 32: 205–235
  • Shi Y. B. Amphibian Metamorphosis From Morphology to Molecular Biology. Wiley-Liss Press, New York 2000
  • Shimizu-Nishikawa K., Miller L. Hormonal regulation of adult type keratin gene expression in larval epidermal cells of the frog Xenopus laevis. Differentiation 1992; 49: 77–83
  • Shintani N., Nohira T., Hikosaka A., Kawahara A. Tissue-specific regulation of type III iodothyronine 5-deiodinase gene expression mediates the effects of prolactin and growth hormone in Xenopus metamorphosis. Dev. Growth Differ. 2002; 44: 327–335
  • Simon R., Tietge J. E., Michalke B., Degitz S., Schramm K. W. Iodine species and the endocrine system: Thyroid hormone levels adult Danio rerio and developing Xenopus laevis. Anal. Bioanal. Chem. 2002; 372: 481–485
  • St. Germain D. L. Iodothyronine deiodinases. Trends Endocrinol. Metab. 1994; 5: 36–42
  • St. Germain D. L., Galton V. A. The deiodinase family of selenoproteins. Thyroid 1997; 7: 655–668
  • Stearns S. The evolutionary significance of phenotypic plasticity. Bioscience 1989; 39: 436–445
  • Stebbins R. C., Cohen N. W. A Natural History of Amphibians. Princeton University Press, Princeton, NJ 1995
  • Stenzel-Poore M. P., Heldwein K. A., Stenzel P., Lee S., Vale W. W. Characterization of the genomic corticotropin-releasing factor (CRF) gene from Xenopus laevis: Two members of the CRF family exist in amphibians. Mol. Endocrinol. 1992; 6: 1716–1724
  • Su Y., Shi Y., Stolow M., Shi Y. B. Thyroid hormone induces apoptosis in primary cell cultures of tadpole intestine: Cell type specificity and effects of extracellular matrix. J. Cell. Biol. 1997; 139: 1533–1543
  • Suzuki M. R., Kikuyama S. Corticoides augement nuclear binding capacity for triiodothyronine in bullfrog tadpole tail fins. Gen. Comp. Endocrinol. 1983; 52: 272–278
  • Suzuki S., Fujikura K. Circulating thyroglobulin in tadpoles and adult frogs of Rana catesbeiana. Gen. Comp. Endocrinol. 1994; 94: 72–77
  • Takahashi N., Yoshihama K., Kikuyama S., Yamamoto K., Wakabayashi K., Kato Y. Molecular cloning and nucleotide sequence analysis of complementary DNA for bullfrog prolactin. J. Mol. Endocrinol. 1990; 5: 281–287
  • Tanaka S., Sakai M., Park M. K., Kurosumi K. Differential appearance of the subunits of glycoprotein hormones (LH, FSH, and TSH) in the pituitary of bullfrog (Rana catesbeiana) larvae during metamorphosis. Gen. Comp. Endocrinol. 1991; 84: 318–327
  • Tata J. R., Widnell C. C. Ribonucleic acid synthesis during the early action of thyroid hormones. J. Biochem. 1966; 88: 604
  • Tata J. R. The formation and distribution of ribosomes during hormone induced growth and development. J. Biochem. 1967; 104: 1
  • Tata J. R. Early metamorphic competence of Xenopus larvae. Dev. Biol. 1968; 18: 415–440
  • Tata J. R. Hormonal regulation of metamorphosis. Symp. Soc. Exp. Biol. 1972; 25: 163–181
  • Tata J. R., Kawhara A., Baker B. S. Prolactin inhibits both thyroid hormone-induced morphogenesis and cell death in cultured amphibian larval tissues. Dev. Biol. 1991; 146: 72–80
  • Tata J. R. Gene expression during metamorphosis: An ideal model for post-embryonic development. BioEssays 1993; 15: 239–248
  • Tata J. R. Gene expression during post–embryonic development: Metamorphosis as a model. Proceedings of the Indian National Science Academy, Part B. Biol. Sci. 1994; 60: 287–301
  • Tata J. R. How hormones regulate programmed cell death during amphibian-metamorphosis. Programmed Cell Death, Y. B. Shi, Y. Shi, Y. Xu, D. W. Scott. Plenum Press, New York 1997; 1–11
  • Tata J. R. Amphibian metamorphosis as a model for studying the developmental actions of thyroid hormone. Cell Res. 1998; 8: 259–272
  • Tata J. R. Amphibian metamorphosis as a model for studying the developmental actions of thyroid hormone. Biochemistry 1999; 81: 359–366
  • Tata J. R. Autoinduction of nuclear hormone receptors during metamorphosis and its significance. Insect. Biochem. Mol. Biol. 2000; 30: 645–651
  • Taylor A. C., Kollros J. J. Stages in the normal development of Rana pipiens larvae. Anat. Rec. 1946; 93: 7–23
  • Thomson J. A. Clinical Tests of Thyroid Function. Technomic, Westport, CT 1974
  • Tonon M. C., Cuet P., Lamacz M., Jegou S., Cote J., Gouteux L., Ling N, Pelletier G., Vaudry H. Comparative effects of corticotropin-releasing factor, arginine vasopressin, and related neuropeptides on the secretion of ACTH alpha-MSH by frog anterior pituitary cells and neurointermediate lobes in vitro. Gen. Comp. Endocrinol. 1986; 61: 438–445
  • Tsai M. J., O'Malley B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 1994; 63: 451–486
  • Ulisse S., Tata J. R. Thyroid hormone and glucocorticoid independently regulate the expression of estrogen receptor in male Xenopus liver cells. Mol. Cell. Endocrinol. 1994; 105: 45–53
  • Ulisse S., Esslemont G., Baker B. S., Chatterjee V. K.K., Tata J. R. Dominant-negative mutant thyroid hormone receptors prevent transcription from gene promoter in response to thyroid hormone?Xenopus thyroid hormone receptor in Xenopus tadpoles in vivo. Proc. Natl. Acad. Sci. USA 1996; 93: 1205–1209
  • Underhay E. E., Baldwin W. Nitrogen excretion in the tadpoles of Xenopus laevis Daudin. J. Biochem. 1955; 61: 544–547
  • Uppaluri R., Towle H. C. Genetic dissection of thyroid hormone receptor: Identification of mutations that separate hormone binding and transcriptional activation. Mol. Cell. Biol. 1995; 15: 1499–1512
  • Valamparampil T. T., Oommen O. V. Triiodothyronine (T3) and thyroxine (T4) levels in Rana curtipes during development and metamorphosis. Indian J. Exp. Biol. 1997; 35: 1375–1377
  • Vandorpe G., Kuhn E. R. Estradiol-17 beta silastic implants in female Rana ridibunda depress thyroid hormone concentrations in plasma and the in vitro 5′-monodeiodination activity of kidney homogenates. Gen. Comp. Endocrinol. 1989; 76(3)341–345
  • Veldhoen N., Helbing C. Detection of environmental endocrine-disruptor effects on gene expression in live Rana catesbeiana tadpoles using a tail fin biopsy technique. Environ. Toxicol. Chem. 2001; 20(12)2704–2708
  • Verhaert P., Marivoet S., Vandesande F., De Loof A. Localization of CRF immunoreactivity in the central nervous system of three vertebrate and one insect species. Cell. Tissue. Res. 1984; 238: 49–53
  • Wakao H., Gouilleux F., Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the PRL response. EMBO J. 1994; 13: 2182–2191
  • Wang Z., Brown D. D. Thyroid hormone-induced gene expression program for amphibian tail resorption. J. Biol. Chem. 1993; 268: 16270–16278
  • Watanabe M., Ohshima M., Morohashi M., Maeno M., Izutsu Y. Ontogenic emergence and localization of larval skin antigen molecule recognized by adult T cells of Xenopus laevis: Regulation by thyroid hormone during metamorphosis. Dev. Growth Differ. 2003; 45(1)77–84
  • Weber R. Ultrastructural changes in regressing tail muscles of Xenopus larvae at metamorphosis. J. Cell. Biol. 1964; 22: 481–487
  • Weber R. Biochemistry of amphibian metamorphosis. The Biochemistry of Animal Development, R. Weber. Academic Press, New York 1967; 227–301
  • Weber R., Blum B., Muller P. R. The switch from larval to adult globin gene expression in Xenopus laevis is mediate by erythroid cells from distinct compartments. Development 1991; 112: 1021–1029
  • Weber R. Switching of global genes during anuran metamorphosis. Metamorphosis: Postembryonic of Gene Expression in Amphibian and Insect Cells, L. I. Gilbert, J. R. Tata, B. G. Atkinson. Academic Press, New York 1996; 567–597
  • White B. A., Nicoll C. S. Hormonal control of amphibian metamorphosis. Metamorphosis: A Problem in Developmental Biology, L. I. Gilbert, E. Frieden. Plenum Press, New York 1981; 363–396
  • Wise R. W. An immunochemical comparison of tadpole and frog hemoglobins. Comp. Biochem. Physiol. 1970; 32: 89–95
  • Witschi E. Mechanisms of sexual differentiation. Hormones in Development, M. Hamburg, E. Barrington. Appleton Century Crofts, New York 1971; 601–618
  • Wollman S. H. Structure of the thyroid gland. The Thyroid Gland, M. De Vissher. Raven Press, New York 1980; 1–19
  • Woody C. J., Jaffe R. C. Binding of dexamethasone by hepatic, intestine and tail fin cytosol in Rana catesbeiana tadpoles during spontaneous and induced metamorphosis. Gen. Comp. Endocrinol. 1984; 54: 194–202
  • Yamamoto K., Kikuyama S. Purification and properties of bullfrog prolactin. Endocrinology Jpn. 1981; 28: 59–64
  • Yamamoto K., Kikuyama S. Radioimmunoassay of prolactin in plasma of bullfrog tadpoles. Endocrinol. Jpn. 1982; 29: 159–167
  • Yamamoto K., Niinuma K., Kikuyama S. Synthesis and storage of prolactin in the pituitary gland of bullfrog tadpoles during metamorphosis. Gen. Comp. Endocrinol. 1986; 62: 247–253
  • Yamamoto K., Kikuyama S. Binding of aldosterone by epidermal cytosol in the tail of bullfrog larvae. Gen. Comp. Endocrinol. 1993; 89: 283–290
  • Yamauchi K., Kasahara T., Hayashi H., Horiuchi R. Purification and characterization of a 3,5,3′-L-triiodothyroninie-specific binding proteins from bullfrog tadpole plasma: A homolog of mammalian transthyretin. Endocrinology 1993; 132: 2254–2261
  • Yamauchi K., Takeuchi H. A., Overall M., Dziadek M., Munro S. L.A., Schreiber G. Structural characteristics of bullfrog (Rana catesbeiana) transthyretin and its cDNA. Eur. J. Biochem. 1998; 256: 287–296
  • Yang Z, Privalsky M. L. Isoform-specific transcriptional regulation by thyroid hormone receptors: Hormone-independent activation operates through a steroid receptor mode of coactivator interaction. Mol. Endocrinol. 2001; 15: 1170–1185
  • Yaoita Y., Shi Y. B., Brown D. D. Xenopus laevis and thyroid hormone receptors. Proc. Natl. Acad. Sci. USA 1990a; 87: 7090–7094
  • Yaoita Y., Brown D. D. A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. Genes Dev. 1990b; 4: 1917–1924
  • Yasuda A., Yamaguchi K., Kobayashi T., Yamamoto K., Kikuyama S., Kawauchi H. The complete amino acid sequence of prolactin from the bullfrog, Rana catesbeiana. Gen. Comp. Endocrinol. 1991; 83: 218–226
  • Yen P. M., Chin W. W. New advances in understanding the molecular-mechanisms of thyroid hormone action. Trends Endocrinol. Metab. 1994; 5: 65–72
  • Yoshizato K. Biochemistry and cell biology of amphibian metamorphosis with a special emphasis on the mechanism of removal of larval organs. Int. Rev. Cytol. 1989; 119: 97–149
  • Yoshizato K. Cell death and histolysis in amphibian tail during metamorphosis. Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells, L. I. Gilbert, J. R. Tata, B. G. Atkinson. Academic Press, New York 1996; 647–671
  • Yuan J., Shaham S., Ledoux S., Eliss H. M., Horvitz H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 1993; 75: 641–652
  • Zechel C., Shen X. Q., Chen J. Y., Chen Z. P., Chambon P., Groenmeyer H. The dimerization interfaces formed between the DNA binding domains of RXR, RARA and TR determine the binding specificity and polarity of the full-length receptors to direct repeats. EMBO J. 1994; 13: 1425–1433

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.