930
Views
155
CrossRef citations to date
0
Altmetric
Research Article

The Hypothalamic-Pituitary-Thyroid (HPT) Axis in Birds and Its Role in Bird Development and Reproduction

Pages 163-193 | Published online: 10 Oct 2008

REFERENCES

  • Almeida O. F.X., Thomas D. H. Effects of feeding pattern on the pituitary thyroid axis in the Japanese quail. Gen. Comp. Endocrinol. 1981; 44: 508–513
  • Amsallem-Holtzman E., Ben-Zvi Z. Drug metabolizing enzymes in the ostrich (Struthio camelus): Comparison with the chicken and the rat. Comp. Biochem. Physiol. 1997; 116C: 47–50
  • Assenmacher I., Jallageas M. Circadian and circannual hormonal rhythms. Avian Endocrinology, A. Epple, M. H. Stetson. Academic Press, New York 1980; 391–411
  • Astier H. Thyroid gland in birds: Structure and function in avian endocrinology, A. Epple, M. H. Stetson. Academic Press, New York 1980; 167–189
  • Barter R. A., Klaassen C. D. UDP-glucuronosyltransferase inducers reduce thyroid hormone levels in rats by an extrathyroidal mechanism. Toxicol. Appl. Pharmacol. 1992a; 113: 36–42
  • Barter R. A., Klaassen C. D. Rat liver microsomal UDP-glucuronosyltransferase activity toward thyroxine: Characterization, induction, and form specificity. Toxicol. Appl. Pharmacol. 1992b; 115(2)261–267
  • Barter R. A., Klaassen C. D. Reduction of thyroid hormone levels and alteration of thyroid function by four representative UDP-glucuronosyltransferase inducers in rats. Toxicol. Appl. Pharmacol. 1994; 128: 9–17
  • Bellabarba D., Belisle S., Gallo-Payet N., Lehoux J. G. Mechanism of action of thyroid hormones during chick embryogenesis. Am. Zool. 1988; 28: 389–399
  • Bentley G. E. Unraveling the enigma: The role of melatonin in seasonal processes in birds. Microsc. Res. Tech. 2001; 53: 63–71
  • Berghman L. R., Darras V. M., Chiasson R. B., Decuypere E., Kühn E. R., Buyse J., Vandesande F. Immunocytochemical demonstration of chicken hypophyseal thyrotropes and development of a radioimmunological indicator for chicken TSH using monclonal and polyclonal homologous antibodies in a substractive strategy. Gen. Comp. Endocrinol. 1993; 92: 189–200
  • Bernard D. J., Ball G. F. Photoperiodic condition modulates the effects of testosterone on song control nuclei volumes in male European starlings. Gen. Comp. Endocrinol. 1997; 105: 276–283
  • Bishop C. M., Butler P. J., Atkinson N. M. The effect of elevated levels of thyroxine on the aerobic capacity of locomotor muscles of the tufted duck, Aythya fuligula. J. Comp. Physiol. 1995; 164B: 618–621
  • Bishop C. M., McCabe C. J., Gittoes N. J. L., Butler P. J., Franklyn J. A. Tissue-specific regulation of thyroid hormone receptor mRNA isoforms and target gene proteins in domestic ducks. J. Endocrinol. 2000; 165: 607–615
  • Black B. L., Moog F. Alkaline phosphatase and maltase activity in the embryonic chick intestine in culture: Influence of thyroxine and hydrocortisone. Dev. Biol. 1978; 66: 232–249
  • Black B. L. Influence of hormones on glycogen and glucose metabolism in embryonic chick intestine. Am. J. Physiol. 1988; 254: G65–G73
  • Blem C. R. Energy Balance in Sturkie's Avian Physiology, 5th ed., G. C. Whittow. Academic Press, New York 2000; 327–341
  • Borges M., LaBourene J., Ingbar S. H. Changes in hepatic iodothyronine metabolism during ontogeny of the chick embryo. Endocrinology 1980; 107: 1751–1761
  • Boulakoud M. S., Goldsmith A. R. Thyroxine treatment induces changes in hypothalamic gonadotrophin-releasing hormone characteristic of photorefractoriness in starlings (Sturnus vulgaris). Gen. Comp. Endocrinol. 1991; 82: 78–85
  • Brouwer A., van den Berg K. J. Binding of a metabolite of 3,4,3',4'-tetrachlorobiphenyl to transthyretin reduces serum vitamin A by inhibiting the formation of the protein complex carrying both retinol and thyroxin. Toxicol. Appl. Pharmacol. 1986; 85: 301–312
  • Bruggeman V., Vanmontfort D., Renaville R., Portetelle D., Decuypere E. The effect of food intake from two weeks of age to sexual maturity on plasma growth hormone, insulin-like growth factor-I, insulin-like growth factor-binding proteins, and thyroid hormones in female broiler breeder chickens. Gen. Comp. Endocrinol. 1997; 107: 212–220
  • Burch W. M., Lebovitz H. E. Triiodothyronine stimulation of in vitro growth and maturation of embryonic chick cartilage. Endocrinol. 1982; 11: 462–468
  • Burch W. M., Van Wyk J. J. Triiodothyronine stimulates cartilage growth and maturation by different mechanisms. Am. J. Physiol. 1987; 252: E176–E182
  • Buyse J., Janssens K., Van Der Geyten S., Van As P., Decuypere E., Darras V. M. Pre-and postprandial changes in plasma hormone and metabolite levels and hepatic deiodinase activities in meal-fed broiler chickens. Br. J. Nutr. 2002; 8: 641–653
  • Cassar-Malek I., Marchal S., Rochard P., Casas F., Wrutniak C., Samarut J., Cabello G. Induction of c-Erb A-AP-1 interactions and c-Erb A transcriptional activity in myoblasts by RXR: Consequences for muscle differentiation. J. Biol. Chem. 1996; 271: 11392–11399
  • Catena M. L., Porter T. E, McNabb F. M.A., Ottinger M. A. Cloning of a partial cDNA for Japanese quail thyroid–stimulating hormone and effects of methimazole on the thyroid and reproductive axes. Poult. Sci. 2003; 82: 381–387
  • Chang L., Munro S. L., Richardson S. J., Schreiber G. Evolution of thyroid hormone binding by transthyretins in birds and mammals. Eur. J. Biochem. 1999; 259: 534–542
  • Cheek A. O., Kow K., Chen J., McLachlan J. A. Potential mechanisms of thyroid disruption in humans: Interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ. Health Perspect. 1999; 107: 273–278
  • Chopra I. J., Sabatino L. Nature and sources of circulating thyroid hormones. The Thyroid: A Fundamental and Clinical Text, 8th ed., L. E. Braverman, L. E. Utiger. Lippincott Williams and Wilkins, Philadelphia 2000; 121–135
  • Christensen V. L., Bellier H. V., Forward J. F. Physiology of turkey embryos during pipping and hatching. III. Thyroid function. Poult. Sci. 1982; 61: 367–374
  • Christensen V. L. Supplemental thyroid hormones and hatchability of turkey eggs. Poult. Sci. 1985; 64: 2202–2210
  • Cogburn L. A., Freeman R. M. Response surface of daily thyroid hormone rhythms in young chickens exposed to constant ambient temperature. Gen. Comp. Endocrinol. 1987; 68: 113–123
  • Cogburn L. A., Burnside J., Scanes C. G. Physiology of growth and development. Sturkie's Avian Physiology, 5th ed., G. C. Whittow. Academic Press, New York 2000; 635–656
  • Collie N. L. Hormonal regulation of intestinal nutrient absorption in vertebrates. Am. Zool. 1995; 35: 474–482
  • Collin A., Buyse J., Van As P., Darras V. M., Malheiros R. D., Moraes V. M.B., Reyns G. E., Taouis M., Decuypere E. Cold-induced enhancement of avian uncoupling protein expression, heat production, and triiodothyronine concentrations in broiler chicks. Gen. Comp. Endocrinol. 2003a; 130: 70–77
  • Collin A., Taouis M., Buyse J., Ifuta N., Darras V. M., Van As P., Malheiros R. D., Moraes V. M.B., Decuypere E. Thyroid status, but not insulin status, affects expression of avian uncoupling protein mRNA in chicken. Am. J. Physiol Endocrinol. Metab. 2003b; 284: E771–777
  • Dainat J., Bressot C., Bacou F., Rebiere A., Vigneron P. Perinatal age and sex variations of the triiodothyronine nuclear receptors in the chick pectoralis major muscle. Mol. Cell Endocrinol. 1984; 35: 215–220
  • Dainat J., Bressot C., Rebiere A., Vigneron P. Ontogenesis of triiodothyronine nuclear receptors in three skeletal muscles in male and female chicks. Gen. Comp. Endocrinol. 1986; 62: 479–484
  • Dainat J., Saleh L., Bressot C., Marger L., Bacou F., Vigneron P. Effects of thyroid state alterations in-ovo on the plasma levels of thyroid hormones and on the population of fibers in the plantaris muscle of male and female chickens. Reprod. Nutr. Dev. 1991; 31: 703–716
  • Danforth E., Jr., Burger A. The role of thyroid hormones in the control of energy expenditure. Clin. Endocrinol. Metab. 1984; 13: 581–595
  • Danforth E., Jr. Effects of fasting and altered nutrition on thyroid hormone metabolism in man in Thyroid Hormone Metabolism, G. Hennemann. Marcel Dekker, New York 1986; 335–358
  • Darras V. M., Visser T. J., Berghman L. R., Kühn E. R. Ontogeny of Type I and Type II deiodinase activities in embryonic and posthatch chicks: Relationship with changes in plasma triiodothyronine and growth hormone levels. Comp. Biochem. Physiol. 1992; 103A: 131–136
  • Darras V. M., Cokelaere M., Dewil E., Arnouts S., Decuypere E., Kühn E. R. Partial food restriction increases hepatic inner ring deiodinating activity in the chicken and the rat. Gen. Comp. Endocrinol. 1995; 100: 334–338
  • Daugeras N., Brisson A., Lapointe-Boulu F., Lachiver F. Thyroidal iodine metabolism during the development of the chick embryo. Endocrinology 1976; 98: 1321–1331
  • Davison T. F., Flack I. H., Butler E. J. The binding of thyroxine and tri-iodothyronine to plasma proteins in the chicken at the physiological pH. Res. Vet. Sci. 1978; 25: 280–283
  • Dawson A., Thapliyal J. P. The thyroid and photoperiodism. Avian Endocrinology, A. Dawson, C. Chaturvedi. Narosa Publishing House, New Delhi 2002; 141–151
  • Dawson W. R., Marsh R. L. Metabolic acclimatization to cold and season in birds. Physiology of Cold Adaptation in Birds, C. Bech, R. E. Reinertsen. Plenum Press, New York 1989; 83–94
  • Dawson W. R., Whittow G. C. Regulation of body temperature. Sturkie's Avian Physiology, 5th ed., G. C. Whittow. Academic Press, New York 2000; 344–390
  • de Herder W., Bonthius F., Rutgers M., Otten M. H., Hazenberg M. P., Visser T. J. Effects of inhibition of Type I iodothyronine deiodinase and phenol sulfotransferase on the biliary clearance of triiodothyronine in rats. Endocrinology 1988; 122: 153–157
  • Decuypere E., Kühn E. R., Clijmans B., Nouwen E. J., Michels H. Prenatal peripheral monodeiodination in the chick embryo. Gen. Comp. Endocrinol. 1982; 47: 15–17
  • Decuypere E., Verheyen G. Physiological basis of induced moulting and tissue regeneration in fowls. World's Poult. Sci. J. 1986; 42: 56–66
  • Decuypere E., Kühn E. R. Thyroid hormone physiology in galliformes: Age and strain related changes in physiological control. Am. Zool. 1988; 28: 401–415
  • Decuypere E., Dewil E., Kühn E. R. The hatching process and the role of hormones. Avian Incubation, S. G. Tullett. Butterworth-Heinemann, London 1991; 239–256
  • Delange F. M., Ermans A. M. Iodine deficiency. The Thyroid, 7th ed., L. E. Braverman, R. D. Utiger. Lippincott-Raven, Philadelphia 1996; 296–316
  • DeVito M., Biegel L., Brouwer A., Brown S., Brucker-Davis F., Cheek A., Christensen R., Colborn T., Cooke P., Crissman J., Crofton K., Doerge D., Gray E., Hauser P., Hurley P., Kohn M., Lazar J., McMaster S., McClain M., McConnell E., Meier C., Miller R., Tietge J., Tyl R. Screening methods for thyroid hormone disruptors. Environ. Health Perspect. 1999; 107: 407–415
  • DiStefano J. J., III. Excretion, metabolism and enterohepatic circulation pathways and their role in overall thyroid hormone regulation in the rat. Am. Zool. 1988; 28: 373–387
  • Eales J. G. The influence of nutritional state on thyroid function in various vertebrates. Am. Zool. 1988; 28: 351–362
  • Engler D., Burger A. The deiodination of the iodothyronines and their derivatives in man. Endocr. Rev. 1984; 5: 151–184
  • Flamant F., Samarut J. Involvement of thyroid hormone and its alpha receptor in avian neurulation. Dev. Biol. 1998; 197: 1–11
  • Forrest D., Sjöberg M., Vennström B. Contrasting developmental and tissue-specific expression of α [alpha] and β [beta] thyroid hormone receptor genes. EMBO J. 1990; 9: 1519–1528
  • Forrest D., Hallböök F., Persson H., Vennström B. Distinct functions for thyroid hormone receptors α [alpha] and β [beta] in brain development indicated by differential expression of receptor genes. EMBO J. 2001; 10: 269–275
  • Fort D. J. The hypothalamic-pituitary-thyroid (HPT) axis in frogs and its role in frog development and reproduction. Crit. Rev. Toxicol. 2007; 37(1–2)117–161
  • Fowler L. A. PCB effects on brain Type II 5′-deiodinase activity in developing birds. 2001, http://scholar.lib.vt.edu/theses/available/etd-02262001-102405/ MS Thesis, VA Tech. Electronic thesis available at
  • Freeman B. M. Thermoregulatory mechanisms of the neonate fowl. Comp. Biochem. Physiol. 1970; 33: 219–230
  • Freeman B. M. Impaired thermoregulation in the thiouracil-treated fowl. Comp. Biochem. Physiol. 1971; 40A: 553–555
  • Freeman B. M. Hormones in development in Development of the Avian Embryo: A Physiological and Behavioral Study, B. M. Freeman, M. A. Vince. Chapman and Hall, London 1974; 208–236
  • Freeman T. B., McNabb F. M.A. Hepatic 5′-deiodinase activity of Japanese quail using reverse-T3 as substrate: Assay validation, characterization, and developmental studies. J. Exp. Zool. 1991; 258: 212–220
  • French E. I., Hodges R. D. Fine structural studies on the thyroid gland of the normal domestic fowl. Cell Tissue Res. 1977; 178: 397–410
  • Fujita H. Fine structure of the thyroid follicle. Ultrastructure of endocrine cells and tissues, P. M. Motta. Martinus Nijhoff, Boston 1984; 265–275
  • Galton V. A., Hiebert A. The ontogeny of the enzyme systems for the 5′-and 5-deiodination of thyroid hormones in chick embryo liver. Endocrinology 1987; 120: 2604–2610
  • Gereben B., Kollar A., Bartha T., Buys N., Decuypere E., Rudas P. 3,3′,5-Triiodothyronine (T3) uptake and expression of thyroid hormone receptors during the adaptation to hypothyroidism of the brain of chicken. Acta. Vet. Hung. 1998; 46: 473–485
  • Gereben B., Bartha T., Tu H. M., Harney J. W., Rudas P., Larsen P. R. Cloning and expression of chicken Type 2 iodthyronine 5′-deiodinase. J. Biol. Chem. 1999; 274: 13768–13776
  • Geris K. L., Meeussen G., Kühn E. R., Darras V. M. Distribution of somatostatin in the brain and of somatostatin and thyrotropin-releasing hormone in peripheral tissues of the chicken. Brain Res. 2000; 873: 306–309
  • Ghorbel M., Seugnet I., Ableitner A. M., Hassan A., Demeneix B. A. T3 treatment increases mitosis, then bas expression and apoptosis in the optic lobe of the chick embryo. Neurosci. Lett. 1997; 231: 127–130
  • Goldey E. S., Kehn L. S., Lau C., Rehnberg G. L., Crofton K. M. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol. Appl. Pharmacol. 1995a; 135: 77–88
  • Goldey E. S., Kehn L. S., Rehnberg G. L., Crofton K. M. Effects of developmental hypothyroidism on auditory and motor function in the rat. Toxicol. Appl. Pharmacol. 1995b; 135: 67–76
  • Goldey E. S., Rehnberg G. L., Crofton K. M. Effects of developmental hypothyroidism on auditory and motor function in the rat. Toxicol. Appl. Pharmacol. 1996a; 135: 67–77
  • Goldey E. S., Lau C., Rehnberg G. L., Crofton K. M. Developmental exposure to polychlorinated biphenyls (Aroclor 1254) reduces circulating thyroid hormone concentrations and causes hearing deficits in rats. Toxicol. Appl. Pharmacol. 1996b; 135: 77–88
  • Goldsmith A. R., Nicholls T. J. Thyroxine induces photrefractoriness and stimulates prolactin secretion in European starlings (Sturnus vulgaris). J. Endocrinol. 1984a; 1010: R1–R3
  • Goldsmith A. R., Nicholls T. J. Thyroidectomy prevents the development of photorefractoriness and the associated rise in plasma prolactin in starlings. Gen. Comp. Endocrinol. 1984b; 54: 256–263
  • Goodridge A. G., Crish J. F., Hillgartner F. B., Wilson S. B. Nutritional and hormonal regulation of the gene for avian malic enzyme. J. Nutr. 1989; 119: 299–308
  • Gould J. C., Cooper K. R., Scanes C. G. Effects of polychlorinated biphenyl mixtures and three specific congeners on growth and circulating growth-related hormones. Gen. Comp. Endocrinol. 1997; 106: 221–230
  • Gould J. C., Cooper K. R., Scanes C. G. Effects of polychlorinated biphenyls on thyroid hormones and liver Type I monodeiodinase in the chick embryo. Ecotoxicol. Environ. Safety 1999; 43: 195–203
  • Gregory C. C., Dean C. E., Porter T. E. Expression of chicken thyroid-stimulating hormone β [beta]-subunit messenger ribonucleic acid during embryonic and neonatal development. Endocrinology 1998; 139: 474–478
  • Groscolas R., Leloup J. The endocrine control of reproduction and molt in male and female emperor (Aptenodytes forsteri) and adelie (Pygoscelis adeliae) penguins. II. Annual changes in plasma levels of thyroxine and triiodothyronine. Gen. Comp. Endocrinol. 1986; 63: 264–274
  • Henshel D. S., Martin J. W., De Witt J. C. Brain asymmetry as a potential biomarker for developmental TCDD intoxication: A dose-response study. Environ. Health Perspect. 1997a; 105: 718–725
  • Henshel D. S., Martin J. W., Norstrom R. J., Elliott J., Cheng K. M., DeWitt J. C. Morphometric brain abnormalities in double-crested cormorant chicks exposed to polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls. J. Great Lakes Res. 1997b; 23: 11–26
  • Henshel D. S. Developmental neurotoxic effects of dioxin and dioxin-like compounds on domestic and wild avian species. Environ. Toxicol. Chem. 1998; 17: 88–98
  • Herremans M., Verheyen G., Decuypere E. Effect of temperature during induced moulting on plumage renewal and subsequent production. Br. Poult. Sci. 1988; 29: 853–861
  • Hidalgo A., Barami K., Iverson K., Goldman S. A. Estrogens and non-estrogenic ovarian influences combine to promote the recruitment and decrease the turnover of new neurons in the adult female canary brain. J. Neurobiol. 1995; 27: 470–487
  • Hillman P. E., Scott N. R., van Tienhoven A. Physiological responses and adaptations to hot and cold environments. Stress Physiology in Livestock, Poultry, Vol. III, M. K. Yousef. CRC Press, Boca Raton, FL 1985; 1–71
  • Hull K. L., Janssens W. C. J., Baumbach W. R., Harvey S. Thyroid glands: Novel sites of growth hormone action. J. Endocrinol. 1995; 146: 449–458
  • Ishihara A., Sawatsubashi S., Yamauchi K. Endocrine disrupting chemicals: Interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol. Cell Endocrinol. 2003; 199: 105–117
  • Iwasawa A., Watanabe Y., Kobayashi H., Sho K., Kondo Y., Wakabayashi K., Kamiyoshi M. Evaluation of a sensitive, in vitro bioassay for chicken thyroid stimulating hormone using FRTL-5 cells, a rat thyroid cell line. Poult. Sci. 1998; 77: 156–162
  • Jackson I. M.D., Reichlin S. Thyrotropin-releasing hormone (TRH): Distribution in hypothalamic and extrahypothalamic brain tissues of mammalian and submammalian chordates. Endocrinology 1974; 95: 854–862
  • Jallageas M., Assenmacher I. Further evidence for reciprocal interactions between the annual sexual and thyroid cycles in male Peking ducks. Gen. Comp. Endocrinol. 1979; 37: 44–51
  • Jannini E. A., Ulisse S., D'Armiento M. Thyroid hormone and male gonadal function. Endocr. Rev. 1995; 16: 443–459
  • Jansky L. Humoral thermogenesis and its role in maintaining energy balance. Physiol. Rev. 1995; 75: 237–259
  • Kaplan M. M. Regulatory influences on iodothyronine deiodination in animal tissues. Thyroid Hormone Metabolism, G. Henneman. Marcel Dekker, New York 1986; 231–253
  • Kato Y, Kato T., Tomizawa K., Iwasawa A. Molecular cloning of quail thyroid-stimulating hormone (TSH) β [beta] subunit. Endocrinol. J. 1997; 44: 837–840
  • King D. B., May J. D. Thyroidal influences on body growth. J. Exp. Zool. 1984; 232: 453–460
  • King D. B., Bair W. E., Jacaruso R. B. Thyroidal influence on nuclear accumulation and DNA replication in skeletal muscles of young chickens. J. Exp. Zool. Suppl. 1987; 1: 291–298
  • Kirby J. D., Mankar M. V., Hardesty D., Kreider D. L. Effects of transient prepubertal 6-n-propyl-2-thiouracil treatment on testis development and function in the domestic fowl. Biol. Reprod. 1996; 55: 910–916
  • Kirn J., O'Loughlin B., Kasparian S., Nottebohm F. Cell death and neuronal recruitment in the high vocal center of adult male canaries are temporally related to changes in song. Proc. Natl. Acad. Sci. USA 1994; 91(17)7844–7848
  • Klandorf H., Sharp P. J., Sterling R. Induction of thyroxine and triiiodothyronine release by thyrotrophin-releasing hormone in the hen. Gen. Comp. Endocrinol. 1978; 34: 377–379
  • Knowlton J. A., Siopes T. D., Rhoads M. L., Kirby J. D. Effects of transient treatment with 6-N-propyl-2-thiouracil on testis development and function in breeder turkeys. Poult. Sci. 1999; 78: 999–1005
  • Kühn E. R., Mol K., Darras V. M. Peripheral deiodination of thyroid hormones: Biological significance. Neth. J. Zool. 1995; 45: 135–139
  • Kung M. P., Spaulding S. W., Roth J. A. Desulfation of 3,5,3'-triiodothyronine sulfate by microsomes from human and rat tissues. Endocrinology 1988; 122: 1195–1200
  • Lam S. K., Harvey S., Scanes C. G. Somatostatin inhibits thyroid function in fowl. Gen. Comp. Endocrinol. 1986; 63: 134–138
  • Legrand J. Thyroid hormone effects on growth and development. Thyroid Hormone Metabolism, G. Hennemann. Marcel Dekker, New York 1986; 503–534
  • Leonard J. L., Visser T. J. Biochemistry of deiodination. Thyroid Hormone Metabolism, G. Hennemann. Marcel Dekker, New York 1986; 189–229
  • Lezoualc'h F., Hassan A. H.S., Giraud P., Loeffler J. P., Lee S. L., Demeneix B. A. Assignment of the beta-thyroid hormone receptor to 3,5,3′-triiodothyronine-dependent inhibition of transcription from the thyrotropin-releasing hormone promoter in chick hypothalamic neurons. Mol. Endocrinol. 1992; 6: 1797–1804
  • Lezoualc'h F., Hassan A., Abdel-Tawab H., Puymirat J., Demeneix B. A. Precocious auto-induction of thyroid hormone receptors in embryonic chick hypothalamic neurons. Neurosci. Lett. 1994; 180: 197–202
  • Lien R. J., Siopes T. D. The relationship of plasma thyroid hormone and prolactin concentrations to egg laying, incubation behavior and molting by female turkeys exposed to a one-year natural daylength cycle. Gen. Comp. Endocrinol. 1993a; 90: 205–213
  • Lien R. J., Siopes T. D. Effects of short-term thyroxine administration during the laying period on egg production and moulting by turkeys. Br. Poult. Sci. 1993b; 34: 405–416
  • Liu L., Porter T. E. Endogenous thyroid hormones modulate pituitary somatotroph differentiation during chicken embryonic development. J. Endocrinol. 2004; 180: 45–53
  • MacKenzie D. S. In vivo thyroxine release in day-old cockerels in response to acute stimulation by mammalian and avian pituitary hormones. Poult. Sci. 1981; 60: 2136–2143
  • Maher R. D., Grasman K. A., Fox G. A., McNabb F. M.A. The effects of polychlorinated biphenyls on free thyroxine (FT4) concentrations in herring gull plasma. Soc. Environ. Toxicol. Chem. Abstr. 2002; 505: 110
  • Maher R. D., Grasman K. A., Fox G. A., McNabb F. M.A. Polychlorinated biphenyl (PCB) inhibition of thyroid hormone transport in plasma and deposition into oocytes. Soc. Integrative Comp. Biol. Abstr. 2003; 46(4)237
  • Martin A., McNabb F. M.A., Siegel P. B. Thyroid hormones and antibody response to sheep erythrocytes of dwarf and normal chickens selected for juvenile body weight. Génét Sél. Evol. 1988; 20: 499–510
  • Maruyama K., Kanemaki N., May J. D. Thyroid hormones on embryo development and appearance of myosin heavy chain isoforms in turkeys (Meleagris gallopavo). Comp. Biochem. Physiol. 1995; 112C: 109–117
  • McCleary R. J.R. Uridine diphosphate glucuronosyltransferase (UDP-GT) ontogeny and PCB effects in galliform birds. 2001, http://scholar.lib.vt.edu/ theses/available/etd-12052001-165142/ MS Thesis, VA Tech. Electronic thesis available at
  • McKinney J. D., Chae K., McConnell E. E., Birnbaum L. S. Structure-induction versus structure–toxicity relationships for polychlorinated biphenyls and related aromatic hydocarbons. Environ. Health Perspect. 1985; 60: 57–68
  • McNabb F. M.A., Weirich R. T., McNabb R. A. Thyroid development in embryonic and perinatal Japanese quail. Gen. Comp. Endocrinol. 1981; 43: 218–226
  • McNabb F. M.A., Hughes T. E. The role of serum binding proteins in determining free thyroid hormone concentrations during development in quail. Endocrinology 1983; 113: 957–963
  • McNabb F. M.A., Lyons L. J., Hughes T. E. Free thyroid hormones in altricial (ring doves) versus precocial (Japanese quail) development. Endocrinology 1984; 115: 2133–2136
  • McNabb F. M.A., Cheng M. F. Thyroid development in ring doves, Streptopelia risoria. Gen. Comp. Endocrinol. 1985; 58: 243–251
  • McNabb F. M.A., Blackman J. R., Cherry J. A. The effects of different maternal dietary iodine concentrations on Japanese quail. I. Thyroid status of hens. Dom. Anim. Endocrinol. 1985; 2: 25–34
  • McNabb F. M.A. Comparative thyroid development in precocial Japanese quail and altricial ring doves. J. Exp. Zool. Suppl. 1987; 1: 281–290
  • McNabb F. M.A. Development and aging of the thyroid in homeotherms. Development, Maturation and Senescence of Neuroendocrine Systems: A Comparative Approach, M. P. Schreibman, C. G. Scanes. Academic Press, New York 1989; 333–352
  • McNabb F. M.A. Thyroid Hormones. Prentice Hall, Englewood Cliffs, NJ 1992
  • McNabb F. M.A., King D. B. Thyroid hormone effects on growth, development and metabolism. The Endocrinology of Growth, Development, and Metabolism in Vertebrates, P. K.T. Pang, C. G. Scanes, M. P. Schreibman. Academic Press, New York 1993; 393–417
  • McNabb F. M.A., Dunnington E. A., Siegel P. B., Suvarna S. Perinatal thyroid hormones and hepatic 5′-deiodinase in relation to hatching time in weight selected lines of chickens. Poult. Sci. 1993; 72: 1764–1771
  • McNabb F. M.A., Olson J. M. Development of thermoregulation and its hormonal control in precocial and altricial birds. Poult. Avian. Biol. Rev. 1996; 7: 111–125
  • McNabb F. M.A., Wilson C. M. Thyroid hormone deposition in avian eggs and effects on embryonic development. Am. Zool. 1997; 37: 553–560
  • McNabb F. M.A., Scanes C. G., Zeman M. The endocrine system. Avian Growth and Development: Evolution within the Altricial Precocial Spectrum, J. M. Starck, R. E. Ricklefs. Oxford University Press, OxfordUK 1998; 174–202
  • McNabb F. M.A. Thyroids. Sturkie's Avian Physiology, 5th ed., G. C. Whittow. Academic Press, New York 2000; 461–471
  • McNabb F. M.A., Fox G. A. Avian thyroid development in chemically contaminated environments: Is there evidence of alterations in thyroid function and development?. Evol. Dev. 2003; 5: 76–82
  • McNabb F. M.A, Maher R. D., Jones J. E., Jang D. A. Ammonium perchlorate effects on developing and adult thyroid function in bobwhite quail and mallard ducks. Soc. Integr. Comp. Biol. Abstr. 2003; 43(1)247
  • McNabb F. M.A., Larsen C. T., Pooler P. S. Ammonium perchlorate effects on thyroid function and growth in bobwhite quail chicks. Environ. Toxicol. Chem. 2004a; 23(4)997–1003
  • McNabb F. M.A., Jang D. A., Larsen C. T. Does thyroid function in developing birds adapt to sustained ammonium perchlorate exposure?. Toxicol. Sci. 2004b; 82: 106–113
  • McNabb F. M.A. Biomarkers for the assessment of avian thyroid disruption by chemical contaminants. Avian. Poult. Biol. Rev. 2005; 16: 3–10
  • McNichols M. J., McNabb F. M.A. Comparative thyroid function in adult Japanese quail and ring doves: Influence of dietary iodine availability. J. Exp. Zool. 1987; 244: 263–268
  • McNichols M. J., McNabb F. M.A. Development of thyroid function and its pituitary control in embryonic and hatchling precocial Japanese quail and altricial Ring doves. Gen. Comp. Endocrinol. 1988; 69: 109–118
  • Meeuwis R., Michielsen R., Decuypere E., Kühn E. R. Thyrotropic activity of the ovine corticotropin-releasing factor in the chick embryo. Gen. Comp. Endocrinol. 1989; 76: 357–363
  • Moccia R. D., Fox G. A., Britton A. A quantitative assessment of thyroid histopathology of herring gulls (Larus argentatus) from the great lakes and a hypothesis on the causal role of environmental contaminants. J. Wildl. Dis. 1986; 22: 60–70
  • Mol J. A., Visser T. J. Synthesis and some properties of sulfate esters and sulfamates of iodothyronines. Endocrinology 1985a; 117: 1–7
  • Mol J. A., Visser T. J. Rapid and selective inner ring deiodination of thyroxine sulfate by rat liver deiodinase. Endocrinology 1985b; 117: 8–12
  • Morse D. C., Groen D., Veerman M., Van Amerongen C. J., Koaeter H. B.W.M., Van Prooije A. E.S., Visser T. J., Koeman J. H., Brewer A. Interference of polychlorinated biphenyls in hepatic and brain thyroid hormone metabolism in fetal and neonatal rats. Toxicol. Appl. Pharmacol. 1993; 122: 27–33
  • Morse D. C., Klasson-Wehler E., Wesseling W., Koeman J. H., Brouwer A. Alterations in rat brain thyroid hormone status following pre-and postnatal exposure to polychlorinated biphenyls (Aroclor 1254). Toxicol. Appl. Pharmacol. 1996; 136: 269–279
  • Murk A. J., Bosveld A. T.C., Van den Berg M., Brouwer A. Effects of polyhalogenated aromatic hydrocarbons (PHAHs) on biochemical parameters in chicks of the common tern (Sterna hirundo). Aquat. Toxicol. 1994; 30: 91–115
  • Newcomer W. S. Dietary iodine and thyroidal iodide transport in chickens: Organic binding blocked. Am. J. Physiol. 1978; 3: E177–E181
  • Nicholls T. J., Goldsmith A. R., Dawson A. Photorefractoriness in birds and in comparison with mammals. Physiol. Rev. 1988; 68: 133–176
  • Nishiguchi Y., Hoshino S. Relationships between plasma levels of thyroxine and its binding proteins in the chick embryo. Jpn. Poult. Sci. 1993; 30: 310–315
  • Obst B. S., Diamond J. M. The ontogenesis of intestinal nutrient transport in the domestic chicken (Gallus gallus) and its relation to growth. Auk. 1992; 109: 451–464
  • Olson J. M., McNabb F. M.A., Jablonski M. S., Ferris D. V. Thyroid development in relation to the development of endothermy in the red-winged blackbird (Agelaius phoeniceus). Gen. Comp. Endocrinol. 1999; 116: 204–212
  • Ottinger M. A., Quinn M. J., Jr., Lavoie E., Abdelnabi M. A., Thompson N., Hazelton J. L., Wu J. M., Beavers J., Jaber M. Consequences of endocrine disrupting chemicals on reproductive endocrine function in birds: Establishing reliable end points of exposure. Domest. Anim. Endocrinol. 2005; 29: 411–419
  • Owens I. P.F., Short R. V. Hormonal basis of sexual dimorphism in birds: Implications for new theories of sexual selection. Trends Ecol. Evolut. 1995; 10: 44–47
  • Pant K., Chandola-Saklani A. T3 fails to mimic certain effects of T4 in munia birds: Physiological implications for seasonal timing. Comp. Biochem. Physiol. 1995; 111C: 157–164
  • Peebles E. D., Miller E. H., Boyle C. R., Brake J. D., Latour M. A. Effects of dietary thiouracil on thyroid activity, egg production, and eggshell quality in commercial layers. Poult. Sci. 1994; 73: 1829–1837
  • Queen W. H., Christensen V. L., May J. D. Supplemental thyroid hormones and molting in turkey breeder hens. Poult. Sci. 1997; 76: 887–893
  • Quinn M. J., Jr., French J. B., McNabb F. M.A., Ottinger M. A. The effects of polychlorinated biphenyls (Aroclor 1242) on thyroxine, estradio, molt and plumage characteristics in the American kestrel (Falco sparverius). Environ. Toxicol. Chem. 2002; 21: 1417–1422
  • Raasmaja A., Viluksela M., Rozman K. K. Decreased liver type I 5′-deiodinase and increased brown adipose tissue type II 5′-deiodinase activity in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated Long-Evans rats. Toxicology 1996; 114: 199–205
  • Raimbault S., Dridi S., Denjean F., Lachuer J., Couplan E., Bouillard F., Bordas A., Duchamp C., Taouis M., Ricquier D. An uncoupling protein homologue putatively involved in facultative thermogenesis in birds. Biochem. J. 2001; 353: 441–444
  • Rasika S., Nottebohm F., Alvarez-Buylla A. Testosterone increases the recruitment and/or survival of new high vocal center neurons in adult female canaries. Proc. Natl. Acad. Sci. USA 1994; 91: 7854–7858
  • Reinert B. D., Wilson F. E. Effects of thyroxine (T4) or triiodothyronine (T3) replacement therapy on the programming of seasonal reproduction and postnuptial molt in thyroidectomized male American tree sparrows (Spizella arborea) exposed to long days. J. Exp. Zool. 1997; 279: 367–376
  • Reyns G. E., Janssens K. A., Buyse J., Kühn E. R., Darras V. M. Changes in thyroid hormone levels in chicken liver during fasting and refeeding. Comp. Biochem. Physiol. 2002; 132B: 239–245
  • Riviere J. L., De Lavaur E., Grolleau G. Effect of polychlorinated biphenyls on drug metabolism of Japanese quail and its progeny. Toxicology 1978; 11: 329–334
  • Rockwood J. M., Maxwell G. D. Thyroid hormone decreases the number of adrenergic cells that develop in neural crest cultures and can inhibit the stimulatory action of retinoic acid. Dev. Brain Res. 1996; 96: 184–191
  • Roda-Moreno J. A., Pascual-Morenilla M. T., Arrebola-Nacle F., Lopez-Soler M., Roda-Murillo O., Torres-Torres I. Alterations in ovary development in chick embryos during hypothyroidism. Biomed. Res. 2000; 11: 27–31
  • Rosebrough R. W. Dietary fat and triiodothyronine (T3) interactions in the broiler chicken. Inl. J. Vitamin. Nutr. Res. 1999; 69: 292–298
  • Rosebrough R. W., McMurtry J. P. Supplemental triiodothyronine, feeding regimens, and metabolic responses by the broiler chicken. Dom. Anim. Endocrinol. 2000; 19: 15–24
  • Rosebrough R. W., McMurtry J. P. Methimazole and thyroid hormone replacement in broilers. Dom. Anim. Endocrinol. 2003; 24: 231–242
  • Rudas P., Pethes G. The importance of the peripheral thyroid hormone deiodination in adaptation to ambient temperature in the chicken (Gallus domesticus). Comp. Biochem. Physiol. 1984; 77: 567–571
  • Rudas P., Pethes G. Acute changes of the conversion of thyroxine and triiodothyronine in hypophysectomized and thyroidectomized chickens exposed to mild cold (10°). Gen. Comp. Endocrinol. 1986; 63: 408–413
  • Rudas P. In vivo uptake of thyroid hormones by chicken brain exhibits autoregulative adaptation to thyroid status. Medical Sci Res. 1989; 17: 835–836
  • Rudas P., Bartha T., Frenyo V. L. Thyroid hormone deiodination in the brain of young chickens acutely adapts to changes in thyroid status. Acta. Vet. Hung. 1993; 41: 381–393
  • Rudas P., Bartha T. Thyroxine and triiodothyronine uptake by the brain of chickens. Acta. Vet. Hung. 1993; 41: 395–408
  • Rudas P., Bartha T., Frenyo V. L. Elimination and metabolism of triiodothyronine depend on the thyroid status in the brain of young chickens. Acta. Vet. Hung. 1994; 42: 218–230
  • Scanes C. G. Some in vitro effects of synthetic thyrotrophin releasing factor on the secretion of thyroid stimulating hormone from the anterior pituitary gland of the domestic fowl. Neuroendocrinology 1974; 15: 1–9
  • Scanes C. G., Duyka D. R., Lauterio T. T., Bowen S. J., Huybrechts L. M., Bacon W. L., King D. B. Effect of chicken growth hormone, triiodothyronine and hpophysectomy in growing domestic fowl. Growth 1986; 50: 12–31
  • Scanes C. G. Introduction to endocrinology: Pituitary gland. Sturkie's Avian Physiology, 5th ed., G. C. Whittow. Academic Press, New York 2000; 437–460
  • Scanes C. G., McNabb F. M.A. Avian models for research in toxicology and endocrine disruption. Poult. Avian. Biol. Rev. 2003; 14: 21–52
  • Schew W. A., McNabb F. M.A., Scanes C. G. Comparison of the ontogenesis of thyroid hormones, growth hormone and insulin-like growth factor I in ad libitum and food restricted (altricial) European starlings and (precocial) Japanese quail. Gen. Comp. Endocrinol. 1996; 101: 304–316
  • Schreiber G. The evolution of transthyretin synthesis in the choroid plexus. Clin. Chem. Lab. Med. 2002a; 40: 1200–1210
  • Schreiber G. Beyond carrier proteins: The evolutionary and integrative roles of transthyretin in thyroid hormone homeostasis. J. Endocrinol. 2002b; 175: 61–73
  • Schwartz H. L. Effect of thyroid hormone on growth and development. Molecular Basis of Thyroid Hormone Action, J. H. Oppenheimer, H. H. Samuels. Academic Press, New York 1983; 413–444
  • Sekura R. D., Sato K., Cahnmann H. J., Robbins J., Jakoby W. B. Sulfate transfer to thyroid hormones and their analogs by hepatic aryl sulfotransferases. Endocrinology 1981; 108: 454–456
  • Sharp P. J., Chiasson R. B., El Tounsy M. M., Klandorf H., Radke W. J. Localization of cells producing thyroid stimulating hormone in the pituitary gland of the domestic fowl. Cell Tissue Res. 1979; 198: 53–63
  • Silva J. E., Larsen P. R. Pituitary nuclear 3,5,3'-triiodothyronine and thyrotropin secretion: an explanation for the effect of thyroxine. Science 1977; 198: 617–620
  • Siopes T. Transient hypothyroidism reinitiates egg-laying in turkey breeder hens. Termination of photorefractoriness by propylthiouracil. Poult. Sci. 1997; 76: 1776–1782
  • Smith G. T., Brenowitz E., Wingfield J. C. Roles of photoperiod and testosterone in seasonal plasticity of the avian song control system. J. Neurobiol. 1997; 32: 426–442
  • Southwell B. R., Duan W., Tu G. F., Schreiber G. Ontogenesis of transthyretin gene expression in chicken choroid plexus and liver. Comp. Biochem. Physiol. 1991; 100B: 329–338
  • Spiers D. E., Ringer R. K. Thyroid hormone changes in the Bobwhite (Colinus virginianus) after hatching. Gen. Comp. Endocrinol. 1984; 53: 302–308
  • Stallard L. C., McNabb F. M.A. The effects of different iodide availabilities on thyroid function during development in Japanese quail. Dom. Anim. Endocrinol. 1990; 7: 239–250
  • Starck J. M., Ricklefs R. E. Patterns of development. Avian Growth and Development: Evolution Within the Altricial Precocial Spectrum, J. M. Starck, R. E. Ricklefs. Oxford University Press, OxfordUK 1998; 3–30
  • Stevens L. Metabolic adaptation in avian species. Avian Biochemistry and Molecular Biology. Cambridge University Press, CambridgeUK 1996; 82–99
  • Sun Y. M., Millar R. P., Ho H., Gershengorn M. C., Illing N. Cloning and characterization of the chicken thyrotropin-releasing hormone receptor. Endocrinology 1998; 139: 3390–3398
  • Suvarna S., McNabb F. M.A., Dunnington E. A., Siegel P. B. Intestinal 5′deiodinase activity of developing and adult chickens selected for high and low body weight. Comp. Endocrinol. 1993; 91: 259–266
  • Tanabe Y., Ishii T., Tamaki Y. Comparison of thyroxine-binding plasma proteins of various vertebrates and their evolutionary aspects. Gen. Comp. Endocrinol. 1969; 13: 14–21
  • Taouis M., De Basilio V., Mignon-Grasteau S., Crochet S., Bouchot C., Bigot K., Collin A., Picard M. Early-age thermal conditioning reduces uncoupling protein messenger RNA expression in pectoral muscle of broiler chicks at seven days of age. Poult. Sci. 2002; 81: 1640–1643
  • Tazawa H., Wakayama H., Turner J. S., Paganelli C. V. Metabolic responses to gradual cooling in chicken eggs treated with thiourea and oxygen. Comp. Biochem. Physiol. 1989; 92A: 619–622
  • Tekumalla P. K., Tontonoz M., Hesla M. A., Kirn J. R. Effects of excess thyroid hormone on cell death, cell proliferation, and new neuron incorporation in the adult zebra finch telencephalon. J. Neurobiol. 2002; 51: 323–341
  • Thommes R. C., Hylka V. W. Plasma iodothyronines in the embryonic and immediate post-hatch chick. Gen. Comp. Endocrinol. 1977; 32: 417–422
  • Thommes R. C., Martens J. B., Hopkins W. E., Caliendo J., Sorrentino M. J., Woods J. E. Hypothalamo-adenohypophyseal-thyroid interrelationships in the chick embryo. IV. Immunocytochemical demonstrations of TSH in the hypophyseal pars distalis. Gen. Comp. Endocrinol. 1983; 51: 434–443
  • Thommes R. C., Caliendo J., Woods J. E. Hypothalamo-adenohypophyseal-thyroid interrelationships in the developing chick embryo. VII. Immunocyochemical demonstration of thyrotrophin-releasing hormone. Gen. Comp. Endocrinol. 1985; 57: 1–9
  • Thommes R. C. Ontogenesis of thyroid function and regulation in the developing chick embryo. J. Exp. Zool. Suppl. 1987; 1: 273–279
  • Thommes R. C., Hylka V. W., Tonetta S. A., Greisbach D. A., Ropka S. L., Woods J. E. Hypothalamic regulation of the pituitary-thyroid unit in the developing chick embryo. Am. Zool. 1988; 28: 417–426
  • Thurston R. J., Korn N. Spermiogenesis in commercial poultry species: Anatomy and control. Poult. Sci. 2000; 79: 1650–1668
  • Tramontin A. D., Brenowitz E. Seasonal plasticity in the adult brain. Trends Neurosci. 2000; 23: 251–258
  • van den Berg M., Craane B. L.H.J., Sinnige T., Van Mourik S., Dirksen S., Boudewijn T., van der Gaag M., Lutke-Schipholt I. J., Spenkelink B., Brouwer A. Biochemical and toxic effects of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in the cormorant (Phalacrocorax carbo) after in ovo exposure. Environ. Toxicol. Chem. 1994; 13: 803–816
  • Van der Geyten S., Segers I., Gereben B., Bartha T., Rudas P., Larsen P. R., Kühn E. R., Darras V. M. Transcriptional regulation of iodothyronine deiodinases during embryonic development. Mol. Cell Endocrinol. 2001; 1183: 1–9
  • Van der Geyten S., van den Eynde I., Segers I. B., Kühn E. R., Darras V. M. Differential expression of iodothyronine deiodinases in chicken tissues during the last week of embryonic development. Gen. Comp. Endocrinol. 2002; 128: 65–73
  • Vasilatos-Younken R., Zhou Y., Wang X., McMurtry J. P., Rosebrough R. W., Decuypere E., Buys N., Darras V. M., Van der Geyten S., Tomas F. Altered chicken thyroid hormone metabolism with chronic GH enhancement in vivo: Consequences for skeletal muscle growth. J. Endocrinol. 2000; 166: 609–620
  • Visser G. H. Development of temperature regulation. Avian Growth and Development: Evolution within the Altricial Precocial Spectrum, J. M. Starck, R. E. Ricklefs. Oxford University Press, OxfordUK 1998; 117–156
  • Vleck C. M., Bucher T. L. Energy metabolism, gas exchange, and ventilation. Avian Growth and Development: Evolution within the Altricial Precocial Spectrum, J. M. Starck, R. E. Ricklefs. Oxford University Press, OxfordUK 1998; 89–116
  • Vyboh P., Zeman M., Jurani M., Buyse J., Decuypere E. Plasma thyroid hormone and growth hormone patterns in precocial Japanese quail and altricial European starlings during postnatal development. Comp. Biochem. Physiol. 1996; 114: 23–27
  • Weirich R. T., McNabb F. M.A. Nuclear receptors for L triiodothyronine in quail liver. Gen. Comp. Endocrinol. 1984; 53: 90–99
  • Wentworth B. C., Ringer R. K. Thyroids. Avian Physiology, P. D. Sturkie. Springer-Verlag, New York 1986; 452–465
  • Wilson C. M., McNabb F. M.A. Maternal thyroid hormones in Japanese quail eggs and their influence on embryonic development. Gen. Comp. Endocrinol. 1997; 107: 153–165
  • Wilson F. E., Reinert B. D. Effect of withdrawing long days from male American tree sparrows (Spizella arborea): Implications for understanding thyroid-dependent programming of seasonal reproduction and postnuptial molt. Biol. Reprod. 1998; 58: 15–19
  • Wilson F. E., Reinert B. D. Thyroid hormone acts centrally to programme photostimulated American tree sparrows (Spizella arborea): For vernal and autumnal components of seasonality. J. Neuroendocrinol. 2000; 12: 87–95
  • Wittmann J., Kluger W., Petry H. Motility pattern and lung respiraton of embryonic chicks under the influence of L-thyroxine and thiourea. Comp. Biochem. Physiol. 1983; 75A: 379–384
  • Wrutniak-Cabello C., Casas F., Cabello G. Thyroid hormone action in mitochondria. J. Mol. Endocrinol. 2001; 26: 67–77
  • Yamauchi K., Ishihara A., Fukazawa H., Terao Y. Competitive interactions of chlorinated phenol compounds with 3,3′, 5-triiodothyronine binding to transthyretin: Detection of possible thyroid-disrupting chemicals in environmental waste water. Toxicol. Appl. Pharmacol. 2003; 187: 110–117
  • York R. G., Brown W. R., Girard M. F., Dollarhide J. S. Two-generation reproduction study of ammonium perchlorate in drinking water in rats evaluates thyroid toxicity. Int. J. Toxicol. 2001; 20: 183–197
  • Zoeller R. T. General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit. Rev. Toxicol. 2007a; 37(1–2)11–53
  • Zoeller R. T. Rodent screens and tests for thyroid toxicants—Current and potential. Crit. Rev. Toxicol. 2007b; 37(1–2)55–95

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.