225
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Pain and U-Shaped Dose Responses: Occurrence, Mechanisms, and Clinical Implications

Pages 579-590 | Published online: 10 Oct 2008

REFERENCES

  • Angst M. S., Koppert W., Pahl I., Clark D. J., Schmelz M. Short-term infusion of the mu-opioid agonist remifentanil in humans causes hyperalgesia during withdrawal. Pain 2003; 10: 49–57
  • Blane G. F., Dugdall D. Interaction of narcotic antagonists and analgesics. J. Pharmacol. Pharm. 1968; 20: 547–552
  • Calabrese E. J. Dopamine: Biphasic dose responses. Crit. Rev. Toxicol. 2001; 31: 563–584
  • Calabrese E. J. Converging concepts: Adaptive response, preconditioning, and the Yerkes-Dodson Law are manifestations of hormesis. Ageing Res. Rev. 2008; 7: 8–20
  • Calabrese E. J., Bachmann K. A., Bailer A. J., Bolger P. M., Borak J., Cai L., Cedergreen N., Cherian M. G., Chiueh C. C., Clarkson T. W., et al. Biological stress terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose-response framework. Tox. Appl. Pharmacol 2007; 222: 122–128
  • Calabrese E. J., Baldwin L. A. The frequency of U-shaped dose-responses in the toxicological literature. Tox. Sci. 2001; 62: 330–338
  • Calabrese E. J., Baldwin L. A. The hermetic dose response model is more common than the threshold model in toxicology. Tax. Sci. 2003; 71: 246–250
  • Calabrese E. J., Blain R. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: An overview. Toxicol. Appl. Pharmacol 2005; 202: 289–301
  • Calabrese E. J., Staudenmayer J. W., Stanek E. J., Hoffmann G. R. Hormesis outperforms threshold model in NCI anti-tumor drug screening data. Tox. Sci. 2006; 94: 368–378
  • Celerier E., Laulin J., Larcher A., Le Moal M., Simonnet G. Evidence for opiate-activated NMDA processes masking opiate analgesia in rats. Brain Res. 1999; 847: 18–25
  • Celerier E., Rivat C., Jun Y., Laulin J. P., Larcher A., Reynier P., Simonnet G. Long-lasting hyperalgesia induced by fentanyl in rats: Preventive effect of ketamine. Anesthesiology 2000; 92: 465–472
  • Celerier E., Laulin J. P., Corcuff J. B., Le Moal M., Simonnet G. Progressive enhancement of delayed hyperalgesia induced by repeated heroin administration: A sensitization process. J. Neurosci. 2001; 21: 4074–4080
  • Compton P., Athanasos P., Elashoff D. Withdrawal hyperalgesia after acute opioid physical dependence in nonaddicted humans: A preliminary study. J. Pain 2003; 4: 511–519
  • Conceicao I. M., Maiolini M., Jr., Mattia N., Vital M. A., Santos B. R., Smaili S., Frussa-Filho R. Anxiety-induced antinociception in the mouse. Braz. J. Med. Biol. Res. 1992; 25: 831–834
  • Cowan A. Buprenorphine: New pharmacological aspects. Int. J. Clin. Proctol. 2003; 133(Suppl)3–8
  • Cowan A., Lewis J. W., MacFarlane I.R. Agonist and antagonist properties of buprenonphine, a new antinociceptive agent. Br. J. Pharmacol. 1977; 60: 537–545
  • Dennis S. G., Melzack R., Gutman S., Boucher F. Pain modulation by adrenergic agents and morphine as measured by three pain tests. Life Sci. 1980; 26: 1247–1259
  • Dewey W. L. Cannabinoid pharmacology. Pharmacol. Rev. 1986; 38: 151–178
  • Dickenson A. H., Sullivan A. F. Electrophysiological studies on the effects of intrathecal morphine on nociceptive neurons in the rat dorsal horn. Pain 1986; 24: 211–222
  • Dum J. E., Herz A. In vivo receptor binding of the opiate partial agonist, buprenorphine, correlated with its agonistic and antagonistic actions. Br. J. Pharmacol. 1981; 74: 627–633
  • Faerber L., Drechsler S., Ladenburger S., Gschaidmeier H., Fischer W. The neuronal 5-HT3 receptor network after 20 years of research—Evolving concepts in management of pain and inflammation. Eur. J. Pharmacol. 2007; 560: 1–8
  • Farber L., Stratz T., Bruckle W., Spath M., Pongratz D., Lautenschlager J., Kotter I., Zoller B., Peter H.-H., Neeck G., Alten R., Muller W. Efficacy and tolerability of tropisetron in primary fibromyalgia—A highly selective and competitive 5-HT3 receptor antagonist. Scand. J. Rheumatol. 2000; 29(Suppl)49–54
  • Fielding S., Wilker J., Hynes M., Szewczak M., Novick W. J., Jr., Lal H. A comparison of clonidine with morphine for antinociceptive and antiwithdrawal actions. J. Pharmacol. Exp. Ther. 1978; 207: 899–905
  • Galeotti N., Stefano G. B., Guarna M., Bianchi E., Ghelardini C. Signaling pathway of morphine induced acute thermal hyperalgesia in mice. Pain 2006; 123: 294–305
  • Guignard B., Bossard A. E., Coste C., Sessler D. I., Lebrault C., Alfonsi P., et al. Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology 2000; 93: 409–417
  • Guimaraes F. S., Chiaretti T. M., Graeff F. G., Zuardi A. W. Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology 1990; 100: 558–559
  • Hollt V. The in vivo occupation of opiate receptors. Factors Affecting the Action of Narcotics, M. L. Adler, L. Manara, R. Samanin. Raven Press, New York 1978; 207–220
  • Hosoi M., Oka T., Hori T. Prostaglandin E receptor EP3 subtype is involved in thermal hyperalgesia through its actions in the preoptic hypothalamus and the diagonal band of Broca in rats. Pain 1997; 71: 303–311
  • Inoue M., Matsunaga S., Rashid M. H., Yoshida A., Mizuno K., Sakurada T., Takeshima H., Ueda H. Pronociceptive effects of nociceptin/orphanin FQ (13–17) at peripheral and spinal level in mice. J. Pharmacol. Exp. Ther. 2001; 299: 213–219
  • Inoue M., Shimohira I., Yoshida A., Zimmer A., Takeshima H., Sakurada T., Ueda H. Dose-related opposite modulation by nociceptin/orphanin FQ of substance P nociception in the nociceptors and spinal cord. J. Pharmacol. Exp. Ther. 1999; 291: 308–313
  • Kayser V., Guilbaud G. Dose-dependent analgesic and hyperalgesic effects of systemic naloxone in arthritic rats. Brain Res. 1981; 226: 344–348
  • Kayser V., Guilbaud G. The analgesic effects of morphine, but not those of the enkephalinase inhibitor thiorphan, are enhanced in arthritic rats. Brain Res. 1983; 267: 131–138
  • Kayser V., Guilbaud G. Cross-tolerance between analgesic low doses of morphine and naloxone in arthritic rats. Brain Res. 1987; 405: 123–129
  • Kayser V., Besson J. M., Guilbaud G. Analgesia produced by low doses of the opiate antagonist naloxone in arthritic rats is reduced in morphine-tolerant animals. Brain Res. 1986; 371: 37–41
  • Kayser V., Besson J. M., Guilbaud G. Paradoxical hyperalgesic effect of exceedingly low doses of systemic morphine in an animal model of persistent pain (Freund's adjuvant-induced arthritic rats). Brain Res. 1987; 414: 155–157
  • Kwiatkowska M., Parker L. A., Buton P., Mechoulam R. A comparative analysis of the potential of cannabinoids and ondansetron to suppress cisplatin-induced emesis in the Suncus murinus(house musk shrew). Psychopharmacology 2004; 174: 254–259
  • Laulin J. P., Larcher A., Celerier E., Le Moal M., Simonnet G. Long-lasting increased pain sensitivity in rat following exposure to heroin for the first time. Eur. J. Neurosci. 1998; 10: 782–785
  • Laulin J. P., Maurette P., Corcuff J. B., Rivat C., Chauvin M., Simonnet G. The role of ketamine in preventing fentanyl-induced hyperalgesia and subsequent acute morphine tolerance. Anesth. Analg. 2002; 94: 1263–1269
  • Lee C., Rodgers R. J. Antinociceptive effects of elevated plus-maze exposure: Influence of opiate receptor manipulations. Psychopharmacology 1990; 102: 507–513
  • Lewis J. W. Ring C-bridged derivatives of thebaine and oripavine. Adv. Biochem. Psychopharm. 1974; 8: 123–135
  • Maeda Y., Yamada K., Hasegawa T., Kawamata Y., Uchida K., Iyo M., Fukui S., Nabeshima T. Relationship between anti-aversive effects of salmon calcitonin and plasma levels of ACTH, beta-endorphin and prostaglandin E2 in mice. Res. Comm. Chem. Pathol. Pharmacol. 1994; 83: 15–24
  • Malfait A. M., Gallily R., Sumariwalla P. F., Malik A. S., Andreakos E., Mechoulam R., Feldman M. The non-psychoactive cannabis-constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc. Natl. Acad. Sci. USA 2000; 97: 9561–9566
  • Martin W. R. Opioid antagonists. Pharmacol. Rev. 1967; 19: 463–521
  • Nakano H., Minami T., Abe K., Arai T., Tokumura M., Ibii N., Okuda-Ashitaka E., Mori H., Ito S. Effect of intrathecal nocistatin on the formalin-induced pain in mice versus that of nociceptin/orphanin FQ1. J. Pharmacol. Exp. Ther. 2000; 292: 331–336
  • Nishihara I., Minami T., Uda R., Ito S., Hyodo M., Hayaishi O. Effect of NMDA receptor antagonists on prostaglandin E2-induced hyperalgesia in conscious mice. Brain Res. 1995; 677: 138–144
  • Nunes-de-Souza R. L., Canto-de-Souza A., Da-Costa M., Fornari R. V., Graeff F. G., Pela I. R. Anxiety-induced antinociception in mice: Effects of systemic and intra-amygdala administration of 8-OH-DPAT and midazolam. Psychopharmacology 2000; 150: 300–310
  • Paalzow G. H.M. L-Dopa induces opposing effects on pain in intact rats: (–)-Sulpiride, SCH 23390 or α -methyl-DL-p-tyrosine methylester hydrochloride reveals profound hyperalgesia in large antinociceptive doses. J. Pharmacol. Exp. Ther. 1992; 263: 470–479
  • Paalzow L. Analgesia produced by clonidine in mice and rats. J. Pharm. Pharmacol. 1974; 26: 361–363
  • Paalzow L. K., Paalzow G. H.M. Concentration-response relations for apomorphine effects on heart rate in conscious rats. Eur. J. Pharmacol. 1986; 88: 28–34
  • Paalzow G. H.M., Paalzow L. K. Promethazine both facilitates and inhibits nociception in rats: effect of the testing procedure. Psychopharmacology 1985; 85: 31–36
  • Paalzow G. H.M., Paalzow L. K. Opposing effects of apomorphine on pain in rats. Evaluation of the dose-response curve. Eur. J. Pharmacol. 1983a; 88: 27–35
  • Paalzow G. H.M., Paalzow L. K. Yohimbine both increases and decreases nociceptive thresholds in rats: Evaluation of the dose-response relationship. Naunyn-Schmied. Arch. Pharmacol. 1983b; 322: 193–197
  • Paalzow G., Paalzow L. Separate noradrenergic receptors could mediate clonidine induced antinociception. J. Pharmacol. Exp. Ther. 1982; 223: 795–800
  • Parker L. A., Kwiatkowska M., Burton P., Mechoulam R. Effect of cannabinoids on lithium-induced vomiting in the Suncus murinus (house musk shrew). Psychopharmacology 2004; 171: 156–161
  • Paton W. D.M., Pertwee R. G. The pharmacology of cannabis in man. Marijana: Chemistry, Pharmacology, Metabolism and Clinical Effects. Academic Press, New York 1973; 287–333
  • Pelissier T., Laurido C., Hernandez A., Constandil L., Eschalier A. Biphasic effect of apomorphine on rat nociception and effect of dopamine D2 receptor antagonists. Eur. J. Pharmacol. 2006; 546: 40–47
  • Protais P., Dubuc I., Costentin J. Pharmacological characteristics of dopamine receptors involved in the dual effect of dopamine agonists on yawning behaviour in rats. Eur. J. Pharmacol. 1983; 94: 271–280
  • Rance M. J. Animal and molecular pharmacology of mixed agonist–antagonist analgesic drugs. Br. J. Clin. Pharmacol. 1979; 7: 281S–286S
  • Rance M. J., Lord J. A.H., Robinson T. Biphasic dose response curve to buprenorphine in the rat tail flick assay: effect of naloxone pretreatment. Endogenous and Exogenous Opiate Agonists and Antagonists, E. L. Way. Pergamon Press, New York 1980; 387–390
  • Reddy S. V.R., Maderdrut J. L., Yaksh T. L. Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J. Pharmacol. Exp. Ther. 1980; 213: 525–533
  • Rubovitch V., Gafni M., Sarne Y. The mu opioid agonist DAMGO stimulates cAMP production in SK-N-SH cells through a PLC-PKC-Ca2 + pathway. Brain Res. Mol. Brain Res. 2003; 110: 261–266
  • Sadee W., Rosenbaum J. S., Herz A. Buprenorphine: Differential interaction with opiate receptor subtypes in vivo. J. Pharmacol. Exp. Ther. 1982; 223: 157–162
  • Schreiber S., Rigai T., Katz Y., Pick C. G. The antinociceptive effect of mirtazapine in mice is mediated through serotonergic, noradrenergic and opioid mechanisms. Brain Res. Bull. 2002; 58: 601–605
  • Schmitt H., LeDouarec L.-D., Petillot N. Antinociceptive effects of some α -sympathomimetic agents. Neuropharmacology 1974; 13: 289–293
  • Siegan J. B., Sagen J. A natural peptide with NMDA inhibitory activity reduces tonic pain in the formalin model. NeuroReport 1997; 8: 1379–1381
  • Stromberg U. Dopa effects on motility in mice—Potentiation by MK-485 and dexchlorpheniramine. Psychopharmacologia 1970; 18: 58–67
  • Strombom U. Catecholamine receptor agonists: Effect of motor activity and rate of tyrosine hydroxylation in mouse brain. Naunyn-Schmiedeberg Arch. Pharmacol. 1976; 292: 167–176
  • Suen P. C., Wu K., Xu J. L., Lin S. Y., Levine E. S., Black I. B. NMDA receptor subunits in the postsynaptic density of rat brain: Expression and phosphorylation by endogenous protein kinases. Brain Res. Mol. Brain Res. 1998; 59: 215–228
  • Sulcova E., Mechoulam R., Fride E. Biphasic effects of anandamide. Pharmacol. Biochem. Behav. 1998; 59: 347–352
  • Taukulis H. K., Goggin C. E. Diazepam–stress interactions in the rat: Effects on autoanalgesia and a plus-maze model of anxiety. Behav. Neural. Biol. 1990; 53: 205–216
  • Van Elstraete A.C., Sitbon P., Trabold F., Mazoit J. X., Benhamou D. A single dose of intrathecal morphine in rats induces long-lasting hyperalgesia: The protective effect of prior administration of ketamine. Anesth. Analg. 2005; 101: 1750–1756
  • Villiger J. W., Taylor K. M. Buprenorphine: Characteristics of binding sites in the rat central nervous system. Life Sci. 1981; 29: 2699–2709
  • Zhou Y., Sun Y.-H., Zhang Z.-W., Han J.-S. Increased release of immunoreactive cholecystokinin octapeptide by morphine and potentiation of μ -opioid analgesia by CCKB receptor antagonist L-365,260 in rat spinal cord. Eur. J. Pharmacol. 1993; 234: 147–154

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.