279
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Addiction and Dose Response: The Psychomotor Stimulant Theory of Addiction Reveals That Hormetic Dose Responses Are Dominant

Pages 599-617 | Published online: 10 Oct 2008

REFERENCES

  • Ahlenius S., Carlsson A., Engel J., Svensson T., Soderste F. K. Antagonism by alpha methyltyrosine of ethanol-induced stimulation and euphoria in man. Clin. Pharmacol. Ther. 1973; 14: 586–591
  • Anisman H. Fear reduction and active avoidance learning after alcohol administration during prior CS-shock exposure. Q. J. Stud. Alcohol 1972; 33: 783–793
  • Babbini M., Gaiardi M., Bartoletti M. Dose-time motility effects of morphine and methadone in naive and morphinized rats. Pharmacol. Res. Commun. 1979; 11: 809–816
  • Battig K., Driscoll P., Schlatter J., Uster J. H. Effects of nicotine on the exploratory locomotion patterns of female Roman high- and low-avoidance rats. Pharmacol. Biochem. Behav. 1976; 4: 435–439
  • Bechtholt A. J., Mark G. P. Enhancement of cocaine-seeking behavior by repeated nicotine exposure in rats. Psychopharmacology 2002; 162: 178–185
  • Belknap J. K., MacInnes J.W., McClearn G.E. Ethanol sleep times and hepatic alcohol and aldehyde dehydrogenase activities in mice. Physiol. Behav. 1973; 9: 453–457
  • Berry M. S. Ethanol-induced enhancement of defensive behavior in different models of murine aggression. J. Stud. Alcohol 1993; 11: 156–162
  • Blanchard R. J., Hori K., Flannelly K., Blanchard D. C. The effects of ethanol on the offense and defensive behaviors of male and female rats during group formation. Pharmacol. Biochem. Behav. 1987; 26: 61–64
  • Boissier J. R., Simon P. Action de la caffeine sur la motilite spontanee de la souris. Arch. Int. Pharmacodyn. 1965; 158: 212–221
  • Boren J. L., Consroe P. F. Behavioral effects of phencyclidine (PCP) in the dog: A possible animal model of PCP toxicity in humans. Life Sci. 1981; 28: 1245–1251
  • Branham S. E. The effects of certain chemical compounds upon the course of gas production by baker's yeast. J. Bacteriol. 1929; 18: 247–264
  • Broadhurst P. L., Wallgren H. Ethanol and the acquisition of a conditioned avoidance response in selected strains of rats. Q. J. Stud. Alcohol 1964; 25: 476–489
  • Burnstock G., Brown C. M. An introduction to purinergic receptors. Purinergic Receptors, G. Burnstock. Chapman & Hall, London 1981; 1–45
  • Butcher R. W., Sutherland E. W. Adenosine 3′,5′-phosphate in biological materials. 1. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J. Biol. Chem. 1962; 237: 1244–1250
  • Cabib S., Bonaventura N. Parallel strain-dependent susceptibility to environmentally-induced sterotypes and stress-induced behavioral sensitization in mice. Physiol. Behav. 1997; 61: 499–506
  • Calabrese E. J. Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ. Pollut. 2005; 138: 378–411
  • Calabrese E. J. U-shaped dose-response in behavioral pharmacology: historical foundations. Crit. Rev. Toxicol. 2008a, this issue
  • Calabrese E. J. Hormesis: Why it is important to toxicology and toxicologists. Environ. Toxicol. Chem. 2008b; 27: 1451–1474
  • Calabrese E. J., Baldwin L. A. The dose determines the strimulation (and poison): Development of a chemical hormesis database. Intern'l. J. Toxicol. 1997; 16: 545–559
  • Calabrese E. J., Baldwin L. A. The frequency of U-shaped dose-responses in the toxicological literature. Tox. Sci. 2001a; 62: 330–338
  • Calabrese E. J., Baldwin L. A. Hormesis: U-shaped dose responses and their centrality in toxicology. Trends Pharmacol. Sci. 2001b; 22: 285–291
  • Calabrese E. J., Baldwin L. A. Application of hormesis in toxicology, risk assessment and chemotherapeutics. Trends Pharmacol. Sci. 2002; 23: 331–337
  • Calabrese E. J., Baldwin L. A. Toxicology rethinks its central belief—Hormesis demands a reappraisal of the way risks are assessed. Nature 2003a; 421(6924)691–691
  • Calabrese E. J., Baldwin L. A. Ethanol and hormesis. Crit. Rev. Toxicol. 2003b; 33: 407–424
  • Calabrese E. J., Baldwin L. A. The hormetic dose response model is more common than the threshold model in toxicology. Tox. Sci. 2003c; 71: 246–250
  • Calabrese E. J., Blain R. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: An overview. Toxicol. Appl. Pharmacol. 2005; 202: 289–301
  • Cappell H., LeBlanc E., Endrenyi L. Effects of chlordiazepoxide and ethanol on the extinction of a conditioned taste aversion. Physiol. Behav. 1972; 9: 167–169
  • Carlsson A., Engel J., Strombom U., Svensson T. H., Waldeck B. Suppression by dopamine-agonists of ethanol-induced stimulation of locomotor activity and brain dopamine synthesis. Naunyn-Schmiedbergs Arch. Pharmacol. 1974; 283: 117–128
  • Carlsson A., Engel J., Svensson T. H. Inhibition of ethanol-induced excitation in mice and rats by α -methyl-p-tyrosine. Psychopharmacologia 1972a; 26: 307–312
  • Carlsson A., Davis J. N., Kehr W., Lindqvis M., Atack C. V. Simulanteous measurement of tyrosine and tryptophan hydroxylase-activities in brain in-vivo using an inhibitor of aromatic amino-acid decarboxylase. Naunyn-Schmiedebergs Arch. Pharmacol. 1972b; 275: 153–168
  • Castellani S., Adams P. M. Effects of dopaminergic drugs on phencyclidine-induced behavior in the rat. Neuropharmacology 1981; 20: 371–374
  • Chance M. R.A., Mackintosh J. H., Dixon A. K. The effects of ethyl alcohol on social encounters between mice. J. Alcohol 1973; 8: 90–93
  • Cherek D. R., Steinberg J. L., Vines R. V. Low doses of alcohol affect human aggressive responses. Biol. Psychiatry 1984; 19: 263–267
  • Clarke P. B.S., Kumar R. The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. Br. J. Pharmacol. 1983; 78: 329–337
  • Cohen C., Perrault G., Sanger D. J. Evidence for the involvement of dopamine receptors in ethanol-induced hyperactivity in mice. Neuropharmacology 1997; 36: 1099–1108
  • Collins A. C., Miner L. L., Marks M. J. Genetic influences on acute responses to nicotine and nicotine tolerance in the mouse. Pharmacol. Biochem. Behav. 1988; 30: 269–278
  • Cooper S. J. Benzodiazepines as appetite-enhancing compounds. Appetite 1980; 1: 7–19
  • Corrigall W. A., Franklin K. B.J., Coen K. M., Clarke P. B.S. The mesolimbic dopaminergic system is implicated in the reinforcing effects of nicotine. Psychopharmacology 1992; 107: 285–289
  • Crabbe J. C. Genetic animal models in the study of alcoholism. Alcohol. Clin. Exp. Res. 1989; 13: 120–127
  • Crabbe J. C., Metten P., Gallaher E. J., Belknap J. K. Genetic determinants of sensitivity to pentobarbital in inbred mice. Psychopharmacology 2002; 161: 408–416
  • Crabbe J. C., Kosobud A., Young E. R., Janowsky J. S. Polygenic and single-gene determination of responses to ethanol in BXD/Ty recombinant inbred mouse strains. Neurobehav. Toxicol. Teratol. 1983; 5: 181–187
  • Crabbe J. C., Johnson N., Gray D., Kosobud A., Young E. R. Biphasic effects of ethanol on open-field activity: Sensitivity and tolerance in C57/6N and DBA/2N mice. J. Comp. Physiol. Psychol. 1982; 96: 440–451
  • Crabbe J. C., Gallaher E. S., Phillips T. J., Belknap J. K. Genetic determinants of sensitivity to ethanol in inbred mice. Behav. Neurosci. 1994; 108: 186–195
  • deAlmeida R. M.M., Rowlett J. K., Cook J. M., Miczek K. A. GABAA/α 1 receptor agonists and antagonists: Effects on species-typical and heightened aggressive behavior after alcohol self-administration in mice. Psychopharmacology 2004; 172: 255–263
  • Domino E. F. Sites of action of some central nervous system depressants. Ann. Rev. Pharmacol. 1962; 2: 215–268
  • Dudeck B. C., Phillips T. J., Hahn M. E. Genetic analyses of the biphasic nature of the alcohol dose-response curve. Alcohol Clin. Exp. Res. 1991; 15: 262–269
  • Dudeck B. C., Abbott M. E., Phillips T. J. Stimulant and depressant properties of sedative-hypnotics in mice selectively bred for differential sensitivity to ethanol. Psychopharmacology 1984; 82: 46–51
  • El Yacoubi M., Ledent C., Menard J.-F., Parmentier M., Costentin J., Vaugeois J-M. The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A2 receptors. Br. J. Pharmacol. 2000; 129: 1465–1473
  • Erwin V. G., Radcliffe R. A., Gehle V. M., Jones B. C. Common quantitative trait loci for alcohol-related behaviors and central nervous system neurotensin measures: Locomotor activation. J. Pharmacol. Exp. Ther. 1997; 280: 919–926
  • Erwin V. G., Jones B. C. Genetic correlations among ethanol-related behaviors and neurotensin receptors in long sleep (LS) × short sleep (SS) recombinant inbred strains of mice. Behav. Genet. 1993; 23: 191–196
  • Erwin V. G., Radcliffe R. A., Jones B. C. Chronic ethanol-consumption produces genotype-dependent tolerance to ethanol in LS/IBG and SS/IBG mice. Pharmacol. Biochem. Behav. 1992; 41: 275–281
  • Fahey J. M., Lindquist D. G., Pritchard G. A., Miller L. G. Pregnenolone sulfate potentiation of NMDA-mediated increases in intracellular calcium in cultured chick cortical-neurons. Brain Res. 1995a; 669: 183–188
  • Fahey J. M., Miller L. G., Isaacson R. L. Neurosteroid modulation of locomotor activity in mice. Neurosci. Res. Commun. 1995b; 17(3)159–159
  • Faraday M. M., O'Donoghue V.A., Grunberg N. E. Effects of nicotine and stress on locomotion in Sprague-Dawley and Long-Evans male and female rats. Pharmacol. Biochem. Behav. 2003a; 74: 325–333
  • Faraday M. M., Elliott B. M., Phillips J. M., Grunberg N. E. Adolescent and adult male rats differ in sensitivity to nicotine's activity effects. Pharmacol. Biochem. Behav. 2003b; 74: 917–931
  • Finn I. B., Holtzman S. G. Pharmacologic specificity of tolerance to caffeine-induced stimulation of locomotor activity. Psychopharmacology 1987; 93: 428–434
  • Fish E. W., DeBold J.F., Miczek K. A. Repeated alcohol: behavioral sensitization and alcohol-heightened aggression in mice. Psychopharmacology 2002; 160: 39–48
  • Fish E. W., Faccidomo S., DeBold J.F., Miczek K. A. Alcohol, allopregnanolone and aggression in mice. Psychopharmacology 2001; 153: 473–483
  • Flood J. F., Smith G. E., Cherkin A. Memory enhancement: Supra-additive effect of subcutaneous cholinergic drug combinations in mice. Pschopharmacology 1985; 86: 61–67
  • Fog R. Behavioral effects in rats of morphine and amphetamine and of a combination of the two drugs. Pharmacologia 1970; 16: 305–312
  • Fredholm B. B., Fuxe K., Agnati L. Effect of some phosphodiesterase inhibitors on central dopamine mechanisms. Eur. J. Pharmacol. 1976; 38: 31–38
  • Friedman H. J., Carpenter J. A., Lester D., Randall C. L. Effect of alpha-methyl-p-tyrosine on dose-dependent mouse strain differences in locomotor activity after ethanol. J. Studies Alcohol 1980; 41: 1–7
  • Frye G. D., Breese G. R. An evaluation of the locomotor stimulating action of ethanol in rats and mice. Psychopharmacology 1981; 75: 372–379
  • Gaddnas H., Pietila K., Piepponen T. P., Ahtee L. Enhanced motor activity and brain dopamine turnover in mice during long-term nicotine administration in the drinking water. Pharmacol. Biochem. Behav. 2001; 70: 497–503
  • Gaddnas H., Pietila K., Ahtee L. Effects of chronic oral nicotine treatment and its withdrawal on locomotor activity and brain monoamines in mice. Behav. Brain Res. 2000; 113: 65–72
  • Garg M. Effect of nicotine on rearing in two strains of rat. Life Sci. 1968; 7: 421–429
  • Garg M. The effects of some central nervous system stimulant and depressant drugs on rearing activity in rats. Psychopharmacologia 1969a; 14: 150–156
  • Garg M. Variation in effects of nicotine in four strains of rats. Psychopharmacologia 1969b; 14: 432–438
  • Gerasimov M. R., Franceschi M., Volkow N. D., Rice O., Schiffer W. K., Dewey S. L. Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transporter inhibitor. Synapse 2000; 38: 432–437
  • Gingras M. A., Cools A. R. Analysis of the biphasic locomotor response to ethanol in high and low responders to novelty: A study in Nijmegen Wistar rats. Psychopharmacology 1996; 125: 258–264
  • Glick S. D., Milloy S. Increased and decreased eating following THC administration. Psychonomic Sci. 1972; 29: 6
  • Glickman S. E., Schiff B. B. A biological theory of reinforcement. Psychol. Rev. 1967; 74: 81–109
  • Goldstein A., Kaizer S. Psychotropic effects of caffeine in man. III. A questionnaire survey of coffee drinking and its effects in a group of housewives. Clin. Pharmacol. Exp. Ther. 1969; 10: 477–488
  • Goldstein A., Kaizer S., Whitley O. Phenotypic effects of caffeine in man. IV. Quantitative and qualitative differences associated with habituation to coffee. Clin. Pharmacol. Exp. Ther. 1969; 10: 489–497
  • Halldner L., Aden U., Dahlberg V., Johansson B., Ledent C., Fredholm B. B. The adenosine A1 receptor contributes to the stimulatory, but not the inhibitory effect of caffeine on locomotion: A study in mice lacking adenosine A1 and/or A2A receptors. Neuropharmacology 2004; 46: 1008–1017
  • Hatchell P. C., Collins A. C. The influence of genotype and sex on behavioral sensitivity to nicotine in mice. Psychopharmacology (Berlin) 1980; 71: 45–59
  • Hatchell P. C., Collins A. C. Influences of genotype and sex on behavioral tolerance to nicotine in mice. Pharmacol. Biochem. Behav. 1977; 6: 25–30
  • Heim F., Haas B. Der einfluss von megaphen auf motilitat und sauerstoffverbrauch weisser mause in ruhe und erregung. Arch. Exp. Path. Pharmakol. 1955; 226: 395–402
  • Heim F., Hack B., Mitznegg P., Ammon H. P.T., Estler C.-J. Caffeine-antagonistic effects of theobromine and caffeine-like properties of theobromine metabolites. Arzneimittel.-Forsch. 1971; 21: 1039
  • Herz A., Neteler B., Teschemacher H. J. Experiments comparing central nervous system effects of xanthine derivatives and their metabolism and distribution in body. Arch. Exp. Path. Pharmakol. 1968; 261: 486
  • Holloway F. A. State-dependent effects of ethanol on active and passive avoidance learning. Psychopharmacologia 1972; 25: 238–261
  • Holloway W. R., Thor D. H. Caffeine sensitivity in the neonatal rat. Behav. Toxicol. Teratol. 1982; 4: 331–333
  • Hughes R. N., Greig A. M. Effects of caffeine, methamphetamine and methylphenidate on reactions to novelty and activity in rats. Neuropharmacology 1976; 15: 673–676
  • Itzhak Y., Martin J. L. Effects of cocaine, nicotine, dizocipline and alcohol on mice locomotor activity: Cocaine–alcohol cross-sensitization involves upregulation of striatal dopamine transporter binding sites. Brain Res. 1999; 818: 204–211
  • Jacobs B. L., Farel P. B. Motivated behaviors produced by increased arousal in the presence of goal objects. Physiol. Behav. 1971; 6: 473–476
  • Jarvis M. F., Williams M. Differences in adenosine A-1 and A-2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice. Pharmacol. Biochem. Behav. 1988; 30: 707–714
  • Kalivas P. W., Duffy P. Effects of daily cocaine and morphine treatment on somatodendritic and terminal field dopamine release. J. Neurochem. 1988; 50: 1498–1504
  • Katims J. J., Annau Z., Snyder S. H. Interactions in the behavioral effects of methylxanthines and adenosine derivatives. J. Pharmacol. Exp. Ther. 1983; 227: 167–173
  • Kiianmaa K., Tuomainen P., Makova N., Seppa T., Mikkola J. A.V., Piepponen T. P., Ahtee L., Hyytia P. The effects of nicotine on locomotor activity and dopamine overflow in the alcohol-preferring AA and alcohol-avoiding ANA rats. Eur. J. Pharmacol. 2000; 407: 293–302
  • Klotz K.-N., Hessling J., Hegler J., Owman C., Kull B., Fredholm B. B., Lohse M. J. Comparative pharmacology of human adenosine receptor subtypes—Characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedeberg's Arch. Pharmacol. 1997; 357: 1–9
  • Krsiak M., Borgesova M. Effect of alcohol on behaviour of pairs of rats. Psychopharmacologia 1973; 32: 201–209
  • Ksir C. Acute and chronic nicotine effects on measures of activity in rats: a multivariate analysis. Psychopharmacology 1994; 115: 105–109
  • Ksir C., Hakan R. L., Kellar K. J. Chronic nicotine and locomotor activity: Influences of exposure dose and test done. Psychopharmacology 1987; 92: 25–29
  • Ksir C., Hakan R., Hall D. P., Kellar K. J., Jr. Exposure to nicotine enhances the behavioral stimulant effect of nicotine and increases binding of [3H]acetylcholine to nicotinic receptors. Neuropharmacology 1985; 24: 527–531
  • Le A. D., Tomkings D., Higgins G., Quan B., Sellers E. M. Effects of 5-HT3, D-1 and D-2 receptor antagonists on ethanol- and cocaine-induced locomotion. Pharmacol. Biochem. Behav. 1997; 57: 325–332
  • Ledent C., Vaugeois J.-M., Schiffmann S. N., Pedrazzini T., El Yacoubi M., Vanderhaeghen J. J., Costentin J., Heath J. K., Vassart G., Parmentier M. Aggressiveness, hypoalgesia, and high blood pressure in mice lacking the adenosine A2A receptor. Nature 1997; 388: 674–678
  • Logan L., Seale T. W., Carney J. M. Inherent differences in sensitivity to methylxanthines among inbred mice. Pharmacol. Biochem. Behav. 1986; 24: 1281–1286
  • London C., Wolff J., Cooper D. M.F. Adenosine as a regulator of adenylate cyclase. Purinergic Receptors, G. Burnstock. Chapman & Hall, London 1981; 287–323
  • Matchett J. A., Erickson C. K. Alteration of ethanol-induced changes in locomotor-activity by adrenergic blockers in mice. Psychopharmacology 1977; 52: 201–206
  • Machett J. A. The effects of acute ethanol administration on central catecholamines and behavior in the mouse. Dissertation, University of Kansas, Lawrence 1976
  • Majewska M. D., Schwartz R. D. Pregnenolone-sulfate—An endogenous antagonist of the gamma-aminobutyric-acid receptor complex in brain. Brain Res. 1987; 404: 355–360
  • Majewska M. D., Bisserbe J. C., Eskay R. L. Glucocorticoids are modulators of GABAA receptors in brain. Brain Res. 1985; 339: 178–182
  • Malin D. H., Lake J. R., Newlin-Maultsby P., Roberts L. K., Lanier J. G., Carter V. A., Cunningham J. S., Wilson O. B. Rodent model of nicotine abstinence syndrome. Pharmacol. Biochem. Behav. 1992; 43: 779–784
  • Margules D. L., Stein L. Increase of “antianxiety” activity and tolerance of behavioral depression during chronic administration of oxazepam. Psychopharmacologia 1968; 13: 74–80
  • Mark G. P., Kinney A. E., Grubb M. C., Keys A. S. Involvement of acetylcholine in the nucleus accumbens in cocaine reinforcement. Ann. NY Acad. Sci. 1999; 877: 792–795
  • Marks M. J., Burch J. B., Collins A. C. Genetics of nicotine response in four inbred strains of mice. J. Pharmacol. Exp. Ther. 1983; 226: 291–302
  • Martin W. R., Wikler A., Eades C. G., Pescor F. T. Tolerance to and physical dependence on morphine in rats. Psychopharmacologia 1963; 4: 247–260
  • Masur J., Boerngen R. The excitatory component of ethanol in mice: A chronic study. Toxicol. Biochem. Behav. 1980; 13: 777–780
  • Masur J., Desouza M. L.O., Zwicker A. P. The excitatory effect of ethanol—Absence in rats, no tolerance and increased sensitivity in mice. Pharmacol. Biochem. Behav. 1986; 24: 1225–1228
  • McClearn G. E., Kakihana R. Selective breeding for ethanol sensitivity in mice. Behav. Genet. 1973; 3: 409–410
  • Miczek K. A., Barry H, III. Effects of alcohol on attack and defensive-submissive reactions in rats. Psychopharmacology 1977; 52: 231–237
  • Miczek K. A., O'Donnell J.M. Alcohol and chlordiazepoxide increase suppressed aggression in mice. Psychopharmacology 1980; 69: 39–44
  • Miczek K. A., Fish E. W., DeBold J.F. Neurosteroids, GABAA receptors, and escalated aggressive behavior. Hormones Behav. 2003; 44: 242–257
  • Miczek K. A., Weerts E. M., Tornatzky W., DeBold J.F., Vatne T. M. Alcohol and “bursts” of aggressive behavior: Ethological analysis of individual differences in rats. Psychopharmacology 1992; 107: 551–563
  • Miczek K. A., DeBold J.F., van Erp A.M. M. Neuropharmacological characteristics of individual differences in alcohol effects on aggression in rodents and primates. Behav. Pharmacol. 1994; 5: 407–421
  • Miczek K. A., Barros H. M., Sakoda L., Weerts E. M. Alcohol and heightened aggression in individual mice. Alcohol Clin. Exp. Res. 1998a; 22: 1698–1705
  • Miczek K. A., Hussain S., Faccidomo S. Alcohol-heightened aggression in mice: attenuation by 5-HT1A receptor agonists. Psychopharmacology 1998b; 139: 160–168
  • Mienville J.-M., Vicini S. Pregnenolone sulfate antagonizes GABAA-receptor-mediated currents via a reduction of channel opening frequency. Brain Res. 1989; 489: 190–194
  • Mori K., Winter W. D., Spooner C. E. Comparison of reticular and cochlear multiple unit activity with auditory evoked responses during various stages induced by anesthetic agents. Electroencephalogr. Clin. NeuroPhysiol. 1968; 24: 242–248
  • Morrison C. F., Lee P. N. A comparison of the effects of nicotine and physostigmine on a measure of activity in rat. Psychopharmacologia 1968; 13: 210–221
  • Morrison K. F., Stephenson J. A. The occurrence of tolerance to a central depressant effect of nicotine. Br. J. Pharmacol. 1972; 45: 151–156
  • Murphy N., Lam H., Maidment N. A comparison of morphine-induced locomotor activity and mesolimbic dopamine release in C57BL6, 129Sv, and DBA2 mice. J. Neurochem. 2001; 79: 626–635
  • Murray T. F., Horita A. Phencyclidine-induced stereotyped behavior in rats: Dose response effects and antagonism by neuroleptics. Life Sci. 1979; 24: 2217–2226
  • Nachman M., Larue C., LeMagnen J. The role of olfactory and orosensory factors in the alcohol preference of inbred strains of mice. Physiol. Behav. 1971; 6: 53–59
  • Nichols R. E., Walaszek E. J. Antagonism of vasodepressor effect of ATP by caffeine. Fed. Proc. 1963; 22: 308
  • Nielsen J. A., Shannon N.J., Bero L., Moore K. E. Effects of acute and chronic bupropion on locomotor-activity and dopaminergic-neurons. Pharmacol. Biochem. Behav. 1986; 24: 795–799
  • Nomikos G. G., Damsma G., Wenkstern D., Fibiger H. C. Effects of chronic bupropion on interstitial concentrations of dopamine in rat nucleus-accumbens and striatum. Neuropsychopharmacology 1992; 7: 7–14
  • Oliverio A., Eleftheriou B. E. Motor activity and alcohol: Genetic analysis in the mouse. Physiol. Behav. 1976; 16: 577–581
  • Panksepp J., Normansell L., Cox J. F., Crepeau L. J., Sacks D. S. Psychopharmacology of social play. Ethopharmacology of Agonistic Behaviour in Animals and Humans, B. Olivier, J. Mos, P. F. Brain. Martinus Nijhoff, Dordrecht 1987; 132–144
  • Paulus M. P., Geyer M. A. A temporal and spatial scaling hypothesis for the behavioral effects of psychostimulants. Psychopharmacology 1991; 104: 6–16
  • Pawlak C. R., Schwarting R. K.W. Repeated nicotine treatment in rats with high versus low rearing activity: Analyses of behavioural sensitization and place preference. Psychopharmacology 2005; 178: 440–450
  • Peeke H. V.S., Figler M. H. Modulation of aggressive behavior in fish by alcohol and congeners. Pharmacol. Biochem. Behav. 1981; 14: 79–84
  • Pettijohn T. F. Effects of alcohol and caffeine on wheel running activity in the Mongolian gerbil. Pharmacol. Biochem. Behav. 1979; 10: 339–341
  • Phillips T. J., Huson M., Gwiazdon C., Burkhart-Kasch S., Shen E. Effects of acute and repeated ethanol exposures on the locomotor activity of BXD recombinant inbred mice. Alcohol Clin. Exp. Res. 1995; 19: 269–278
  • Phillis J. W., Wu P. H. The role of adenosine and its nucleotide in central synaptic transmission. Prog. Neurobiol. 1981; 16: 187–239
  • Picciotto M. R., Zoli M., Rimondini R., Lena C., Marubio L. M., Pich E. M., et al. Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 1998; 391: 173–177
  • Pohorecky L. A. Biphasic action of ethanol. Biobehav. Rev. 1977; 1: 231–240
  • Ponomarev I., Crabbe J. C. A novel method to assess initial sensitivity and acute functional tolerance to hypnotic effects of ethanol. J. Pharmacol. Exp. Ther. 2002; 302: 257–263
  • Poschel B. P.H. A simple and specific screen for benzodiazepine-like drugs. Psychopharmacologia 1971; 19: 193–198
  • Pradhan S. N. Effects of nicotine on several schedules of behavior in rats. Arch. Int. Pharmacodyn. 1970; 183: 127–138
  • Randall C. L., Carpenter J. A., Lester D., Friedman H. J. Ethanol-induced mouse strain differences in locomotor activity. Pharmacol. Biochem. Behav. 1975; 3: 533–535
  • Randall L. O., Schallek W., Heise G. A., Keith E. F., Bagdon R. E. The psychosedative properties of methaminodiazepoxide. J. Pharmacol. Exp. Ther. 1960; 129: 163–171
  • Rauhut A. S., Neugebauer N., Dwoskin L. P., Bardo M. T. Effect of bupropion on nicotine self-administration in rats. Psychopharmacology 2003; 169: 1–9
  • Raynes A. E., Ryback R. S. Effect of alcohol and congeners on aggressive response in. Betta splendens. Q. J. Stud. Alcohol 1970; 5: 130–135
  • Read G. W., Cutting W., Furst A. Comparison of excited phases after sedatives and tranquilizers. Psychopharmacologia 1960; 1: 346–350
  • Rezvani A. H., Levin E. D. Adolescent and adult rats respond differently to nicotine and alcohol: motor activity and body temperature. Int. J. Dev. Neurosci. 2004; 22: 349–354
  • Rosecrans J. A. Brain area nicotine levels in male and female rats with difference levels of spontaneous activity. Neuropharmacology 1972; 11: 863–870
  • Rosecrans J. A. Effects of nicotine on behavioral arousal and brain 5 hydroxytryptamine function in female rats selected for differences in activity. Eur. J. Pharmacol. 1971; 14: 29–37
  • Russell M. A.H. Nicotine intake and its regulation. J. Psychosom. Res. 1980; 24: 253–264
  • Sanders B. Sensitivity to low-doses of ethanol and pentobarbital in mice selected for sensitivity to hypnotic doses of ethanol. J. Comp. Physiol. Psychol. 1976; 90: 394–398
  • Sattin A., Rall T. W. Effect of adenosine and adenosine nucleotides on cyclic adenosine 3′,5′-phosphate content of guinea pig cerebral cortex slices. Mol. Pharmacol. 1970; 6: 13–23
  • Schlatter J., Battig K. Differential effects of nicotine and amphetamine on locomotor activity and maze exploration in two rat lines. Psychopharmacology (Berlin) 1979; 64: 155–161
  • Schlesinger K., Bennett E. L., Hebert M. Effects of genotype and prior consumption of alcohol on rates of ethanol-1-1 4C metabolism in mice. Q. J. Stud. Alcohol 1967; 28: 231–235
  • Schneirla T. C. An evolutionary and developmental theory of biphasic processes underlying approach and withdrawal. Nebraska Symposium on Motivation, M. R. Jones. University of Nebraska Press, Lincoln 1959; 1–42
  • Seale T. W., Roderick T. H., Johnson P., Logan L., Rennert O. M., Carney J. M. Complex genetic determinants of susceptibility to methylxanthine-induced locomotor activity changes. Pharmacol. Biochem. Behav. 1986; 24: 1333–1341
  • Seale T. W., Johnson P., Roderick T. H., Carney J. M., Rennert O. M. A single gene difference determines relative susceptibility to caffeine-induced lethality in SWR and CBA inbred mice. Pharmacol. Biochem. Behav. 1985; 23: 275–278
  • Seale T. W., Johnson P., Carney J. M., Rennert O. M. Interstrain variation in acute toxic response to caffeine among inbred mice. Pharmacol. Biochem. Behav. 1984; 20: 567–573
  • Sheppard J. R., Albersheim P., McClearn G.E. Aldehyde dehydrogenase and ethanol preference in mice. J. Biol. Chem. 1970; 245: 2876–2882
  • Sheppard J. R., Albersheim P., McClearn G.E. Enzyme activities and ethanol preference in mice. Biochem. Genet. 1968; 2: 205–232
  • Silveri M. M., Spear L. P. The effects of NMDA and GABA(A) pharmacological manipulations on acute and rapid tolerance to ethanol during ontogeny. Alcohol Clin. Exp. Res. 2004; 28: 884–894
  • Silvette H., Hoff E. C., Larson P. S., Haag H. B. The actions of nicotine on central nervous system functions. Pharmacol. Rev. 1962; 14: 137–173
  • Slemmer J. E., Martin B. R., Damaj M. I. Bupropion is a nicotinic antagonist. J. Pharmacol. Exp. Ther. 2000; 295: 321–327
  • Smellie F. W., Davis C. W., Daly J. W., Wells J. N. Alkylxanthines –inhibition of adenosine-elicited accumulation of cyclic-AMP in brain-slices and of brain phosphodiesterase activity. Life Sci. 1979; 24: 2475–2483
  • Smoothy R., Bowden N. J., Berry M. S. Ethanol and social behaviour in naïve Swiss mice. Aggress. Behav. 1982; 8: 204–207
  • Snyder S. H. Knockouts anxious for new therapy. Nature 1997; 388: 624
  • Snyder S. H., Sklar P. Psychiatric progress. Behavioral and molecular actions of caffeine: Focus on adenosine. J. Psychiat. Res. 1989; 18: 91–106
  • Snyder S. H., Katims J. J., Annau Z., Bruns R. F., Daly J. W. Adenosine receptors and behavioral actions of methylxanthines. Proc. Natl. Acad. Sci. USA 1981; 78: 3260–3264
  • Sparks J. A., Pauly J. R. Effects of continuous oral nicotine administration on brain nicotinic receptors and responsiveness to nicotine in C57BL/6 mice. Psychopharmacology 1999; 141: 145–153
  • Spear L. P., Varlinskaya E. I. Low dose effects in psychopharmacology: Ontogentic considerations. Nonlinearity Biol. Toxicol. Med. 2005; 3: 97–111
  • Sprugel W., Mitznegg P., Heim F. The influence of caffeine and theobromine on locomotive activity and the brain cGMP/cAMP ratio in white mice. Biochem. Pharmacol. 1977; 26: 1723–1724
  • Stino F. K.R. Divergent selection for pentobarbital-induced sleeping time in mice. Pharmacology 1992; 44: 257–259
  • Stino F. K., Samaan S. S., Kolta M. G., Mizinga K. M., Soliman K. F. Divergent selection for pentobarbital-induced sedation times in mice. Pharmacology 1998; 56: 92–100
  • Stohr T., Schulte WEmeling D., Weiner I., Feldon J. Rat strain differences in open-field behavior and the locomotor stimulating and rewarding effects of amphetamine. Pharmacol. Biochem. Behav. 1998; 59: 813–818
  • Stone T. W. Physiological roles for adenosine and adenosine 5′-triphosphate in the nervous system. Neuroscience 1981; 6: 523–555
  • Strombom U. H., Liedman B. Role of dopaminergic neurotransmission in locomotor stimulation by dexamphetamine and ethanol. Psychopharmacology 1982; 78: 271–276
  • Tabakoff B., Kiianmaa K. Does tolerance develop to the activating, as well as the depressant, effects of ethanol?. Pharmacol. Biochem. Behav. 1982; 17: 1073–1076
  • Thithapa A., Maling H. M., Gillette J. R. Effects of caffeine and theophylline on activity of rats in relation to brain xanthine concentrations. Proc. Soc. Exp. Biol. Med. 1972; 139: 582–586
  • Thor D. H., Holloway W. R., Jr. Play soliciting in juvenile male rats: Effects of caffeine, amphetamine and methylphenidate. Pharmacol. Biochem. Behav. 1983; 19: 725–727
  • Van Calker D., Muller M., Hamprecht B. Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 1979; 33: 999–1005
  • VanErp A. M.M., Miczek K. A. Aggressive behavior decreases cortical 5HT in rats: Reversal by ethanol drinking. Soc. Neurosci. Abstr. 1997; 23: 313
  • Varlinskaya E. I., Spear L. P., Spear N. E. Acute effects of ethanol on behavior of adolescent rats: Role of social context. Alcohol. Clin. Exp. Res. 2001; 25: 377–385
  • Vasko M. R., Domino E. F. Tolerance development to the biphasic effects of morphine on locomotor activity and brain acetylcholine in the rat. J. Pharmacol. Exp. Ther. 1978; 207: 848–858
  • Villegier A.-S., Salomon L., Granon S., Changeux J.-P., Belluzzi J. D., Leslie F. M., Tassin J.-P. Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine. Neuropsychopharmacology 2006; 31: 1704–1713
  • Waldeck B. Effect of caffeine on locomotor activity and central catecholamine mechanisms: a study with special reference to drug interactions. Acta Pharmacol. Toxicol. 1975; 36(Suppl. 4)1–23
  • Weerts E. M., Miller L. G., Hood K. E., Miczek K. A. Increased GABAA-dependent chloride uptake in mice selectively bred for low aggressive behavior. Psychopharmacology 1992; 108: 196–204
  • Wieland S., Belluzzi J. D., Stein L., Lan V. C. Comparative behavioral characterization of the neuroactive steroids 3-alpha-OH,5-alpha-pregnan-20-one and 3-alpha-OH,5-beta-pregnan-20-one in rodents. Psychopharmacology 1995; 118: 65–71
  • Winters W. D., Mori K., Spencer C. E., Bauer R. O. The neurophysiology of anesthesia. Anesthesiology 1967; 28: 65–80
  • Wise R. A. Action of drugs of abuse on brain reward systems. Pharmacol. Biochem. Behav. 1980; 12(Suppl.1)213–223
  • Wise R. A., Bozarth M. A. A psychomotor stimulant theory of addiction. Psychol. Rev. 1987; 94: 469–492
  • Wise R. A., Dawson V. Diazepam-induced eating and lever-pressing for food in sated rats. J. Comp. Physiol. Psychol. 1974; 86: 930–941
  • Witkin J., Goldberg S. Effects of cocaine on locomotor activity and schedule-controlled behaviors of inbred rat strains. Pharmacol. Biochem. Behav. 1990; 37: 339–342
  • Zernig G., O'Laughlin I.A., Fibiger H. C. Nicotine and heroin augment cocaine-induced dopamine overflow in nucleus accumbens. Eur. J. Pharmacol. 1997; 337: 1–10

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.