699
Views
28
CrossRef citations to date
0
Altmetric
Review Articles

Cumulative administrations of gadolinium-based contrast agents: risks of accumulation and toxicity of linear vs macrocyclic agents

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 262-279 | Received 01 Oct 2018, Accepted 05 Mar 2019, Published online: 03 Apr 2019

References

  • Aylett BJ. 1985. Chemistry of the elements. Oxford: Butterworth-Heinemann Available from: http://linkinghub.elsevier.com/retrieve/pii/S0277538700841807
  • Azim NH, Subki A, Norhana Z, Yusof B. 2018. Abiotic stresses induce total phenolic, total flavonoid and antioxidant properties in Malaysian indigenous microalgae and cyanobacterium. Malays J Microbiol. 14:25–33.
  • Bae S, Lee HJ, Han K, Park YW, Choi YS, Ahn SS, Kim J, Lee SK. 2017. Gadolinium deposition in the brain: association with various GBCAs using a generalized additive model. Eur Radiol. 27:3353–3361.
  • Baranyai Z, Brücher E, Uggeri F, Maiocchi A, Tóth I, Andrási M, Gáspár A, Zékány L, Aime S. 2015. The role of equilibrium and kinetic properties in the dissociation of Gd[DTPA-bis(methylamide)] (Omniscan) at near to physiological conditions. Chem Eur J. 21:4789–4799.
  • Baranyai Z, Pálinkás Z, Uggeri F, Maiocchi A, Aime S, Brücher E. 2012. Dissociation kinetics of open-chain and macrocyclic gadolinium(III)-aminopolycarboxylate complexes related to magnetic resonance imaging: catalytic effect of endogenous ligands. Chem Eur J. 18:16426–16435.
  • Behzadi AH, Farooq Z, Zhao Y, Shih G, Prince MR. 2018. Dentate nucleus signal intensity decrease on T1-weighted MR images after switching from gadopentate dimeglumine to gadobutrol. Radiology. 287:171398.
  • Bjørnerud A, Vatnehol SAS, Larsson C, Due-Tønnessen P, Hol PK, Groote IR. 2017. Signal enhancement of the dentate nucleus at unenhanced MR imaging after very high cumulative doses of the macrocyclic gadolinium-based contrast agent gadobutrol: an observational study. Radiology. 285:170391.
  • Böhm I, Morelli J, Nairz K, Silva Hasembank Keller P, Heverhagen JT. 2017. Myths and misconceptions concerning contrast media-induced anaphylaxis: a narrative review. Postgrad Med. 129:259–266.
  • Bolles GM, Yazdani M, Stalcup ST, Creeden SG, Collins HR, Nietert PJ, Roberts DR. 2018. Development of high signal intensity within the globus pallidus and dentate nucleus following multiple administrations of gadobenate dimeglumine. Am J Neuroradiol. 39:415–420.
  • Bousquet JC, Saini S, Stark DD, Hahn PF, Nigam M, Wittenberg J, Ferrucci JT. 1988. Gd-DOTA: characterization of a new paramagnetic complex. Radiology. 166:693–698.
  • Boyken J, Frenzel T, Lohrke J, Jost G, Schütz G, Pietsch H. 2019. Impact of treatment with chelating agents depends on the stability of administered GBCAs: a comparative study in rats. Invest Radiol. 54:76–82.
  • Brasch RC, Weinmann HJ, Wesbey GE. 1984. Contrast-enhanced NMR imaging: animal studies using gadolinium DTPA complex. Am J Roentgenol. 142:625–630.
  • Burke LMB, Ramalho M, AlObaidy M, Chang E, Jay M, Semelka RC. 2016. Self-reported gadolinium toxicity: a survey of patients with chronic symptoms. Magn Reson Imaging. 34:1078–1080.
  • Cao Y, Huang DQ, Shih G, Prince MR. 2016. Signal change in the dentate nucleus on T1-weighted MR images after multiple administrations of gadopentetate dimeglumine versus gadobutrol. Am J Roentgenol. 206:414–419.
  • Cao Y, Zhang Y, Shih G, Zhang Y, Bohmart A, Hecht EM, Prince MR. 2016. Effect of renal function on gadolinium-related signal increases on unenhanced T1-weighted brain magnetic resonance imaging. Invest Radiol. 51:677–682.
  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. 1999. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 99:2293–2352.
  • Clement O, Dewachter P, Mouton-Faivre C, Nevoret C, Guilloux L, Bloch Morot E, Katsahian S, Laroche D, Audebert M, Benabes-Jezraoui B, et al. 2018. Immediate hypersensitivity to contrast agents: the French 5-year CIRTACI study. EClin Med. 1:51–61.
  • Conte G, Preda L, Cocorocchio E, Raimondi S, Giannitto C, Minotti M, De Piano F, Petralia G, Ferrucci PF, Bellomi M. 2017. Signal intensity change on unenhanced T1-weighted images in dentate nucleus and globus pallidus after multiple administrations of gadoxetate disodium: an intraindividual comparative study. Eur Radiol. 27:4372–4378.
  • Darrah TH, Prutsman-Pfeiffer JJ, Poreda RJ, Ellen Campbell M, Hauschka PV, Hannigan RE. 2009. Incorporation of excess gadolinium into human bone from medical contrast agents. Metallomics. 1:479–488.
  • Davenport MS. 2018. Choosing the safest gadolinium-based contrast medium for MR imaging: not so simple after all. Radiology. 286:483–485.
  • Dekkers IA, Roos R, van der Molen AJ. 2018. Gadolinium retention after administration of contrast agents based on linear chelators and the recommendations of the European Medicines Agency. Eur Radiol. 28:1579–1584.
  • Eisele P, Alonso A, Szabo K, Ebert A, Ong M, Schoenberg SO, Gass A. 2016. Lack of increased signal intensity in the dentate nucleus after repeated administration of a macrocyclic contrast agent in multiple sclerosis. Medicine. 95:e4624.
  • Eisele P, Szabo K, Ebert A, Radbruch A, Platten M, Schoenberg SO, Gass A. 2019. Diffusion-weighted imaging of the dentate nucleus after repeated application of gadolinium-based contrast agents in multiple sclerosis. Magn Reson Imaging. 58:1–5.
  • Errante Y, Cirimele V, Mallio CA, Di Lazzaro V, Zobel BB, Quattrocchi CC. 2014. Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol. 49:685–690.
  • Fingerhut S, Niehoff AC, Sperling M, Jeibmann A, Paulus W, Niederstadt T, Allkemper T, Heindel W, Holling M, Karst U. 2018. Spatially resolved quantification of gadolinium deposited in the brain of a patient treated with gadolinium-based contrast agents. J Trace Elem Med Biol. 45:125–130.
  • Flood TF, Stence NV, Maloney JA, Mirsky DM. 2017. Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology. 282:222–228.
  • Forslin Y, Shams S, Hashim F, Aspelin P, Bergendal G, Martola J, Fredrikson S, Kristoffersen-Wiberg M, Granberg T. 2017. Retention of gadolinium-based contrast agents in multiple sclerosis: Retrospective analysis of an 18-year longitudinal study. AJNR Am J Neuroradiol. 38:1311–1316.
  • Frenzel T, Apte C, Jost G, Schöckel L, Lohrke J, Pietsch H. 2017. Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats. Invest Radiol. 52:396–404.
  • Frenzel T, Lengsfeld P, Schirmer H, Hütter J, Weinmann HJ. 2008. Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 °C. Invest Radiol. 43:817–828.
  • Fretellier N, Granottier A, Rasschaert M, Grindel A-L, Baudimont F, Robert P, Idée J-M, Corot C. 2019. Does age interfere with gadolinium toxicity and presence in brain and bone tissues? A comparative gadoterate versus gadodiamide study in juvenile and adult rats. Invest Radiol. 54:61–71.
  • Fretellier N, Idée JM, Dencausse A, Karroum O, Guerret S, Poveda N, Jestin G, Factor C, Raynal I, Zamia P, et al. 2011. Comparative in vivo dissociation of Gadolinium Chelates in renally impaired rats: a relaxometry study. Invest Radiol. 46:292–300.
  • Fretellier N, Idée JM, Bruneval P, Guerret S, Daubiné F, Jestin G, Factor C, Poveda N, Dencausse A, Massicot F, et al. 2012. Hyperphosphataemia sensitizes renally impaired rats to the profibrotic effects of gadodiamide. Br J Pharmacol. 165:1151–1162.
  • Gianolio E, Bardini P, Arena F, Stefania R, Di Gregorio E, Iani R, Aime S. 2017. Gadolinium retention in the rat brain: assessment of the amounts of insoluble gadolinium-containing species and intact gadolinium complexes after repeated administration of gadolinium-based contrast agents. Radiology. 285:839–849.
  • Gibby WA, Gibby KA, Gibby WA. 2004. Comparison of Gd DTPA-BMA (Omniscan) versus Gd HP-DO3A (ProHance) retention in human bone tissue by inductively coupled plasma atomic emission spectroscopy. Invest Radiol. 39:138–142.
  • Grobner T. 2006. Erratum: Gadolinium - A specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 21:1745.
  • Grobner T, Prischl FC. 2008. Patient characteristics and risk factors for nephrogenic systemic fibrosis following gadolinium exposure. Semin Dial. 21:135–139.
  • Hao D, Ai T, Goerner F, Hu X, Runge VM, Tweedle M. 2012. MRI contrast agents: basic chemistry and safety. J Magn Reson Imaging. 36:1060–1071.
  • Haylor J, Schroeder J, Wagner B, Nutter F, Jestin G, Idée J-M, Morcos S. 2012. Skin gadolinium following use of MR contrast agents in a rat model of nephrogenic systemic fibrosis. Radiology. 263:107–116.
  • Herazo-Bustos C, Tramontini J C, Mora S JA, Aluja J F, Navas C. 2017. Evaluation of signal intensity in dentate nucleus, pons, globus pallidus and thalamus in patients with multiple sclerosis: assessment of gadolinium retention. Rev Chil Radiol. 23:2–6.
  • Hermann P, Kotek J, Kubícek V, Lukes I. 2008. Gadolinium(III) complexes as MRI contrast agents: ligand design and properties of the complexes. Dalton Trans. 23:3027–3047.
  • Heshmatzadeh Behzadi A, Zhao Y, Farooq Z, Prince MR. 2017. Immediate allergic reactions to gadolinium-based contrast agents: a systematic review and meta-analysis. Radiology. 286:162740.
  • Hinoda T, Fushimi Y, Okada T, Arakawa Y, Liu C, Yamamoto A, Okada T, Yoshida K, Miyamoto S, Togashi K. 2017. Quantitative assessment of gadolinium deposition in dentate nucleus using quantitative susceptibility mapping. J Magn Reson Imaging. 45:1352–1358.
  • Holesta M, Weichet J, Wagnerova M, Lukavsky J, Malikova H. 2018. Gadoxetate disodium, a modern hepatospecific MRI contrast agent: indirect signs for gadolinium deposition in the brain structures with signal intensity increase after intravenous application. Neurol India. 66:1771.
  • Hu HH, Pokorney A, Towbin RB, Miller JH. 2016. Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol. 46:1590–1598.
  • Ichikawa S, Motosugi U, Omiya Y, Onishi H. 2017. Contrast agent-induced high signal intensity in dentate nucleus on unenhanced T1-weighted images comparison of gadodiamide and gadoxetic acid. Invest Radiol. 52:389–395.
  • Idée JM, Fretellier N, Robic C, Corot C. 2014. The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: a critical update. Crit Rev Toxicol. 44:895–913.
  • Idée JM, Port M, Robic C, Medina C, Sabatou M, Corot C. 2009. Role of thermodynamic and kinetic parameters in gadolinium chelate stability. J Magn Reson Imaging. 30:1249–1258.
  • Idee J-M, Gaillard S, Corot C. 2012. Gadolinium-bound contrast agents: no evidence-based data to support a relationship between structure and hypersensitivity reactions. Indian J Dermatol. 57:245.
  • Jaulent P, Hannoun S, Kocevar G, Rollot F, Durand-Dubief F, Vukusic S, Brisset JC, Sappey-Marinier D, Cotton F. 2018. Weekly enhanced T1-weighted MRI with Gadobutrol injections in MS patients: is there a signal intensity increase in the dentate nucleus and the globus pallidus? Eur J Radiol. 105:204–208.
  • Jost G, Frenzel T, Boyken J, Lohrke J, Nischwitz V, Pietsch H. 2019. Long-term excretion of gadolinium-based contrast agents: linear versus macrocyclic agents in an experimental rat model. Radiology. 290:340–348.
  • Jost G, Frenzel T, Lohrke J, Lenhard DC, Naganawa S, Pietsch H. 2017. Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue. Eur Radiol. 27:2877–2885.
  • Jost G, Lenhard DC, Sieber MA, Lohrke J, Frenzel T, Pietsch H. 2016. Signal increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadolinium-based contrast agents. Invest Radiol. 51:83–89.
  • Kahn J, Posch H, Steffen IG, Geisel D, Bauknecht C, Liebig T, Denecke T. 2017. Is there long-term signal intensity increase in the central nervous system on T1-weighted images after mr imaging with the hepatospecific contrast agent gadoxetic acid? A cross-sectional study in 91 patients. Radiology. 282:708–716.
  • Kanda T, Fukusato T, Matsuda M, Toyoda K, Oba H, Kotoku J, Haruyama T, Kitajima K, Furui S. 2015. Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology. 276:228–232.
  • Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. 2014. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 270:834–841.
  • Kanda T, Osawa M, Oba H, Toyoda K, Kotoku J, Haruyama T, Takeshita K, Furui S. 2015. High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology. 275:803–809.
  • Kang KM, Choi SH, Hwang M, Yun TJ, Kim J, Sohn C-H. 2018. T1 shortening in the globus pallidus after multiple administrations of gadobutrol: assessment with a multidynamic multiecho sequence. Radiology. 287:258–266.
  • Kang H, Hii M, Le M, Tam R, Riddehough A, Traboulsee A, Kolind S, Freedman MS, Li DKB. 2018. Gadolinium deposition in deep brain structures: relationship with dose and ionization of linear gadolinium-based contrast agents. AJNR Am J Neuroradiol. 39:1597–1603.
  • Kasper E, Schemuth HP, Horry S, Kinner S. 2018. Changes in signal intensity in the dentate nucleus at unenhanced T1-weighted magnetic resonance imaging depending on class of previously used gadolinium-based contrast agent. Pediatr Radiol. 48:686–693.
  • Khant ZA, Hirai T, Kadota Y, Masuda R, Yano T, Azuma M, Suzuki Y, Tashiro K. 2017. T1 shortening in the cerebral cortex after multiple administrations of gadolinium-based contrast agents. MRMS: Magn Reson Med Sci. 16:84–86.
  • Kinner S, Schubert TB, Bruce RJ, Rebsamen SL, Diamond CA, Reeder SB, Rowley HA. 2018. Deep brain nuclei T1 shortening after gadobenate dimeglumine in children: influence of radiation and chemotherapy. AJNR Am J Neuroradiol. 39:24–30.
  • Kiviniemi A, Gardberg M, Ek P, Frantzén J, Bobacka J, Minn H. 2019. Gadolinium retention in gliomas and adjacent normal brain tissue: association with tumor contrast enhancement and linear/macrocyclic agents. Neuroradiology. 1–10. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30710184
  • Kralik SF, Singhal KK, Frank MS, Ladd LM. 2018. Evaluation of gadolinium deposition in the brain after MR arthrography. AJR Am J Roentgenol. 211(5):1063–1067. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30106613
  • Kromrey M-L, Liedtke KR, Ittermann T, Langner S, Kirsch M, Weitschies W, Kühn J-P. 2017. Intravenous injection of gadobutrol in an epidemiological study group did not lead to a difference in relative signal intensities of certain brain structures after 5 years. Eur Radiol. 27:772–777
  • Langner S, Kromrey M-L, Kuehn J-P, Grothe M, Domin M. 2017. Repeated intravenous administration of gadobutrol does not lead to increased signal intensity on unenhanced T1-weighted images – a voxel-based whole brain analysis. Eur Radiol. 27:3687–3693.
  • Lee JY, Park JE, Kim HS, Kim S-O, Oh JY, Shim WH, Jung SC, Choi CG, Kim SJ. 2017. Up to 52 administrations of macrocyclic ionic MR contrast agent are not associated with intracranial gadolinium deposition: multifactorial analysis in 385 patients. PLoS One. 12:e0183916.
  • Lohrke J, Frenzel T, Endrikat J, Alves FC, Grist TM, Law M, Lee JM, Leiner T, Li KC, Nikolaou K, et al. 2016. 25 Years of contrast-enhanced MRI: developments, current challenges and future perspectives. Adv Ther. 33:1–28.
  • Lord ML, Chettle DR, Gräfe JL, Noseworthy MD, McNeill FE. 2018. Observed deposition of gadolinium in bone using a new noninvasive in vivo biomedical device: results of a small pilot feasibility study. Radiology. 287:96–103
  • Malhotra A, LeSar B, Wu X, Durand D, Das N, Anzai Y, Sanelli P. 2018. Progressive T1 shortening of the dentate nucleus in patients with multiple sclerosis: result of multiple administrations of linear gadolinium contrast agents versus intrinsic disease. AJR Am J Roentgenol. 211(5):1099–1105. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30160975
  • Marie GPO, Pozeg P, Meuli RA, Maeder P, Forget J. 2018. Spatiotemporal pattern of gadodiamide-related T1 hyperintensity increase within the deep brain nuclei. Invest Radiol. 53(12):748–754. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30036232
  • Maximova N, Gregori M, Zennaro F, Sonzogni A, Simeone R, Zanon D. 2016. Hepatic gadolinium deposition and reversibility after contrast agent–enhanced MR imaging of pediatric hematopoietic stem cell transplant recipients. Radiology. 281:418–426.
  • McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Murray DL, Thielen KR, Williamson EE, Eckel LJ. 2015. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 275:772–782.
  • Miller JH, Hu HH, Pokorney A, Cornejo P, Towbin R. 2015. MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations. Pediatrics. 136:e1637–e1640.
  • Moreno J, Vaz NB, Soler JC, Carrasco JL, Podlipnick S. 2018. High signal intensity in the dentate nucleus on unenhanced T1-weighted MR images in melanoma patients receiving macrocyclic gadolinium-based contrast. J Radiol Diagnos Meth. 1:101.
  • Moser FG, Watterson CT, Weiss S, Austin M, Mirocha J, Prasad R, Wang J. 2018. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: comparison between gadobutrol and linear gadolinium-based contrast agents. AJNR Am J Neuroradiol. 39:421–426.
  • Müller A, Jurcoane A, Mädler B, Ditter P, Schild H, Hattingen E. 2017. Brain relaxometry after macrocyclic Gd-based contrast agent. Clin Neuroradiol. 27:459–468.
  • Murata N, Gonzalez-Cuyar LF, Murata K, Fligner C, Dills R, Hippe D, Maravilla KR. 2016. Macrocyclic and other non-group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function. Invest Radiol. 51:447–453.
  • Nehra AK, McDonald RJ, Bluhm AM, Gunderson TM, Murray DL, Jannetto PJ, Kallmes DF, Eckel LJ, McDonald JS. 2018. Accumulation of gadolinium in human cerebrospinal fluid after gadobutrol-enhanced MR imaging: a prospective observational cohort study. Radiology. 288:416–423.
  • Oksendal AN, Hals P-A. 1993. Biodistribution and toxicity of MR imaging contrast media. J Magn Reson Imaging. 3:157–165.
  • Öner AY, Barutcu B, Aykol Ş, Tali ET. 2017. Intrathecal contrast-enhanced magnetic resonance imaging–related brain signal changes. Invest Radiol. 52:195–197.
  • Ozturk K, Nas OF, Soylu E, Hakyemez B. 2018. Signal changes in the dentate nucleus and globus pallidus on unenhanced T1-weighted magnetic resonance images after intrathecal administration of macrocyclic gadolinium contrast agent. Invest Radiol. 53:535–540.
  • Palasz A, Czekaj P. 2000. Toxicological and cytophysiological aspects of lanthanides action. Acta Biochim Pol. 47:1107–1114.
  • Perrotta G, Metens T, Absil J, Lemort M, Manto M. 2017. Absence of clinical cerebellar syndrome after serial injections of more than 20 doses of gadoterate, a macrocyclic GBCA: a monocenter retrospective study. J Neurol.Neurol. 264:2277–2283.
  • Port M, Idée JM, Medina C, Robic C, Sabatou M, Corot C. 2008. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals. 21:469–490.
  • Quattrocchi CC, Mallio CA, Errante Y, Cirimele V, Carideo L, Ax A, Zobel BB. 2015. Gadodiamide and dentate nucleus T1 hyperintensity in patients with meningioma evaluated by multiple follow-up contrast-enhanced magnetic resonance examinations with no systemic interval therapy. Invest Radiol. 50:470–472.
  • Quattrocchi CC, van der Molen AJ. 2017. Gadolinium retention in the body and brain: is it time for an international joint research effort? Radiology. 282:12–16.
  • Radbruch A, Haase R, Kieslich PJ, Weberling LD, Kickingereder P, Wick W, Schlemmer H-P, Bendszus M. 2017. No signal intensity increase in the dentate nucleus on unenhanced T1-weighted MR images after more than 20 serial injections of macrocyclic gadolinium-based contrast agents. Radiology. 282:699–707.
  • Radbruch A, Weberling LD, Kieslich PJ, Eidel O, Burth S, Kickingereder P, Heiland S, Wick W, Schlemmer H-P, Bendszus M. 2015. Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent. Radiology. 275:783–791.
  • Radbruch A, Weberling LD, Kieslich PJ, Hepp J, Kickingereder P, Wick W, Schlemmer H-P, Bendszus M. 2015. High-signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted images. Invest Radiol. 50:805–810.
  • Radbruch A, Weberling LD, Kieslich PJ, Hepp J, Kickingereder P, Wick W, Schlemmer H-P, Bendszus M. 2016. Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and macrocyclic gadolinium-based contrast agents. Invest Radiol. 51:683–690.
  • Ramalho J, Castillo M, AlObaidy M, Nunes RH, Ramalho M, Dale BM, Semelka RC. 2015. high signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents. Radiology. 276:836–844.
  • Ramalho M, Ramalho J. 2017. Gadolinium-based contrast agents: associated adverse reactions. Magn Reson Imaging Clin N Am. 25:755–764.
  • Ramalho J, Ramalho M, AlObaidy M, Nunes RH, Castillo M, Semelka RC. 2016. T1 signal-intensity increase in the dentate nucleus after multiple exposures to gadodiamide: intraindividual comparison between 2 commonly used sequences. Am J Neuroradiol. 37:1427–1431.
  • Ramalho J, Semelka RC, AlObaidy M, Ramalho M, Nunes RH, Castillo M. 2016. Signal intensity change on unenhanced T1-weighted images in dentate nucleus following gadobenate dimeglumine in patients with and without previous multiple administrations of gadodiamide. Eur Radiol. 26:4080–4088.
  • Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. 2016. Gadolinium-based contrast agent accumulation and toxicity: an update. Am J Neuroradiol. 37:1192–1198.
  • Rasschaert M, Emerit A, Fretellier N, Factor C, Robert P, Idée JM, Corot C. 2018. Gadolinium retention, brain T1 hyperintensity, and endogenous metals: a comparative study of macrocyclic versus linear gadolinium chelates in renally sensitized rats. Invest Radiol. 53:328–337.
  • Rasschaert M, Schroeder JA, Wu T-D, Marco S, Emerit A, Siegmund H, Fischer C, Fretellier N, Idée J-M, Corot C, et al. 2018. Multimodal imaging study of gadolinium presence in rat cerebellum: differences between Gd chelates, presence in the virchow-robin space, association with lipofuscin, and hypotheses about distribution pathway. Invest Radiol. 53:518–528.
  • Renz DM, Kümpel S, Böttcher J, Pfeil A, Streitparth F, Waginger M, Reichenbach JR, Teichgräber UK, Mentzel HJ. 2018. Comparison of unenhanced T1-weighted signal intensities within the dentate nucleus and the globus pallidus after serial applications of gadopentetate dimeglumine versus gadobutrol in a pediatric population. Invest Radiol. 53:119–127.
  • Ringe KI, Husarik DB, Sirlin CB, Merkle EM. 2010. Gadoxetate disodium–enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver. Am J Roentgenol. 195:13–28.
  • Robert P, Frenzel T, Factor C, Jost G, Rasschaert M, Schuetz G, Fretellier N, Boyken J, Idée J-M, Pietsch H. 2018. Methodological aspects for preclinical evaluation of gadolinium presence in brain tissue: critical appraisal and suggestions for harmonization - a joint initiative. Invest Radiol. 53:499–517.
  • Robert P, Lehericy S, Grand S, Violas X, Fretellier N, Ideé JM, Ballet S, Corot C. 2015. T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents. Invest Radiol. 50:473–480.
  • Robert P, Violas X, Grand S, Lehericy S, Idée JM, Ballet S, Corot C. 2016. Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats. Invest Radiol. 51:73–82.
  • Roberts DR, Chatterjee AR, Yazdani M, Marebwa B, Brown T, Collins H, Bolles G, Jenrette JM, Nietert PJ, Zhu X. 2016. Pediatric patients demonstrate progressive T1-weighted hyperintensity in the dentate nucleus following multiple doses of gadolinium-based contrast agent. AJNR Am J Neuroradiol. 37:2340–2347.
  • Roberts DR, Holden KR. 2016. Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast. Brain Dev. 38:331–336.
  • Robison RK, Pokorney A, Miller JH. 2018. Evaluation of the effect of switching from a linear to a macrocyclic contrast agent on the T1 -weighted brain signal intensity of a child during the course of 43 contrast-enhanced MRI examinations. J Magn Reson Imaging. 49(2):608–609. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30142238.
  • Rossi Espagnet MC, Bernardi B, Pasquini L, Figà-Talamanca L, Tomà P, Napolitano A. 2017. Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children. Pediatr Radiol. 47:1345–1352.
  • Runge VM. 2001. Allergic reactions to gadolinium chelates. Am J Roentgenol. 177:944–945.
  • Runge VM, Ai T, Hao D, Hu X. 2011. The developmental history of the gadolinium chelates as intravenous contrast media for magnetic resonance. Invest Radiol. 46:807–816.
  • Runge VM, Dickey KM, Williams NM, Peng X. 2002. Local tissue toxicity in response to extravascular extravasation of magnetic resonance contrast media. Invest Radiol. 37:393–398.
  • Runge VM, Stewart RG, Clanton JA, Jones MM, Lukehart CM, Partain CL, James AE. Jr. 1983. Work in progress: potential oral and intravenous paramagnetic NMR contrast agents. Radiology. 147:789–791.
  • Ryu YJ, Choi YH, Cheon JE, Lee WJ, Park S, Park JE, Kim WS, Kim IO. 2018. Pediatric brain: gadolinium deposition in dentate nucleus and globus pallidus on unenhanced T1-weighted images is dependent on the type of contrast agent. Invest Radiol. 53:246–255.
  • Schieda N, Blaichman JI, Costa AF, Glikstein R, Hurrell C, James M, Jabehdar Maralani P, Shabana W, Tang A, Tsampalieros A, et al. 2018. Gadolinium-based contrast agents in kidney disease: comprehensive review and clinical practice guideline issued by the Canadian association of radiologists. Can Assoc Radiol J. 69:136–150.
  • Schlemm L, Chien C, Bellmann-Strobl J, Dörr J, Wuerfel J, Brandt AU, Paul F, Scheel M. 2017. Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients. Mult Scler. 23:963–972.
  • Schneider GK, Stroeder J, Roditi G, Colosimo C, Armstrong P, Martucci M, Buecker A, Raczeck P. 2017. T1 signal measurements in pediatric brain: findings after multiple exposures to gadobenate dimeglumine for imaging of nonneurologic disease. AJNR Am J Neuroradiol. 38:1799–1806.
  • Semelka RC, Ramalho J, Vakharia A, AlObaidy M, Burke LM, Jay M, Ramalho M. 2016. Gadolinium deposition disease: initial description of a disease that has been around for a while. Magn Reson Imaging. 34:1383–1390.
  • Sieber MA, Lengsfeld P, Frenzel T, Golfier S, Schmitt-Willich H, Siegmund F, Walter J, Weinmann H-J, Pietsch H. 2008. Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions. Eur Radiol. 18:2164–2173.
  • Splendiani A, Perri M, Marsecano C, Vellucci V, Michelini G, Barile A, Di Cesare E. 2018. Effects of serial macrocyclic-based contrast materials gadoterate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients. Radiol Med. 123:125–134.
  • Stojanov DA, Aracki-Trenkic A, Vojinovic S, Benedeto-Stojanov D, Ljubisavljevic S. 2016. Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadolinium-based contrast age. Eur Radiol. 26:807–815.
  • Tamrazi B, Liu C-S, Cen SY, Nelson MB, Dhall G, Nelson MD. 2018. Brain irradiation and gadobutrol administration in pediatric patients with brain tumors: effect on MRI brain signal intensity. Radiology. 289:188–194.
  • Tamrazi B, Nguyen B, Liu C-S, Azen CG, Nelson MB, Dhall G, Nelson MD. 2018. Changes in signal intensity of the dentate nucleus and globus pallidus in pediatric patients: impact of brain irradiation and presence of primary brain tumors independent of linear gadolinium-based contrast agent administration. Radiology. 287:452–460.
  • Tanaka M, Nakahara K, Kinoshita M. 2016. Increased signal intensity in the dentate nucleus of patients with multiple sclerosis in comparison with neuromyelitis optica spectrum disorder after multiple doses of gadolinium contrast. Eur Neurol. 75:195–198.
  • Taoka T, Jost G, Frenzel T, Naganawa S, Pietsch H. 2018. Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations. Invest Radiol. 53:529–534.
  • Taylor DM, Leggett RW. 2003. A generic biokinetic model for predicting the behaviour of the lanthanide elements in the human body. Radiat Prot Dosimetry. 105:193–198.
  • Tedeschi E, Palma G, Canna A, Cocozza S, Russo C, Borrelli P, Lanzillo R, Angelini V, Postiglione E, Morra VB, et al. 2016. In vivo dentate nucleus MRI relaxometry correlates with previous administration of Gadolinium-based contrast agents. Eur Radiol. 26:4577–4584.
  • Tibussek D, Rademacher C, Caspers J, Turowski B, Schaper J, Antoch G, Klee D. 2017. Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study. Radiology. 285:223–230.
  • Tweedle MF. 2007. “Stability” of gadolinium chelates. BJR. 80:583–584.
  • Tweedle MF, Wedeking P, Kumar K. 1995. Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats. Invest Radiol. 30:372–380.
  • Vergauwen E, Vanbinst A-M, Brussaard C, Janssens P, De Clerck D, Van Lint M, Houtman AC, Michel O, Keymolen K, Lefevere B, et al. 2018. Central nervous system gadolinium accumulation in patients undergoing periodical contrast MRI screening for hereditary tumor syndromes. Hered Cancer Clin Pract. 16:2.
  • Vidaud C, Bourgeois D, Meyer D. 2012. Bone as target organ for metals: the case of f-elements. Chem Res Toxicol. 25:1161–1175.
  • Wáng Y-X, Schroeder J, Siegmund H, Idée J-M, Fretellier N, Jestin-Mayer G, Factor C, Deng M, Kang W, Morcos SK. 2015. Total gadolinium tissue deposition and skin structural findings following the administration of structurally different gadolinium chelates in healthy and ovariectomized female rats. Quant Imaging Med Surg. 5:534–545.
  • Weberling LD, Kieslich PJ, Kickingereder P, Wick W, Bendszus M, Schlemmer HP, Radbruch A. 2015. Increased signal intensity in the dentate nucleus on unenhanced t1-weighted images after gadobenate dimeglumine administration. Invest Radiol. 50:743–748.
  • Weinmann HJ, Brasch RC, Press WR, Wesbey GE. 1984. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol. 142:619–624.
  • Welk B, McArthur E, Morrow SA, MacDonald P, Hayward J, Leung A, Lum A. 2016. Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA. 316:96–98.
  • White GW, Gibby WA, Tweedle MF. 2006. Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy. Invest Radiol. 41:272–278.
  • Yoo RE, Sohn CH, Kang KM, Yun TJ, Choi SH, Kim JH, Park SW. 2018. Evaluation of gadolinium retention after serial administrations of a macrocyclic gadolinium-based contrast agent (gadobutrol): a single-institution experience with 189 patients. Invest Radiol. 53:20–25.
  • Young JR, Orosz I, Franke MA, Kim HJ, Woodworth D, Ellingson BM, Salamon N, Pope WB. 2018. Gadolinium deposition in the paediatric brain: T1-weighted hyperintensity within the dentate nucleus following repeated gadolinium-based contrast agent administration. Clin Radiol. 73:290–295.
  • Young JR, Qiao J, Orosz I, Salamon N, Franke MA, Kim HJ, Pope WB. 2018. Gadolinium deposition within the paediatric brain: no increased intrinsic T1-weighted signal intensity within the dentate nucleus following the administration of a minimum of four doses of the macrocyclic agent gadobutrol. Eur Radiol. 28(11):4882–4889. Available from: https://www.ncbi.nlm.nih.gov/pubmed/29744642
  • Zhang Y, Cao Y, Shih GL, Hecht EM, Prince MR. 2017. Extent of signal hyperintensity on unenhanced T1-weighted brain MR images after more than 35 administrations of linear gadolinium-based contrast agents. Radiology. 282:516–525.
  • Zhang Z, Nair SA, McMurry TJ. 2005. Gadolinium meets medicinal chemistry: MRI contrast agent development. CMC. 12:751–778.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.