327
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Implementation of a dermal sensitization threshold (DST) concept for risk assessment: structure-based DST and in vitro data-based DST

, , , , &
Pages 51-65 | Received 29 Sep 2021, Accepted 20 Jan 2022, Published online: 13 Apr 2022

References

  • Antignac E, Nohynek GJ, Re T, Clouzeau J, Toutain H. 2011. Safety of botanical ingredients in personal care products/cosmetics. Food Chem Toxicol. 49(2):324–341.
  • Api AM, Basketter D, Bridges J, Cadby P, Ellis G, Gilmour N, Greim H, Griem P, Kern P, Khaiat A, et al. 2020. Updating exposure assessment for skin sensitization quantitative risk assessment for fragrance materials. Regul Toxicol Pharmacol. 118:104805
  • Api AM, Basketter DA, Cadby PA, Cano MF, Ellis G, Frank Gerberick G, Griem P, McNamee PM, Ryan CA, Safford R. 2008. Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients. Regul Toxicol Pharmacol. 52(1):3–23.
  • Api AM, Basketter D, Lalko J. 2015. Correlation between experimental human and murine skin sensitization induction thresholds. Cutan Ocul Toxicol. 34(4):298–302.
  • Api AM, Vey M. 2008. Implementation of the dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients. Regul Toxicol Pharmacol. 52(1):53–61.
  • Aptula AO, Roberts DW. 2006. Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity. Chem Res Toxicol. 19(8):1097–1105.
  • Basketter D, Safford B. 2016. Skin sensitization quantitative risk assessment: a review of underlying assumptions. Regul Toxicol Pharmacol. 74:105–116.
  • Cramer GM, Ford RA, Hall RL. 1976. Estimation of toxic hazard–a decision tree approach. Food Cosmet Toxicol. 16(3):255–276.
  • Felter SP, Ryan CA, Basketter DA, Gilmour NJ, Fran. Gerberick G. 2003. Application of the risk assessment paradigm to the induction of allergic contact dermatitis. Regul Toxicol Pharm. 37(1):1–10.
  • Frawley JP. 1967. Scientific evidence and common sense as a basis for food-packaging regulations. Food Cosmet Toxicol. 5:293–308.
  • Friedmann PS. 2007. The relationships between exposure dose and response in induction and elicitation of contact hypersensitivity in humans. Br J Dermatol. 157(6):1093–1102.
  • Gautier F, Tourneix F, Assaf Vandecasteele H, van Vliet E, Bury D, Alépée N. 2020. Read-across can increase confidence in the next generation risk assessment for skin sensitisation: a case study with resorcinol. Regul Toxicol Pharmacol. 117:104755
  • Gerberick GF, Robinson MK, Felter SP, White IR, Basketter DA. 2001. Understanding fragrance allergy using an exposure-based risk assessment approach. Contact Dermatitis. 45(6):333–340.
  • Gerberick GF, Ryan CA, Kern PS, Schlatter H, Dearman RJ, Kimber I, Patlewicz GY, Basketter DA. 2005. Compilation of historical local lymph node data for evaluation of skin sensitization alternative methods. Dermatitis. 16(4):157–202.
  • Giménez-Arnau E. 2019. Chemical compounds responsible for skin allergy to complex mixtures: how to identify them? Cosmetics. 6(4):71.
  • Golden E, Macmillan DS, Dameron G, Kern P, Hartung T, Maertens A. 2021. Evaluation of the global performance of eight in silico skin sensitization models using human data. ALTEX - Alternatives to animal experimentation. 38(1):33–48.
  • Hoffmann S, Kleinstreuer N, Alépée N, Allen D, Api AM, Ashikaga T, Clouet E, Cluzel M, Desprez B, Gellatly N, et al. 2018. Non-animal methods to predict skin sensitization (I): the cosmetics Europe database. Crit Rev Toxicol. 48(5):344–358.
  • Jaworska JS, Natsch A, Ryan C, Strickland J, Ashikaga T, Miyazawa M. Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy. Arch Toxicol. 2015 Dec;89(12):2355–2383.
  • Keller D, Krauledat M, Scheel J. Feasibility study to support a threshold of sensitization concern concept in risk assessment based on human data. Arch Toxicol. 2009;83(12):1049–1060.
  • Kern PS, Gerberick GF, Ryan CA, Kimber I, Aptula A, Basketter DA. 2010. Local lymph node data for the evaluation of skin sensitization alternatives: a second compilation. Dermatitis. 21(1):8–32.
  • Kleinstreuer NC, Hoffmann S, Alépée N, Allen D, Ashikaga T, Casey W, Clouet E, Cluzel M, Desprez B, Gellatly N, et al. 2018. Non-animal methods to predict skin sensitization (II): an assessment of defined approaches. Crit Rev Toxicol. 48(5):359–374.
  • Koster S, Boobis AR, Cubberley R, Hollnagel HM, Richling E, Wildemann T, Würtzen G, Galli CL. 2011. Application of the TTC concept to unknown substances found in analysis of foods. Food Chem Toxicol. 49(8):1643–1660.
  • Kroes R, Renwick AG, Cheeseman M, Kleiner J, Mangelsdorf I, Piersma A, Schilter B, Schlatter J, Van Schothorst F, Vos JG, et al. 2004. Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem Toxicol. 42(1):65–83.
  • Lang M, Giménez-Arnau E, Lepoittevin JP. 2017. Is it possible to assess the allergenicity of mixtures based on in chemico methods? Preliminary results on common fragrance aldehydes. Flavour Fragr J. 32(1):63–71.
  • Martin SF. 2015. Immunological mechanisms in allergic contact dermatitis. Curr Opin Allergy Clin Immunol. 15(2):124–130.
  • Munro IC, Ford RA, Kennepohl E, Sprenger JG. 1996. Correlation of structural class with no-observed-effect levels: a proposal for establishing a threshold of concern. Food Chem Toxicol. 34(9):829–867.
  • Natsch A, Emter R. 2008. Skin sensitizers induce antioxidant response element dependent genes: application to the in vitro testing of the sensitization potential of chemicals. Toxicol Sci. 102(1):110–119.
  • Natsch A, Emter R, Gfeller H, Haupt T, Ellis G. 2015. Predicting skin sensitizer potency based on in vitro data from keratinosens and kinetic peptide binding: global versus domain-based assessment. Toxicol Sci. 143(2):319–332.
  • Natsch A, Emter R, Haupt T, Elli G. 2018. Deriving a no expected sensitization induction level for fragrance ingredients without animal testing: an integrated approach applied to specific case studies. Toxicol Sci. 165(1):170–185.
  • NICEATM LLNA database. n.d. https://ntp.niehs.nih.gov/whatwestudy/niceatm/test-method-evaluations/immunotoxicity/llna/index.html#NICEATM-LLNA-Database.
  • Nishijo T, Api AM, Gerberick GF, Miyazawa M, Roberts DW, Safford RJ, Sakaguchi H. 2020. Application of the dermal sensitization threshold concept to chemicals classified as high potency category for skin sensitization assessment of ingredients for consumer products. Regul Toxicol Pharmacol. 117(July):104732
  • Nishijo T, Miyazawa M, Saito K, Otsubo Y, Mizumachi H, Sakaguchi H. 2019a. Sensitivity of KeratinoSensTM and H-CLAT for detecting minute amounts of sensitizers to evaluate botanical extract. J Toxicol Sci. 44(1):13–21.
  • Nishijo T, Miyazawa M, Saito K, Otsubo Y, Mizumachi H, Sakaguchi H. 2019b. The dermal sensitization threshold (DST) approach for mixtures evaluated as negative in in vitro test methods; mixture DST. J Toxicol Sci. 44(1):23–34.
  • Nukada Y, Ashikaga T, Miyazawa M, Hirota M, Sakaguchi H, Sasa H, Nishiyama N. 2012. Toxicology in vitro prediction of skin sensitization potency of chemicals by human cell line activation test (h-CLAT) and an attempt at classifying skin sensitization potency. Toxicol In Vitro. 26(7):1150–1160.
  • OECD QSAR Toolbox 4.2. n.d. Available at: www.qsartoolbox.org.
  • OECD. 1992. OECD guidelines for the testing of chemicals. OECD. Test no. 406: skin sensitisation. Paris: OECD Publishing.
  • OECD. 2010. OECD guidelines for the testing of chemicals. Test no. 429: skin sensitisation. Local lymph node assay. Paris: OECD Publishing.
  • OECD. 2012. OECD series on testing and assessment, the adverse outcome pathway for skin sensitization initiated by covalent binding to proteins, part 1: scientific evidence; part 2: use of the AOP to develop chemical categories and integrated assessment and testing A. Paris: OECD Publishing.
  • OECD. 2018a. OECD guidelines for the testing of chemicals. Test no. 442D: ARE-Nrf2 luciferase test method. OECD. Paris: OECD Publishing.
  • OECD. 2018b. OECD guidelines for the testing of chemicals. Test no. 442E: in vitro skin sensitisation assays addressing the key event on activation of dendritic cells on the adverse outcome pathway for skin sensitisation. Paris: OECD Publishing.
  • OECD. 2019. OECD guidelines for the testing of chemicals. Test no. 442C; chemico skin sensitisation: assays addressing the adverse outcome pathway key event on covalent binding to proteins. Paris: OECD Publishing.
  • Otsubo Y, Nishijo T, Miyazawa M, Saito K, Mizumachi H, Sakaguchi H. 2017. Binary Test Battery with KeratinoSensTM and H-CLAT as part of a bottom-up approach for skin sensitization hazard prediction. Regul Toxicol Pharm. 88:118–124.
  • Roberts DW, Api AM, Safford RJ, Lalko JF. 2015. Principles for identification of high potency category chemicals for which the dermal sensitisation threshold (DST) approach should not be applied. Regul Toxicol Pharmacol. 72(3):683–693.
  • Safford RJ. 2008. The dermal sensitisation threshold-a TTC approach for allergic contact dermatitis. Regul Toxicol Pharmacol. 51(2):195–200.
  • Safford RJ, Aptula AO, Gilmour N. 2011. Refinement of the dermal sensitisation threshold (DST) approach using a larger dataset and incorporating mechanistic chemistry domains. Regul Toxicol Pharmacol. 60(2):218–224.
  • Safford RJ, Marie A, Roberts DW, Lalko JF. 2015. Extension of the dermal sensitisation threshold (DST) approach to incorporate chemicals classified as reactive. Regul Toxicol Pharmacol. 72(3):694–701.
  • Wilm A, Kühnl J, Kirchmair J. 2018. Computational approaches for skin sensitization prediction. Crit Rev Toxicol. 48(9):738–760.
  • Yamamoto Y, Fujita M, Wanibuchi S, Katsuoka Y, Ono A, Kasahara T. 2019. Expanding the applicability of the amino acid derivative reactivity assay: determining a weight for preparation of test chemical solutions that yield a predictive capacity identical to the conventional method using molar concentration and demonstrating the capacity to detect sensitizers in liquid mixtures. J Pharmacol Toxicol Methods. 97(February):67–79.
  • Zhu H, Bouhifd M, Donley E, Egnash L, Kleinstreuer N, Dinant Kroese E, Liu Z, Luechtefeld T, Palmer J, Pamies D, et al. 2016. Supporting read-across using biological data. Altex. 33(2):167–182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.