2,153
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Evaluation of the human hazard of the liver and lung tumors in mice treated with permethrin based on mode of action

ORCID Icon, & ORCID Icon
Pages 1-31 | Received 27 Nov 2021, Accepted 25 Jan 2022, Published online: 11 Mar 2022

References

  • Ahmad S, Ahmad A. 2017. Chapter 6 – epithelial regeneration and lung stem cells. In: Sidhaye VK, Koval M, editors. Lung epithelial biology in the pathogenesis of pulmonary disease. Boston (MA): Academic Press; p. 91–102.
  • Andersen ME, Preston RJ, Maier A, Willis AM, Patterson J. 2014. Dose-response approaches for nuclear receptor-mediated modes of action for liver carcinogenicity: results of a workshop. Crit Rev Toxicol. 44(1):50–63.
  • Baldrick P, Reeve L. 2007. Carcinogenicity evaluation: comparison of tumor data from dual control groups in the CD-1 mouse. Toxicol Pathol. 35(4):562–569.
  • Barrueco C, Herrera A, Caballo C, de la Pena E. 1992. Cytogenetic effects of permethrin in cultured human lymphocytes. Mutagenesis. 7(6):433–437.
  • Barrueco C, Herrera A, Caballo C, de la Pena E. 1994. Induction of structural chromosome aberrations in human lymphocyte cultures and CHO cells by permethrin. Teratog Carcinog Mutagen. 14(1):31–38.
  • Barton S, Robinson S, Martin T. 2000. Permethrin technical 100 week carcinogenicity/reversibility study in mice with administration by the diet: Lab Project Number: 452695: A954264. Unpublished study prepared by Inveresk Research.
  • Boffetta P, Desai V. 2018. Exposure to permethrin and cancer risk: a systematic review. Crit Rev Toxicol. 48(6):433–442.
  • Bonovas S, Nikolopoulos GK, Bagos PG. 2012. Use of fibrates and cancer risk: a systematic review and meta-analysis of 17 long-term randomized placebo-controlled trials. PLOS One. 7(9):e45259.
  • Boobis AR, Cohen SM, Dellarco V, McGregor D, Meek ME, Vickers C, Willcocks D, Farland W. 2006. IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol. 36(10):781–792.
  • Boobis AR, Doe JE, Heinrich-Hirsch B, Meek ME, Munn S, Ruchirawat M, Schlatter J, Seed J, Vickers C. 2008. IPCS framework for analyzing the relevance of a noncancer mode of action for humans. Crit Rev Toxicol. 38(2):87–96.
  • Born SL, Fix AS, Caudill D, Lehman-McKeeman LD. 1998. Selective Clara cell Injury in mouse lung following acute administration of coumarin. Toxicol Appl Pharmacol. 151(1):45–56.
  • Born SL, Fix AS, Caudill D, Lehman-McKeeman LD. 1999. Development of tolerance to Clara cell necrosis with repeat administration of coumarin. Toxicol Sci. 51(2):300–309.
  • Buckpitt A, Chang AM, Weir A, Van Winkle L, Duan X, Philpot R, Plopper C. 1995. Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters. Mol Pharmacol. 47(1):74–81.
  • Cal.EPA. 1994. Permethrin (permethrin tick repellent), risk characterization document, medical toxicology and worker health and safety branches. Sacramento (CA): Department of Pesticide Regulation, California Environmental Protection Agency; [accessed 2021 Nov 25]. https://www.cdpr.ca.gov/docs/risk/rcd/permet_s3.pdf
  • Carlson GP. 2008. Critical appraisal of the expression of cytochrome P450 enzymes in human lung and evaluation of the possibility that such expression provides evidence of potential styrene tumorigenicity in humans. Toxicology. 254(1–2):1–10.
  • Carthew P, Edwards RE, Nolan BM. 1998a. The quantitative distinction of hyperplasia from hypertrophy in hepatomegaly induced in the rat liver by phenobarbital. Toxicol Sci. 44(1):46–51.
  • Carthew P, Edwards RE, Nolan BM. 1998b. New approaches to the quantitation of hypertrophy and hyperplasia in hepatomegaly. Toxicol Lett. 102–103:411–415.
  • Cattley RC, DeLuca J, Elcombe C, Fenner-Crisp P, Lake BG, Marsman DS, Pastoor TA, Popp JA, Robinson DE, Schwetz B, et al. 1998. Do peroxisome proliferating compounds pose a hepatocarcinogenic hazard to humans? Regul Toxicol Pharmacol. 27(1 Pt 2):47–60.
  • Cheung C, Akiyama TE, Ward JM, Nicol CJ, Feigenbaum L, Vinson C, Gonzalez FJ. 2004. Diminished hepatocellular proliferation in mice humanized for the nuclear receptor peroxisome proliferator-activated receptor alpha. Cancer Res. 64(11):3849–3854.
  • Cohen SM, Meek ME, Klaunig JE, Patton DE, Fenner-Crisp PA. 2003. The human relevance of information on carcinogenic modes of action: overview. Crit Rev Toxicol. 33(6):581–589.
  • Cohen SM, Klaunig J, Meek ME, Hill RN, Pastoor T, Lehman-McKeeman L, Bucher J, Longfellow DG, Seed J, Dellarco V, et al. 2004. Evaluating the human relevance of chemically induced animal tumors. Toxicol Sci. 78(2):181–186.
  • Cohen SM. 2010. Evaluation of possible carcinogenic risk to humans based on liver tumors in rodent assays: the two-year bioassay is no longer necessary. Toxicol Pathol. 38(3):487–501.
  • Cohen SM, Arnold LL. 2011. Chemical carcinogenesis. Toxicol Sci. 120(Supplement 1):S76–S92.
  • Cohen SM, Zhongyu Y, Bus JS. 2020. Relevance of mouse lung tumors to human risk assessment. J Toxicol Environ Health B Crit Rev. 23(5):214–241.
  • Corton JC, Cunningham ML, Hummer BT, Lau C, Meek B, Peters JM, Popp JA, Rhomberg L, Seed J, Klaunig JE. 2014. Mode of action framework analysis for receptor-mediated toxicity: the peroxisome proliferator-activated receptor alpha (PPARα) as a case study. Crit Rev Toxicol. 44(1):1–49.
  • Corton JC, Peters JM, Klaunig JE. 2018. The PPARα-dependent rodent liver tumor response is not relevant to humans: addressing misconceptions. Arch Toxicol. 92(1):83–119.
  • Cruzan G, Bus J, Banton M, Gingell R, Carlson G. 2009. Mouse specific lung tumors from CYP2F2-mediated cytotoxic metabolism: an endpoint/toxic response where data from multiple chemicals converge to support a mode of action. Regul Toxicol Pharmacol. 55(2):205–218.
  • Cruzan G, Bus JS, Andersen ME, Carlson GP, Banton MI, Sarang SS, Waites R. 2018. Based on an analysis of mode of action, styrene-induced mouse lung tumors are not a human cancer concern. Regul Toxicol Pharmacol. 95:17–28.
  • de la Rosa Rodriguez MA, Sugahara G, Hooiveld G, Ishida Y, Tateno C, Kersten S. 2018. The whole transcriptome effects of the PPARα agonist fenofibrate on livers of hepatocyte humanized mice. BMC Genomics. 19(1):443.
  • Doull J, Cattley R, Elcombe C, Lake BG, Swenberg J, Wilkinson C, Williams G, van Gemert M. 1999. A cancer risk assessment of di(2-ethylhexyl)phthalate: application of the new U.S. EPA risk assessment guidelines. Regul Toxicol Pharmacol. 29(3):327–357.
  • ECHA. 2017. Guidance on the application of the CLP criteria, Guidance to regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures, version 5.0; [accessed 2021 Nov 25]. https://echa.europa.eu/documents/10162/23036412/clp_en.pdf/58b5dc6d-ac2a-4910-9702-e9e1f5051cc5
  • Elcombe CR, Peffer RC, Wolf DC, Bailey J, Bars R, Bell D, Cattley RC, Ferguson SS, Geter D, Goetz A, et al. 2014. Mode of action and human relevance analysis for nuclear receptor-mediated liver toxicity: a case study with phenobarbital as a model constitutive androstane receptor (CAR) activator. Crit Rev Toxicol. 44(1):64–82.
  • Ellison T. 1979. Analysis of physical observations, twenty-four month oral carcinogenicity study of FMC 33297 in mice. East Millstone, NJ: Bio/dynamics, Inc. Bio/dynamics Study Number: 76-1695, FMC Study Number: ACT 115.35, October 9, 1979. Unpublished.
  • Farber E, Sarma DS. 1987. Hepatocarcinogenesis: a dynamic cellular perspective. Lab Invest. 56(1):4–22.
  • Farmahin R, Williams A, Kuo B, Chepelev NL, Thomas RS, Barton-Maclaren TS, Curran IH, Nong A, Wade MG, Yauk CL. 2017. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Arch Toxicol. 91(5):2045–2065.
  • Foreman JE, Koga T, Kosyk O, Kang BH, Zhu X, Cohen SM, Billy LJ, Sharma AK, Amin S, Gonzalez FJ, et al. 2021a. Diminished hepatocarcinogenesis by a potent, high-affinity human PPARα agonist in PPARA-humanized mice. Toxicol Sci. 183(1):70–80.
  • Foreman JE, Koga T, Kosyk O, Kang BH, Zhu X, Cohen SM, Billy LJ, Sharma AK, Amin S, Gonzalez FJ, et al. 2021b. Species differences between mouse and human PPARα in modulating the hepatocarcinogenic effects of perinatal exposure to a high-affinity human PPARα agonist in mice. Toxicol Sci. 183(1):81–92.
  • Gervasi PG, Longo V, Naldi F, Panattoni G, Ursino F. 1991. Xenobiotic-metabolizing enzymes in human respiratory nasal mucosa. Biochem Pharmacol. 41(2):177–184.
  • Giknis MLA, Clifford CB. 2005. Spontaneous neoplastic lesions in the Crl:CD-1(ICR) mouse in control groups from 18 month to 2 year studies. Charles River Laboratories; [accessed 2021 Nov 25]. https://www.criver.com/sites/default/files/resources/SpontaneousNeoplasticLesionsintheCrlCD-1ICRMouseinControlGroupsfrom18Monthto2YearStudies%E2%80%94March2005.pdf
  • Gold LS, Manley NB, Slone TH, Ward JM. 2001. Compendium of chemical carcinogens by target organ: results of chronic bioassays in rats, mice, hamsters, dogs, and monkeys. Toxicol Pathol. 29(6):639–652.
  • Gonzalez FJ, Shah YM. 2008. PPARalpha: mechanism of species differences and hepatocarcinogenesis of peroxisome proliferators. Toxicology. 246(1):2–8.
  • Green T, Mainwaring GW, Foster JR. 1997. Trichloroethylene-induced mouse lung tumors: studies of the mode of action and comparisons between species. Fundam Appl Toxicol. 37(2):125–130.
  • Green T, Lee R, Toghill A, Meadowcroft S, Lund V, Foster J. 2001. The toxicity of styrene to the nasal epithelium of mice and rats: studies on the mode of action and relevance to humans. Chem Biol Interact. 137(2):185–202.
  • Green T, Toghill A, Foster JR. 2001. The role of cytochromes P-450 in styrene induced pulmonary toxicity and carcinogenicity. Toxicology. 169(2):107–117.
  • Hahn FF, Gigliotti A, Hutt JA. 2007. Comparative oncology of lung tumors. Toxicol Pathol. 35(1):130–135.
  • Harada T, Maronpot RR, Morris RW, Boorman GA. 1989. Observations on altered hepatocellular foci in National Toxicology Program two-year carcinogenicity studies in rats. Toxicol Pathol. 17(4 Pt 1):690–708.
  • Harada T, Enomoto A, Boorman GA, Maronpot RR. 1999. Liver and gallbladder. In: Maronpot RR, Boorman GA, Gaul BW, editors. Pathology of the mouse: reference and atlas. 1st ed. St. Louis (MO): Cache River Press; p. 119–183.
  • Haseman JK. 1983. A reexamination of false-positive rates for carcinogenesis studies. Fundam Appl Toxicol. 3(4):334–339.
  • Hays T, Rusyn I, Burns AM, Kennett MJ, Ward JM, Gonzalez FJ, Peters JM. 2005. Role of peroxisome proliferator-activated receptor-alpha (PPARalpha) in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis. 26(1):219–227.
  • Heder AF, Hirsch-Ernst KI, Bauer D, Kahl GF, Desel H. 2001. Induction of cytochrome P450 2B1 by pyrethroids in primary rat hepatocyte cultures. Biochem Pharmacol. 62(1):71–71.
  • Heusinkveld H, Braakhuis H, Gommans R, Botham P, Corvaro M, van der Laan JW, Lewis D, Madia F, Manou I, Schorsch F, et al. 2020. Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals. Crit Rev Toxicol. 50(9):725–739.
  • Holsapple MP, Pitot HC, Cohen SM, Cohen SH, Boobis AR, Klaunig JE, Pastoor T, Dellarco VL, Dragan YP. 2006. Mode of action in relevance of rodent liver tumors to human cancer risk. Toxicol Sci. 89(1):51–56.
  • Huff J, Cirvello J, Haseman J, Bucher J. 1991. Chemicals associated with site-specific neoplasia in 1394 long-term carcinogenesis experiments in laboratory rodents. Environ Health Perspect. 93:247–270.
  • IARC. 1987. IARC Monographs on the evaluation of the carcinogenic risks to humansIs. Vol. 1 to 42. Supplement 7, Isonicotinic acid hydrazide (isoniazid). Lyon: IARC Press; p. 227–229; [accessed 2021 Nov 25]. https://monographs.iarc.who.int/wp-content/uploads/2018/06/Suppl7.pdf
  • IARC. 1996a. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 66. Clofibrate. Lyon: IARC Press; p. 391–426; [accessed 2021 Nov 25]. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Pharmaceutical-Drugs-1996
  • IARC. 1996b. IARC Monographs on the evaluation of carcinogenic risks to humans. Vol. 66. Gemfibrozil. Lyon: IARC Press; p. 427–444; [accessed 2021 Nov 25]. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Pharmaceutical-Drugs-1996
  • Ishmael J, Lithfield MH. 1988. Chronic toxicity and carcinogenic evaluation of permethrin in rats and mice. Fundam Appl Toxicol. 11(2):308–322.
  • JMPR. 1999. Permethrin, toxicological evaluations, pesticide residues in food. Joint meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group; [accessed 2021 Nov 25]. https://inchem.org/documents/jmpr/jmpmono/v99pr07.htm
  • Kitamura H, Inayama Y, Ito T, Yabana M, Piegorsch WW, Kanisawa M. 1987. Morphologic alteration of mouse Clara cells induced by glycerol: ultrastructural and morphometric studies. Exp Lung Res. 12(4):281–302.
  • Klaunig JE, Babich MA, Baetcke KP, Cook JC, Corton JC, David RM, DeLuca JG, Lai DY, McKee RH, Peters JM, et al. 2003. PPARalpha agonist-induced rodent tumors: modes of action and human relevance. Crit Rev Toxicol. 33(6):655–780.
  • Kondo M, Miyata K, Nagahori H, Sumida K, Osimitz TG, Cohen SM, Lake BG, Yamada T. 2019. Involvement of peroxisome proliferator-activated receptor-alpha in liver tumor production by permethrin in the female mouse. Toxicol Sci. 168(2):572–696.
  • Kondo M, Kikumoto H, Osimitz TG, Cohen SM, Lake BG, Yamada T. 2020. An evaluation of the human relevance of the liver tumors observed in female mice treated with permethrin based on mode of action. Toxicol Sci. 175(1):50–63.
  • Kunimatsu T, Yamada T, Ose K, Sunami O, Kamita Y, Okuno Y, Seki T, Nakatsuka I. 2002. Lack of (anti-) androgenic or estrogenic effects of three pyrethroids (esfenvalerate, fenvalerate, and permethrin) in the Hershberger and uterotrophic assays. Regul Toxicol Pharmacol. 35(2 Pt 1):227–237.
  • Lake BG. 2009. Species differences in the hepatic effects of inducers of CYP2B and CYP4A subfamily forms: relationship to rodent liver tumour formation. Xenobiotica. 39(8):582–596.
  • Lake BG. 2018. Human relevance of rodent liver tumour formation by constitutive androstane receptor (CAR) activators. Toxicol Res (Camb). 7(4):697–717.
  • Laskar AA, Younus H. 2019. Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab Rev. 51(1):42–64.
  • Lazarow PB, De Duve C. 1976. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci USA. 73(6):2043–2046.
  • Lee S, Pineau T, Drago J, Lee E, Owens J, Kroetz D, Fernandez-Salguero P, Westphal H, Gonzalez F. 1995. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol. 15(6):3012–3022.
  • Lewis DFV, Ito Y, Lake BG. 2009. Molecular modelling of CYP2F substrates: comparison of naphthalene metabolism by human, rat and mouse CYP2F subfamily enzymes. Drug Metabol Drug Interact. 24(2–4):229–257.
  • Lewis JL, Nikula KJ, Novak R, Dahl AR. 1994. Comparative localization of carboxylesterase in F344 rat, beagle dog, and human nasal tissue. Anat Rec. 239(1):55–64.
  • Lin KK, Ali MW. 1994. Statistical review and evaluation of animal tumorigenecity studies. In: Buncher CR, Tsay JY, editors. Statistics in the pharmacutical industry. 2nd ed. New York (NY): Marcel Dekker, Inc.; p. 19–57.
  • Lumsden AB, McLean A, Lamb D. 1984. Goblet and Clara cells of human distal airways: evidence for smoking induced changes in their numbers. Thorax. 39(11):844–849.
  • Madan A, DeHaan R, Mudra D, Carroll K, LeCluyse E, Parkinson A. 1999. Effect of cryopreservation on cytochrome P-450 enzyme induction in cultured rat hepatocytes. Drug Metab Dispos. 27(3):327–335.
  • Manenti G, Galbiati F, Noci S, Dragani TA. 2003. Outbred CD-1 mice carry the susceptibility allele at the pulmonary adenoma susceptibility 1 (Pas1) locus. Carcinogenesis. 24(6):1143–1148.
  • Maronpot RR, Haseman JK, Boorman GA, Eustis SE, Rao GN, Huff JE. 1987. Liver lesions in B6C3F1 mice: the National Toxicology Program, experience and position. Arch Toxicol Suppl. 10:10–26.
  • Maronpot RR. 2009. Biological basis of differential susceptibility to hepatocarcinogenesis among mouse strains. J Toxicol Pathol. 22(1):11–33.
  • Maronpot RR, Yoshizawa K, Nyska A, Harada T, Flake G, Mueller G, Singh B, Ward JM. 2010. Hepatic enzyme induction: histopathology. Toxicol Pathol. 38(5):776–795.
  • Matsuyama R, Kitamoto S, Tomigahara Y. 2018. Lack of genotoxic potential of permethrin in mice evaluated by the comet assay and micronucleus test. Toxicol Environ Chem. 100(1):92–102.
  • Mattes PM, Mattes WB. 1992. alpha-Naphthyl butyrate carboxylesterase activity in human and rat nasal tissue. Toxicol Appl Pharmacol. 114(1):71–76.
  • McDowell EM, Barrett LA, Glavin F, Harris CC, Trump BF. 1978. The respiratory epithelium. I. Human bronchus. J Natl Cancer Inst. 61(2):539–549.
  • McGregor D, Boobis A, Binaglia M, Botham P, Hoffstadt L, Hubbard S, Petry T, Riley A, Schwartz D, Hennes C. 2010. Guidance for the classification of carcinogens under the globally harmonised system of classification and labelling of chemicals (GHS). Crit Rev Toxicol. 40(3):245–285.
  • McMullen PD, Bhattacharya S, Woods CG, Pendse SN, McBride MT, Soldatow VY, Deisenroth C, LeCluyse EL, Clewell RA, Andersen ME. 2020. Identifying qualitative differences in PPARα signaling networks in human and rat hepatocytes and their significance for next generation chemical risk assessment methods. Toxicol In Vitro. 64:104463.
  • Meek ME, Bucher JR, Cohen SM, Dellarco V, Hill RN, Lehman-McKeeman LD, Longfellow DG, Pastoor T, Seed J, Patton DE. 2003. A framework for human relevance analysis of information on carcinogenic modes of action. Crit Rev Toxicol. 33(6):591–653.
  • Meek ME, Boobis A, Cote I, Dellarco V, Fotakis G, Munn S, Seed J, Vickers C. 2014. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J Appl Toxicol. 34(1):1–18.
  • Meek ME, Palermo CM, Bachman AN, North CM, Jeffrey Lewis R. 2014. Mode of action human relevance (species concordance) framework: Evolution of the Bradford Hill considerations and comparative analysis of weight of evidence. J Appl Toxicol. 34(6):595–606.
  • Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA. 2012. Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med. 52(4):735–746.
  • Nikitin AY, Alcaraz A, Anver MR, Bronson RT, Cardiff RD, Dixon D, Fraire AE, Gabrielson EW, Gunning WT, Haines DC, et al. 2004. Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium. Cancer Res. 64(7):2307–2316.
  • OECD. 2012. Guidance document 116 on the Conduct and design of chronic toxicity and carcinogenicity studies, supporting test guidelines 451, 452 and 453. 2nd ed. OECD series on testing and assessment, No. 116, NV/JM/MONO(2011)47. Paris: OECD Publishing; [accessed 2021 Nov 25]. https://www.oecd-ilibrary.org/environment/guidance-document-116-on-the-conduct-and-design-of-chronic-toxicity-and-carcinogenicity-studies-supporting-test-guidelines-451-452-and-453_9789264221475-en
  • Oesch F, Fabian E, Landsiedel R. 2019. Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol. 93(12):3419–3489.
  • Ogata K, Liu Y, Ohara A, Kawamoto K, Kondo M, Kobayashi K, Fukuda T, Asano H, Kitamoto S, Lake BG, et al. 2021. Club cells are the primary target for permethrin-induced mouse lung tumor formation. Toxicol Sci. 184(1):15–32.
  • Park SY, Hong JY, Lee SY, Lee SH, Kim MJ, Kim SY, Kim KW, Shim HS, Park MS, Lee CG, et al. 2021. Club cell-specific role of programmed cell death 5 in pulmonary fibrosis. Nat Commun. 12(1):2923.
  • Patel M, Lu L, Zander DS, Sreerama L, Coco D, Moreb JS. 2008. ALDH1A1 and ALDH3A1 expression in lung cancers: correlation with histologic type and potential precursors. Lung Cancer. 59(3):340–349.
  • Peacock A, Peacock PR. 1966. The results of prolonged administration of isoniazid to mice, rats and hamsters. Br J Cancer. 20(2):307–325.
  • Peters JM, Cattley RC, Gonzalez FJ. 1997. Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis. 18(11):2029–2033.
  • Peters JM, Aoyama T, Cattley RC, Nobumitsu U, Hashimoto T, Gonzalez FJ. 1998. Role of peroxisome proliferator-activated receptor alpha in altered cell cycle regulation in mouse liver. Carcinogenesis. 19(11):1989–1994.
  • Plopper CG, Hill LH, Mariassy AT. 1980a. Ultrastructure of the nonciliated bronchiolar epithelial (Clara) cell of mammalian lung. III. A study of man with comparison of 15 mammalian species. Exp Lung Res. 1(2):171–180.
  • Plopper CG, Mariassy AT, Hill LH. 1980b. Ultrastructure of the nonciliated bronchiolar epithelial (Clara) cell of mammalian lung: I. A comparison of rabbit, guinea pig, rat, hamster, and mouse. Exp Lung Res. 1(2):139–154.
  • Plopper CG, Hyde DM. 2015. Chapter 7 – epithelial cells of the bronchiole. In: Parent RA, editors. Comparative biology of the normal lung. 2nd ed. San Diego (CA): Academic Press; p. 83–92.
  • Pors K, Moreb JS. 2014. Aldehyde dehydrogenases in cancer: an opportunity for biomarker and drug development? Drug Discov Today. 19(12):1953–1963.
  • Poteracki J, Walsh KM. 1998. Spontaneous neoplasms in control Wistar rats: a comparison of reviews. Toxicol Sci. 45(1):1–8.
  • Quist E, Boorman G, Cullen J, Maronpot R, Remick A, Swenberg JA, Freshwater L, Hardisty J. 2019. Hepatocellular neoplasms in CD-1 mice chronically exposed to permethrin: results from a 2-year oral carcinogenicity study. Toxicol Pathol. 47(1):11–17.
  • Rao GN, Birnbaum LS, Collins JJ, Tennant RW, Skow LC. 1988. Mouse strains for chemical carcinogenicity studies: overview of a workshop. Fundam Appl Toxicol. 10(3):385–394.
  • Renne R, Brix A, Harkema J, Herbert R, Kittel B, Lewis D, March T, Nagano K, Pino M, Rittinghausen S, et al. 2009. Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicol Pathol. 37(7 Suppl):5S–73S.
  • Reynolds SD, Malkinson AM. 2010. Clara cell: progenitor for the bronchiolar epithelium. Int J Biochem Cell Biol. 42(1):1–4.
  • Rosen MB, Lee JS, Ren H, Vallanat B, Liu J, Waalkes MP, Abbott BD, Lau C, Corton JC. 2008. Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: evidence for the involvement of nuclear receptors PPAR alpha and CAR. Toxicol Sci. 103(1):46–56.
  • Rusiecki JA, Patel R, Koutros S, Beane-Freeman L, Landgren O, Bonner MR, Coble J, Lubin J, Blair A, Hoppin JA, et al. 2009. Cancer incidence among pesticide applicators exposed to permethrin in the agricultural health study. Environ Health Perspect. 117(4):581–586.
  • Saghir SA, Rick DL, McClymont EL, Zhang F, Bartels MJ, Bus JS. 2009. Mechanism of ethylbenzene-induced mouse-specific lung tumor: metabolism of ethylbenzene by rat, mouse, and human liver and lung microsomes. Toxicol Sci. 107(2):352–366.
  • Schulte-Hermann R, Timmermann-Trosiener I, Schuppler J. 1983. Promotion of spontaneous preneoplastic cells in rat liver as a possible explanation of tumor production by nonmutagenic compounds. Cancer Res. 43(2):839–844.
  • Seed J, Carney EW, Corley RA, Crofton KM, DeSesso JM, Foster PM, Kavlock R, Kimmel G, Klaunig J, Meek ME, et al. 2005. Overview: using mode of action and life stage information to evaluate the human relevance of animal toxicity data. Crit Rev Toxicol. 35(8–9):664–672.
  • Shultz MA, Morin D, Chang AM, Buckpitt A. 2001. Metabolic capabilities of CYP2F2 with various pulmonary toxicants and its relative abundance in mouse lung subcompartments. J Pharmacol Exp Ther. 296(2):510–519.
  • Singh G, Katyal SL. 1997. Clara cells and Clara cell 10 kD protein (CC10). Am J Respir Cell Mol Biol. 17(2):141–143.
  • Smith MN, Greenberg SD, Spjut HJ. 1979. The Clara cell: a comparative ultrastructural study in mammals. Am J Anat. 155(1):15–30.
  • Sonich-Mullin C, Fielder R, Wiltse J, Baetcke K, Dempsey J, Fenner-Crisp P, Grant D, Hartley M, Knaap A, Kroese D, et al. 2001. IPCS conceptual framework for evaluating a mode of action for chemical carcinogenesis. Regul Toxicol Pharmacol. 34(2):146–152.
  • Stearns TM, Cario CL, Savage HS, Sundberg JP, Paigen B, Berndt A. 2012. Early gene expression differences in inbred mouse strains with susceptibility to pulmonary adenomas. Exp Mol Pathol. 93(3):455–461.
  • Strupp C, Banas DA, Cohen SM, Gordon EB, Jaeger M, Weber K. 2012. Relationship of metabolism and cell proliferation to the mode of action of fluensulfone-induced mouse lung tumors: analysis of their human relevance using the IPCS framework. Toxicol Sci. 128(1):284–294.
  • Strupp C, Bomann W, Cohen SM, Weber K. 2016. Relationship of metabolism and cell proliferation to the mode of action of fluensulfone-induced mouse lung tumors. II: additional mode of action studies. Toxicol Sci. 154(2):296–308.
  • Tang Y, M Vanlandingham M, Wu Y, Beland FA, Olson GR, Fang J-L. 2018. Role of peroxisome proliferator-activated receptor alpha (PPARα) and PPARα-mediated species differences in triclosan-induced liver toxicity. Arch Toxicol. 92(11):3391–3402.
  • Tateno C, Yamamoto T, Utoh R, Yamasaki C, Ishida Y, Myoken Y, Oofusa K, Okada M, Tsutsui N, Yoshizato K. 2015. Chimeric mice with hepatocyte-humanized liver as an appropriate model to study human peroxisome proliferator-activated receptor-α. Toxicol Pathol. 43(2):233–248.
  • Tateno C, Kojima Y. 2020. Characterization and applications of chimeric mice with humanized livers for preclinical drug development. Lab Anim Res. 36(2):2.
  • Thoolen B, Maronpot RR, Harada T, Nyska A, Rousseaux C, Nolte T, Malarkey DE, Kaufmann W, Küttler K, Deschl U, et al. 2010. Proliferative and nonproliferative lesions of the rat and mouse hepatobiliary system. Toxicol Pathol. 38(7 Suppl):5S–81S.
  • Thoolen B, Ten Kate FJ, van Diest PJ, Malarkey DE, Elmore SA, Maronpot RR. 2012. Comparative histomorphological review of rat and human hepatocellular proliferative lesions. J Toxicol Pathol. 25(3):189–199.
  • Travis WD, Brambilla E, Müller-Hermelink HK, Harris CC. 2004. World Health Organization classification of tumours. In: Travis WD, Brambilla E, Muller-Hermelink HK, Harris CC, editors. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon: IARC Press; p. 82–87.
  • US.EPA. 1988. Memorandum. 52 Page(s). Esther Rinde. Toxicology Branch I. Peer Review of Permethrin. Registration Data info removed from pages 9–15, US. EPA. Attachment(s) Following: October 14, 1988. Memorandum. John Doherty. Toxicology Branch I. Peer Review of Permethrin. Addendum: Historical control data for lung & liver tumors for the CD-1 mouse strain compiled by the Bio/Dynamics Laboratory for studies terminating in 1979 to 1982; [accessed 2022 Jan 19]. https://archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/109701/109701-153.pdf
  • US.EPA. 1994. PRN 94-5: requests for re-considerations of carcinogenicity peer review decisions based on changes in pathology diagnoses; [accessed 2022 Jan 19]. https://www.epa.gov/pesticide-registration/prn-94-5-requests-re-considerations-carcinogenicity-peer-review-decisions#policy
  • US.EPA. 2000. Data evaluation record: Permethrin/109701. Study type: carcinogenicity – mouse (OPPTS 870.4200b/OECD 451). MRID 45597105 (Main Study), 45597104; [accessed 2022 Jan 19]. https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-109701_undated_a.pdf
  • US.EPA. 2002. Memorandum. Permethrin: Report of the Cancer Assessment Review Committee (Third Evaluation). Health Effects Division, Office of Pesticides Program, US. EPA, TXR No. 0051220; [accessed 2022 Jan 19]. https://www3.epa.gov/pesticides/chem_search/cleared_reviews/csr_PC-109701_23-Oct-02_a.pdf
  • US.EPA. 2003. Memorandum. Cypermethrin and Zeta-cypermethrin – 5th Report of the Hazard Identification Assessment Review Committee. TXR NO. 0051578.
  • US.EPA. 2005a. Guidelines for carcinogen risk assessment. Risk Assessment Forum, Washington, DC. EPA/639/P-03/001F; [accessed 2021 Nov 25]. https://www3.epa.gov/airtoxics/cancer_guidelines_final_3-25-05.pdf
  • US.EPA. 2005b. Memorandum. Flonicamid: Report of the Cancer Assessment Review Committee, PC Cord: 128016. Health Effects Division, Office of Pesticides Program, US. EPA, TXR No.0052013; [accessed 2021 Nov 25]. https://archive.epa.gov/pesticides/chemicalsearch/chemical/foia/web/pdf/128016/128016-2005-02-24a.pdf
  • US.EPA. 2009. Permethrin Facts. EPA document No. 738-F-09-001; [accessed 2021 Nov 25]. https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-109701_1-Aug-09.pdf
  • US.EPA. 2020a. Memorandum. Permethrin. Report of the Cancer Assessment Review Committee (Fourth Evaluation). PC Cord: 109701. Health Effects Division, Office of Pesticides Program, US. EPA. TXR No. 0057953; [accessed 2022 Feb 15]. https://www.regulations.gov/document/EPA-HQ-OPP-2011-0039-0124
  • US.EPA. 2020b. Memorandum. Permethrin: Human Health Risk Assessment for New Use on “Fruit, Small, Vine Climbing, Except Fuzzy Kiwifruit, Subgroup 13-07F”; Multiple Crop Group Conversions/Expansions; and the Establishment of a Tolerance without a U.S. Registration for Tea, AND the Revised Draft Risk Assessment (DRA) for Registration Review; [accessed 2021 Nov 25]. https://www.regulations.gov/document/EPA-HQ-OPP-2011-0039-0130
  • US.FDA. 2001. Center for Drug Evaluation and Research, Guidance for Industry: Statistical Aspects of the Design, Analysis, and Interpretation of Chronic Rodent Carcinogenicity Studies of Pharmaceuticals; [accessed 2021 Nov 25]. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm079272.pdf
  • Vachon J, Page-Lariviere F, Sirard MA, Rodriguez MJ, Levallois P, Campagna C. 2018. Availability, quality, and relevance of toxicogenomics data for human health risk assessment: a scoping review of the literature on trihalomethanes. Toxicol Sci. 163(2):364–373.
  • Van Winkle LS, Johnson ZA, Nishio SJ, Brown CD, Plopper CG. 1999. Early events in naphthalene-induced acute Clara cell toxicity: comparison of membrane permeability and ultrastructure. Am J Respir Cell Mol Biol. 21(1):44–53.
  • Vassallo JD, Hicks SM, Born SL, Daston GP. 2004. Roles for epoxidation and detoxification of coumarin in determining species differences in Clara cell toxicity. Toxicol Sci. 82(1):26–33.
  • Wang XY, Keefe KM, Jensen-Taubman SM, Yang D, Yan K, Linnoila RI. 2012. Novel method for isolation of murine Clara cell secretory protein-expressing cells with traces of stemness. PLOS One. 7(8):e43008.
  • WHO. 2014. Guidance for national tuberculosis programmes on the management of tuberculosis in children. 2nd ed. Geneva: World Health Organization (WHO); [accessed 2022 Jan 20]. https://www.who.int/publications/i/item/9789241548748
  • WHO. 2019. World Health Organization (WHO) specifications and evaluations for public health pesticides, Permethrin (40:60 cis:trans isomer ratio); [accessed 2021 Nov 25]. https://extranet.who.int/pqweb/sites/default/files/vcp-documents/WHOVC-SP_Permethrin%20%2840%2060%20cis%20trans%20isomer%20ratio%29_2019.pdf
  • Williams GM. 1997. Chemicals with carcinogenic activity in the rodent liver; mechanistic evaluation of human risk. Cancer Lett. 117(2):175–188.
  • Wolf DC, Cohen SM, Boobis AR, Dellarco VL, Fenner-Crisp PA, Moretto A, Pastoor TP, Schoeny RS, Seed JG, Doe JE. 2019. Chemical carcinogenicity revisited 1: a unified theory of carcinogenicity based on contemporary knowledge. Regul Toxicol Pharmacol. 103:86–92.
  • Wolff GL, Roberts DW, Morrissey RL, Greenman DL, Allen RR, Campbell WL, Bergman H, Nesnow S, Frith CH. 1987. Tumorigenic responses to lindane in mice: potentiation by a dominant mutation. Carcinogenesis. 8(12):1889–1897.
  • Wong AP, Keating A, Waddell TK. 2009. Airway regeneration: the role of the Clara cell secretory protein and the cells that express it. Cytotherapy. 11(6):676–687.
  • Wood CE, Hukkanen RR, Sura R, Jacobson-Kram D, Nolte T, Odin M, Cohen SM. 2015. Scientific and Regulatory Policy Committee (SRPC) review: interpretation and use of cell proliferation data in cancer risk assessment. Toxicol Pathol. 43(6):760–775.
  • Yamada T, Kondo M, Miyata K, Ogata K, Kushida M, Sumida K, Kawamura S, Osimitz TG, Lake BG, Cohen SM. 2017. An evaluation of the human relevance of the lung tumors observed in female mice treated with permethrin based on mode of action. Toxicol Sci. 157(2):465–486.
  • Yamada T. 2018. Case examples of an evaluation of the human relevance of the pyrethroids/pyrethrins-induced liver tumours in rodents based on the mode of action. Toxicol Res (Camb). 7(4):681–696.
  • Yamada T. 2021. Review/featured article Application of humanized mice to toxicology studies: evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). J Toxicol Pathol. 34(4):283–297.
  • Yamada T, Cohen SM, Lake BG. 2021. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol. 51(5):373–394.
  • Yang Q, Nagano T, Shah Y, Cheung C, Ito S, Gonzalez FJ. 2008. The PPAR alpha-humanized mouse: a model to investigate species differences in liver toxicity mediated by PPAR alpha. Toxicol Sci. 101(1):132–139.
  • Yen TT, Gill AM, Frigeri LG, Barsh GS, Wolff GL. 1994. Obesity, diabetes, and neoplasia in yellow A(vy)/- mice: ectopic expression of the agouti gene. FASEB J. 8(8):479–488.