279
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

25X-NBOMe compounds – chemistry, pharmacology and toxicology. A comprehensive review

ORCID Icon & ORCID Icon
Pages 15-33 | Received 06 Jan 2023, Accepted 15 Mar 2023, Published online: 28 Apr 2023

References

  • Álvarez-Alarcón N, Osorio-Méndez JJ, Ayala-Fajardo A, Garzón-Méndez WF, Garavito-Aguilar ZV. 2021. Zebrafish and Artemia salina in vivo evaluation of the recreational 25C-NBOMe drug demonstrates its high toxicity. Toxicol Rep. 8:315–323.
  • Ameline A, Kintz P, Blettner C, Bayle É, Raul J-S. 2017. Identification of 25I-NBOMe in two intoxications cases with severe hallucinations. Toxicol Anal et Clin. 29:117–122.
  • Andrade AFB, Mamo SK, Gonzalez-Rodriguez J. 2017. Rapid screening method for new psychoactive substances of forensic interest: electrochemistry and analytical determination of phenethylamines derivatives (NBOMe) via cyclic and differential pulse voltammetry. Anal Chem. 89(3):1445–1452.
  • Arantes LC, Júnior EF, de Souza LF, Cardoso AC, Alcântara TLF, Lião LM, Machado Y, Lordeiro RA, Neto JC, Andrade AFB. 2017. 25I-NBOH: a new potent serotonin 5-HT2A receptor agonist identified in blotter paper seizures in Brazil. Forensic Toxicol. 35(2):408–414.
  • Åstrand A, Guerrieri D, Vikingsson S, Kronstrand R, Green H. 2020. In vitro characterization of new psychoactive substances at the µ-opioid, CB1, 5HT1A, and 5-HT2A receptors – on-target receptor potency and efficacy, and off-target effects. Forensic Sci Int. 317:110553.
  • Bade R, Abdelaziz A, Nguyen L, Pandopulos AJ, White JM, Gerber C. 2020. Determination of 21 synthetic cathinones, phenethylamines, amphetamines and opioids in influent wastewater using liquid chromatography coupled to tandem mass spectrometry. Talanta. 208:120479.
  • Barker JM, Taylor JR, De Vries TJ, Peters J. 2015. Brain-derived neurotrophic factor and addiction: pathological versus therapeutic effects on drug seeking. Brain Res. 1628(Pt A):68–81.
  • Botch-Jones S, Foss J, Barajas D, Kero F, Young C, Weisenseel J. 2016. The detection of NBOMe designer drugs on blotter paper by high resolution time-of-flight mass spectrometry (TOFMS) with and without chromatography. Forensic Sci Int. 267:89–95.
  • Buchborn T, Lyons T, Knopfel T. 2018. Tolerance and tachyphylaxis to head twitches induced by the 5-HT2A agonist 25CN-NBOH in mice. Front Pharmacol. 9:17.
  • Buckholtz NS, Zhou DF, Freedman DX, Potter WZ. 1990. Lysergic acid diethylamide (LSD) administration selectively downregulates serotonin2 receptors in rat brain. Neuropsychopharmacology. 3(2):137–148.
  • Carhart-Harris RL, Roseman L, Haijen E, Erritzoe D, Watts R, Branchi I, Kaelen M. 2018. Psychedelics and the essential importance of context. J Psychopharmacol. 32(7):725–731.
  • Caspar AT, Brandt SD, Stoever AE, Meyer MR, Maurer HH. 2017. Metabolic fate and detectability of the new psychoactive substances2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25B-NBOMe) and2-(4-chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25C-NBOMe) in human and rat urine by GC–MS, LC–MSn, and LC–HR–MS/MS approaches. J Pharm Biomed Anal. 134:158–169.
  • Caspar AT, Helfer AG, Michely JA, Auwärter V, Brandt SD, Meyer MR, Maurer HH. 2015. Studies on the metabolism and toxicological detection of the new psychoactive designer drug 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) in human and rat urine using GC-MS, LC-MSn, and LC-HR-MS/MS. Anal Bioanal Chem. 407(22):6697–6719.
  • Caspar AT, Kollas AB, Maurer HH, Meyer MR. 2018. Development of a quantitative approach in blood plasma for low-dosed hallucinogens and opioids using LC-high resolution mass spectrometry. Talanta. 176:635–645.
  • Catlow BJ, Song S, Paredes DA, Kirstein CL, Sanchez-Ramos J. 2013. Effects of psilocybin on hippocampal neurogenesis and extinction of trace fear conditioning. Exp Brain Res. 228(4):481–491.
  • Chan S, Wu J, Lee B. 2019. Fatalities Related to New Psychoactive Substances in Singapore – a case series. Forensic Sci Int. 304:109892.
  • Chia XWS, Ong MC, Yeo YYC, Ho YJ, Binte Ahmad Nasir EI, Tan LJ, Chua PY, Yap TWA, Lim JLW. 2019. Simultaneous analysis of 2Cs, 25-NBOHs, 25-NBOMes and LSD in seized exhibits using liquid chromatography–tandem mass spectrometry: a targeted approach. Forensic Sci Int. 301:394–401.
  • Clancy L, Philp M, Shimmon R, Fu S. 2021. Development and validation of a color spot test method for the presumptive detection of 25-NBOMe compounds. Drug Test Anal. 13(5):929–943.
  • Cocchi V, Gasperini S, Hrelia P, Tirri M, Marti M, Lenzi M. 2020. Novel Psychoactive Phenethylamines: impact on Genetic Material. IJMS. 21(24):9616.
  • Custodio RJP, Sayson LV, Botanas CJ, Abiero A, You KY, Kim M, Lee HJ, Yoo SY, Lee KW, Lee YS, et al. 2019. 25B‐NBOMe, a novel N ‐2‐methoxybenzyl‐phenethylamine (NBOMe) derivative, may induce rewarding and reinforcing effects via a dopaminergic mechanism: evidence of abuse potential. Addict Biol. 25(6):e12850.
  • da Cunha KF, Eberlin MN, Huestis MA, Costa JL. 2019. NBOMe instability in whole blood. Forensic Toxicol. 37(1):82–89.
  • de Barros WA, Nunes CDS, Souza J, Nascimento IJDS, Figueiredo IM, de Aquino TM, Vieira L, Farias D, Santos JCC, de Fátima Â. 2021. The new psychoactive substances 25H-NBOMe and 25H-NBOH induce abnormal development in the zebrafish embryo and interact in the DNA major groove. Curr Res Toxicol. 2:386–398.
  • Drug Enforcement Administration, Department of Justice 2016. Schedules of controlled substances: placement of Three Synthetic Phenethylamines Into Schedule I. Final rule. Fed Regist. 81(187):66181–66184.
  • Eckler JR, Chang-Fong J, Rabin RA, Smith C, Teitler M, Glennon RA, Winter JC. 2003. Behavioral characterization of 2-O-desmethyl and 5-O-desmethyl metabolites of the phenylethylamine hallucinogen DOM. Pharmacol Biochem Behav. 75(4):845–852.
  • Elbardisy HM, Foster CW, Marron J, Mewis RE, Sutcliffe OB, Belal TS, Talaat W, Daabees HG, Banks CE. 2019. Quick test for determination of N-bombs (Phenethylamine Derivatives, NBOMe) using high-performance liquid chromatography: A Comparison between photodiode array and amperometric detection. ACS Omega. 4(11):14439–14450.
  • Elmore JS, Decker AM, Sulima A, Rice KC, Partilla JS, Blough BE, Baumann MH. 2018. Comparative neuropharmacology of N-(2-methoxybenzyl)-2,5-dimethoxyphenethylamine (NBOMe) hallucinogens and their 2C counterparts in male rats. Neuropharmacology. 142:240–250.
  • Eshleman AJ, Wolfrum KM, Reed JF, Kim SO, Johnson RA, Janowsky A. 2018. Neurochemical pharmacology of psychoactive substituted N-benzylphenethylamines: high potency agonists at 5-HT2A receptors. Biochem Pharmacol. 158:27–34.
  • Ettrup A, da Cunha-Bang S, McMahon B, Lehel S, Dyssegaard A, Skibsted AW, Jørgensen LM, Hansen M, Baandrup AO, Bache S, et al. 2014. Serotonin 2A receptor agonist binding in the human brain with [11C]Cimbi-36. J Cereb Blood Flow Metab. 34(7):1188–1196.
  • Ettrup A, Holm S, Hansen M, Wasim M, Santini MA, Palner M, Madsen J, Svarer C, Kristensen JL, Knudsen GM. 2013. Preclinical Safety assessment of the 5-HT2A receptor agonist PET radioligand [11C]Cimbi-36. Mol Imaging Biol. 15(4):376–383.
  • Ettrup A, Palner M, Gillings N, Santini MA, Hansen M, Kornum BR, Rasmussen LK, Någren K, Madsen J, Begtrup M, et al. 2010. Radiosynthesis and evaluation of 11C-CIMBI-5 as a 5-HT2A receptor agonist radioligand for PET. J Nucl Med. 51(11):1763–1770.
  • Ettrup A, Svarer C, McMahon B, da Cunha-Bang S, Lehel S, Møller K, Dyssegaard A, Ganz M, Beliveau V, Jørgensen LM, et al. 2016. Serotonin 2A receptor agonist binding in the human brain with [(11)C]Cimbi-36: test-retest reproducibility and head-to-head comparison with the antagonist [(18)F]altanserin. Neuroimage. 130:167–174.
  • European Monitoring Centre for Drugs and Drug Addiction, EMCDDA 2022. European Drug Report 2022: trends and Developments, Publications Office of the European Union, Luxembourg.
  • Finnema SJ, Stepanov V, Ettrup A, Nakao R, Amini N, Svedberg M, Lehmann C, Hansen M, Knudsen GM, Halldin C. 2014. Characterization of [(11)C]Cimbi-36 as an agonist PET radioligand for the 5-HT(2A) and 5-HT(2C) receptors in the nonhuman primate brain. Neuroimage. 84:342–353.
  • Garcia-Garcia AL, Newman-Tancredi A, Leonardo ED. 2014. 5-HT1A receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology. 231(4):623–636.
  • Garrido E, Alfonso M, Díaz de Greñu B, Lozano-Torres B, Parra M, Gaviña P, Marcos MD, Martínez-Máñez R, Sancenón F. 2020. Nanosensor for sensitive detection of the new psychedelic drug 25I-NBOMe. Chem Eur J. 26(13):2813–2816.
  • Gatch MB, Dolan SB, Forster MJ. 2017. Locomotor and discriminative stimulus effects of four novel hallucinogens in rodents. Behav Pharmacol. 28(5):375–385.
  • Gee P, Schep LJ, Jensen BP, Moore G, Barrington S. 2016. Case series: toxicity from 25B-NBOMe – a cluster of N-bomb cases. Clin Toxicol. 54(2):141–146.
  • Glennon RA, Young R, Rosecrans JA. 1982. Discriminative stimulus properties of DOM and several molecular modifications. Pharmacol Biochem Behav. 16(4):553–556.
  • Halberstadt AL. 2017. Pharmacology and toxicology of N-benzylphenethylamine (“NBOMe”) hallucinogens. Curr Top Behav Neurosci. 32:283–311.
  • Halberstadt AL, Chatha M, Klein AK, Wallach J, Brandt SD. 2020. Correlation between the potency of hallucinogens in the mouse head-twitch response assay and their behavioral and subjective effects in other species. Neuropharmacology. 167:107933.
  • Halberstadt AL, Geyer MA. 2014. Effects of the hallucinogen 2,5-dimethoxy-4-iodophenethylamine (2C-I) and superpotent N-benzyl derivatives on the head twitch response. Neuropharmacology. 77:200–207.
  • Heim R. 2003. Berlin: Free University of Berlin. Synthesis and Pharmacology of Potent 5-HT2A Receptor Agonists with N-2-Methoxybenzyl Partial Structure [dissertation]
  • Herian M, Skawski M, Wojtas A, Sobocińska MK, Noworyta K, Gołembiowska K. 2021. Tolerance to neurochemical and behavioral effects of the hallucinogen 25I-NBOMe. Psychopharmacology. 238(8):2349–2364.
  • Herian M, Wojtas A, Kamińska K, Świt P, Wach A, Gołembiowska K. 2019. Hallucinogen-like action of the novel designer drug 25I-NBOMe and its effect on cortical neurotransmitters in rats. Neurotox Res. 36(1):91–100.
  • Herian M, Wojtas A, Maćkowiak M, Wawrzczak-Bargiela A, Solarz A, Bysiek A, Madej K, Gołembiowska K. 2022. Neurotoxicological profile of the hallucinogenic compound 25I-NBOMe. Sci Rep. 12(1):2939.
  • Herian M, Wojtas A, Sobocińska MK, Skawski M, González-Marín A, Gołembiowska K. 2020. Contribution of serotonin receptor subtypes to hallucinogenic activity of 25I‑NBOMe and to its effect on neurotransmission. Pharmacol Rep. 72(6):1593–1603.
  • Hill SL, Doris T, Gurung S, Katebe S, Lomas A, Dunn M, Blain P, Thomas SH. 2013. Severe clinical toxicity associated with analytically confirmed recreational use of 25I-NBOMe: case series. Clin Toxicol. 51(6):487–492.
  • Hyperreal 2011. 25I-NBOMe users’ experience forum. 1996-2022: hyperreal.info. [accessed 2022 Oct 22]. https://hyperreal.info/talk/25i-nbome-t31752.html.
  • Jeon SY, Kim YH, Kim SJ, Suh SK, Cha HJ. 2019. Abuse potential of 2-(4-iodo-2,5-dimethoxyphenyl) N-(2-methoxybenzyl)ethanamine (25I-NBOMe); in vivo and ex vivo approaches. Neurochem Int. 125:74–81.
  • Jo C, Joo H, Youn DH, Kim JM, Hong YK, Lim NY, Kim KS, Park SJ, Choi SO. 2022. Rewarding and reinforcing effects of 25H-NBOMe in Rodents. Brain Sci. 12(11):1490.
  • Johansen A, Holm S, Dall B, Keller S, Kristensen JL, Knudsen GM, Hansen HD. 2019. Human biodistribution and radiation dosimetry of the 5-HT2A receptor agonist Cimbi-36 labeled with carbon-11 in two positions. EJNMMI Res. 31(1):71.
  • Johnson RD, Botch-Jones SR, Flowers T, Lewis CA. 2014. An evaluation of 25B-, 25C-, 25D-, 25H-, 25I- and 25T2-NBOMe via LC–MS-MS: method validation and analyte stability. J Anal Toxicol. 38(8):479–484.
  • Kawahara G, Maeda H, Kikura-Hanajiri R, Yoshida KI, Hayashi YK. 2017. The psychoactive drug 25B-NBOMe recapitulates rhabdomyolysis in zebrafish larvae. Forensic Toxicol. 35(2):369–375.
  • Ketha H, Webb M, Clayton L, Li S. 2017. Gas chromatography mass spectrometry (GC-MS) for identification of designer Stimulants including 2C amines, NBOMe compounds, and cathinones in urine. Curr Protoc Toxicol. 74:4.43.1–4.43.10.
  • Kintz P, Raul JS, Ameline A. 2021. The use of multiple keratinous matrices (head hair, axillary hair, and toenail clippings) can help narrowing a period of drug exposure: experience with a criminal case involving 25I-NBOMe and 4-MMC. Int J Legal Med. 135(4):1461–1465.
  • Kristofic JJ, Chmiel JD, Jackson GF, Vorce SP, Holler JM, Robinson SL, Bosy TZ. 2016. Detection of 25C-NBOMe in three related cases. J Anal Toxicol. 40(6):466–472.
  • Kueppers VB, Cooke CT. 2015. 25I-NBOMe related death in Australia: a case report. Forensic Sci Int. 249:e15-18–e18.
  • Kulesskaya N, Voikar V. 2014. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure. Physiol Behav. 133:30–38.
  • Laskowski LK, Elbakoush F, Calvo J, Exantus-Bernard G, Fong J, Poklis JL, Poklis A, Nelson LS. 2015. Evolution of the NBOMes: 25C- and 25B- Sold as 25I-NBOMe. J Med Toxicol. 11(2):237–241.
  • Lawn W, Barratt M, Williams M, Horne A, Winstock A. 2014. The NBOMe hallucinogenic drug series: patterns of use, characteristics of users and self-reported effects in a large international sample. J Psychopharmacol. 28(8):780–788.
  • Leth-Petersen S, Gabel-Jensen C, Gillings N, Lehel S, Hansen HD, Knudsen GM, Kristensen JL. 2016. Metabolic fate of hallucinogenic NBOMes. Chem Res Toxicol. 29(1):96–100.
  • Lowe LM, Peterson BL, Couper FJ. 2015. A case review of the first analytically confirmed 25I-NBOMe-related death in Washington State. J Anal Toxicol. 39(8):668–671.
  • Lützen E, Holtkamp M, Stamme I, Schmid R, Sperling M, Pütz M, Karst U. 2020. Multimodal imaging of hallucinogens 25C- and 25I-NBOMe on blotter papers. Drug Test Anal. 12(4):465–471.
  • Mason NL, Kuypers KPC, Müller F, Reckweg J, Tse DHY, Toennes SW, Hutten NRPW, Jansen JFA, Stiers P, Feilding A, et al. 2020. Me, myself, bye: regional alterations in glutamate and the experience of ego dissolution with psilocybin. Neuropsychopharmacol. 45(12):2003–2011.
  • Meira VL, de Oliveira AS, Cohen LSA, de A Bhering C, de Oliveira KM, de Siqueira DS, de Oliveira MAM, Aquino Neto FR, Vanini G. 2021. Chemical and statistical analyses of blotter paper matrix drugs seized in the State of Rio de Janeiro. Forensic Sci Int. 318:110588.
  • Miliano C, Marti M, Pintori N, Castelli MP, Tirri M, Arfè R, De Luca MA. 2019. Neurochemical and behavioral profiling in male and female rats of the psychedelic agent 25I-NBOMe. Front Pharmacol. 10:1406.
  • Morini L, Bernini M, Vezzoli S, Restori M, Moretti M, Crenna S, Papa P, Locatelli C, Osculati AMM, Vignali C, et al. 2017. Death after 25C-NBOMe and 25H-NBOMe consumption. Forensic Sci Int. 279:e1–e6.
  • Nakamura M, Shintani-Ishida K, Ikegaya H. 2018. 5-HT2A receptor agonist-induced hyperthermia is induced via vasoconstriction by peripheral 5-HT2A receptors and brown adipose tissue thermogenesis by peripheral serotonin loss at a high ambient temperature. J Pharmacol Exp Ther. 367(2):356–362.
  • National Drug Early Warning System, NDEWS 2023. Gainesville (FL) [accessed 2023 Feb 5]. https://ndews.org.
  • Nichols DE, Frescas SP, Chemel BR, Rehder KS, Zhong D, Lewin AH. 2008. High specific activity tritium-labeled N-(2-methoxybenzyl)-2,5-dimethoxy-4-iodophenethylamine (INBMeO): a high-affinity 5-HT2A receptor-selective agonist radioligand. Bioorg Med Chem. 16(11):6116–6123.
  • Nielsen LM, Holm NB, Leth-Petersen S, Kristensen JL, Olsen L, Linnet K. 2017. Characterization of the hepatic cytochrome P450 enzymes involved in the metabolism of 25I-NBOMe and 25I-NBOH. Drug Test Analysis. 9(5):671–679.
  • Nikolaou P, Papoutsis I, Stefanidou M, Spiliopoulou C, Athanaselis S. 2015. 2C-I-NBOMe, an "N-bomb" that kills with "Smiles". Toxicological and legislative aspects. Drug Chem Toxicol. 38(1):113–119.
  • Nisbet LA, Venson R, Wylie FM, Scott KS. 2017. Application of a urine and hair validated LC-MS-MS method to determine the effect of hair color on the incorporation of 25B-NBOMe, 25C-NBOMe and 25I-NBOMe into hair in the rat. J Anal Toxicol. 41(6):559–565.
  • Nisbet LA, Wylie FM, Logan BK, Scott KS. 2019. Gas chromatography-mass spectrometry method for the quantitative identification of 23 new psychoactive substances in blood and urine. J Anal Toxicol. 43(5):346–352.
  • Nocjar C, Alex KD, Sonneborn A, Abbas AI, Roth BL, Pehek EA. 2015. Serotonin-2C and -2a receptor co-expression on cells in the rat medial prefrontal cortex. Neuroscience. 297:22–37.
  • Panlilio LV, Goldberg SR. 2007. Self-administration of drugs in animals and humans as a model and an investigative tool. Addiction. 102(12):1863–1870.
  • Passie T, Halpern JH, Stichtenoth DO, Emrich HM, Hintzen A. 2008. The pharmacology of lysergic acid diethylamide: a review. CNS Neurosci Ther. 14(4):295–314.
  • Peacock A, Bruno R, Gisev N, Degenhardt L, Hall W, Sedefov R, White J, Thomas KV, Farrell M, Griffiths P. 2019. New psychoactive substances: challenges for drug surveillance, control, and public health responses. Lancet. 394(10209):1668–1684.
  • Poklis JL, Charles J, Wolf CE, Poklis A. 2013. High-performance liquid chromatography tandem mass spectrometry method for the determination of 2CC-NBOMe and 25I-NBOMe in human serum. Biomed Chromatogr. 27(12):1794–1800.
  • Poklis JL, Clay DJ, Poklis A. 2014a. High-performance liquid chromatography with tandem mass spectrometry for the determination of nine hallucinogenic 25-NBOMe designer drugs in urine specimens. J Anal Toxicol. 38(3):113–121.
  • Poklis JL, Dempsey SK, Liu K, Ritter JK, Wolf C, Zhang S, Poklis A. 2015. Identification of metabolite biomarkers of the designer hallucinogen 25I-NBOMe in mouse hepatic microsomal preparations and human urine samples associated with clinical intoxication. J Anal Toxicol. 39(8):607–616.
  • Poklis JL, Devers KG, Arbefeville EF, Pearson JM, Houston E, Poklis A. 2014b. Postmortem detection of 25I-NBOMe [2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine] in fluids and tissues determined by high performance liquid chromatography with tandem mass spectrometry from a traumatic death. Forensic Sci Int. 234:e14-20–e20.
  • Poklis JL, Nanco CR, Troendle MM, Wolf CE, Poklis A. 2014c. Determination of 4-bromo-2,5-dimethoxy-N-[(2-methoxyphenyl)methyl]-benzeneethanamine (25B-NBOMe) in serum and urine by high performance liquid chromatography with tandem mass spectrometry in a case of severe intoxication. Drug Test Anal. 6(7-8):764–769.
  • Poulie CBM, Jensen AA, Halberstadt AL, Kristensen JL. 2020. DARK Classics in chemical neuroscience: NBOMes. ACS Chem Neurosci. 12:10.
  • Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME. 2015. Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs). Neuropharmacology. 99:546–553.
  • Rose SR, Poklis JL, Poklis A. 2013. A case of 25I-NBOMe (25-I) intoxication: a new potent 5-HT2A agonist designer drug. Clin Toxicol. 51(3):174–177.
  • Santana N, Artigas F. 2017. Expression of serotonin2C receptors in pyramidal and GABAergic neurons of rat prefrontal cortex: a comparison with striatum. Cereb Cortex. 27(6):3125–3139.
  • Scheid C, Eller S, Oenning AL, Carasek E, Merib J, de Oliveira TF. 2022. application of homogeneous liquid-liquid microextraction with switchable hydrophilicity solvents to the determination of MDMA, MDA and NBOMes in postmortem blood samples. J Anal Toxicol. 46(7):776–782.
  • Scherma M, Fattore L, Fratta W, Fadda P. 2021. Conditioned place preference (CPP) in rats: from conditioning to reinstatement test. Methods Mol Biol. 2201:221–229.
  • Seo JY, Hur KH, Ko YH, Kim K, Lee BR, Kim YJ, Kim SK, Kim SE, Lee YS, Kim HC, et al. 2019. A novel designer drug, 25N-NBOMe, exhibits abuse potential via the dopaminergic system in rodents. Brain Res Bull. 152:19–26.
  • Shanks KG, Sozio T, Behonick GS. 2015. Fatal intoxications with 25B-NBOMe and 25I-NBOMe in Indiana during 2014. J Anal Toxicol. 39(8):602–606.
  • Shintani-Ishida K, Saka K, Nakamura M, Yoshida KI, Ikegaya H. 2018. Experimental study on the postmortem redistribution of the substituted phenethylamine, 25B-NBOMe. J Forensic Sci. 63(2):588–591.
  • Šíchová K, Syrová K, Kofroňová E, Pinterova-Leca N, Vejmola Č, Nykodemová J, Palivec P, Olejníková L, Danda H, Jorratt P, et al. 2022. Pharmacokinetics, systemic toxicity, thermoregulation and acute behavioural effects of 25CN-NBOMe. Addict Biol. 27(5):e13216.
  • Soh YN, Elliott S. 2014. An investigation of the stability of emerging new psychoactive substances. Drug Test Anal. 6(7–8):696–704.
  • Straub C, Tritsch NX, Hagan NA, Gu C, Sabatini BL. 2014. Multiphasic modulation of cholinergic interneurons by nigrostriatal afferents. J Neurosci. 34(25):8557–8569.
  • Šuláková A, Nykodemová J, Palivec P, Jurok R, Rimpelová S, Leonhardt T, Šíchová K, Páleníček T, Kuchař M. 2021. 25CN-NBOMe metabolites in rat urine, human liver microsomes and C.elegans-structure determination and synthesis of the most abundant metabolites. Metabolites. 11(4):212.
  • Suzuki J, Dekker MA, Valenti ES, Arbelo Cruz FA, Correa AM, Poklis JL, Poklis A. 2015. Toxicities associated with NBOMe ingestion-a novel class of potent hallucinogens: a review of the literature. Psychosomatics. 56(2):129–139.
  • Suzuki J, Poklis JL, Poklis A. 2014. My friend said it was good LSD": a suicide attempt following analytically confirmed 25I-NBOMe ingestion. J Psychoactive Drugs. 46(5):379–382.
  • Takahashi H, Hashimoto R, Iwase M, Ishii R, Kamio Y, Takeda M. 2011. Prepulse inhibition of startle response: recent advances in human studies of psychiatric disease. Clin Psychopharmacol Neurosci. 9(3):102–110.
  • Temporal KH, Scott KS, Mohr ALA, Logan BK. 2017. Metabolic profile determination of NBOMe compounds using human liver microsomes and comparison with findings in authentic human blood and urine. J Anal Toxicol. 41(7):646–657.
  • Testa B, Crivori P, Reist M, Carrupt P-A. 2000. The influence of lipophilicity on the pharmacokinetic behavior of drugs: concepts and examples. Perspect Drug Discov Des. 19(1):179–211.
  • The Sydney Morning Herald 2013. Press release: teen jumps to his death after $1.50 drug hit: North Sydney NSW [Accessed 2022 Sept 8]. https://www.smh.com.au/national/nsw/teen-jumps-to-his-death-after-1-50-drug-hit-20130606-2nrpe.html.
  • Tirri M, Bilel S, Arfè R, Corli G, Marchetti B, Bernardi T, Boccuto F, Serpelloni G, Botrè F, De-Giorgio F, et al. 2022. Effect of -NBOMe compounds on sensorimotor, motor, and prepulse inhibition responses in mice in comparison with the 2C analogs and lysergic acid diethylamide: from preclinical evidence to forensic implication in driving under the influence of drugs. Front Psychiatry. 13:875722.
  • Tracy DK, Wood DM, Baumeister D. 2017. Novel psychoactive substances: types, mechanisms of action, and effects. BMJ. 356:i6848.
  • Wadowski PP, Giurgea GA, Schlager O, Luf A, Gremmel T, Hobl EL, Unterhumer S, Löffler-Stastka H, Koppensteiner R. 2019. Acute limb ischemia after intake of the phenylethylamine derivate NBOMe. IJERPH. 16(24):5071.
  • Waldman W, Kała M, Lechowicz W, Gil D, Anand JS. 2018. Severe clinical toxicity caused by 25I-NBOMe confirmed analytically using LC-MS-MS method. Acta Biochim Pol. 65(4):567–571.
  • Wedzony K, Limberger N, Späth L, Wichmann T, Starke K. 1988. Acetylcholine release in rat nucleus accumbens is regulated through dopamine D2-receptors. Naunyn Schmiedebergs Arch Pharmacol. 338(3):250–255.
  • Williams M, Martin J, Galettis P. 2017. A validated method for the detection of 32 bath salts in oral fluid. J Anal Toxicol. 41(8):659–669.
  • Wohlfarth A, Roman M, Andersson M, Kugelberg FC, Diao X, Carlier J, Eriksson C, Wu X, Konradsson P, Josefsson M, et al. 2017. 25C-NBOMe and 25I-NBOMe metabolite studies in human hepatocytes, in vivo mouse and human urine with high-resolution mass spectrometry. Drug Test Anal. 9(5):680–698.
  • Wojtas A, Herian M, Skawski M, Sobocińska M, González-Marín A, Noworyta-Sokołowska K, Gołembiowska K. 2021. Neurochemical and behavioral effects of a new hallucinogenic compound 25B-NBOMe in rats. Neurotox Res. 39(2):305–326.
  • Wood DM, Sedefov R, Cunningham A, Dargan PI. 2015. Prevalence of use and acute toxicity associated with the use of NBOMe drugs. Clin Toxicol. 53(2):85–92.
  • Xu P, Qiu Q, Li H, Yan S, Yang M, Naman CB, Wang Y, Zhou W, Shen H, Cui W. 2019. 25C-NBOMe, a novel designer psychedelic, induces neurotoxicity 50 times more potent than methamphetamine in vitro. Neurotox Res. 35(4):993–998.
  • Yoon KS, Gu SM, Cha HJ, Kim YH, Yun J, Lee JM. 2022. 25I-NBOMe, a phenethylamine derivative, induces adverse cardiovascular effects in rodents: possible involvement of p21 (CDC42/RAC)-activated kinase 1. Drug Chem Toxicol. 45(2):898–906.
  • Yoon KS, Yun J, Kim YH, Shin J, Kim SJ, Seo JW, Hyun SA, Suh SK, Cha HJ. 2019. 2-(2,5-Dimethoxy-4-methylphenyl)-N-(2-methoxybenzyl)ethanamine (25D-NBOMe) and N-(2-methoxybenzyl)-2,5-dimethoxy-4-chlorophenethylamine (25C-NBOMe) induce adverse cardiac effects in vitro and in vivo. Toxicol Lett. 304:50–57.
  • Yoshida K-I, Saka K, Shintani-Ishida K, Maeda H, Nakajima M, Hara S-I, Ueno M, Sasaki K, Iwase H, Sakamoto T. 2015. A case of fatal intoxication due to the new designer drug 25B-NBOMe. Forensic Toxicol. 33(2):396–401.
  • Zawilska JB, Kacela M, Adamowicz P. 2020. NBOMes-highly potent and toxic alternatives of LSD. Front Neurosci. 14:78.
  • Zuba D, Sekuła K. 2013. Analytical characterization of three hallucinogenic N-(2-methoxy)benzyl derivatives of the 2C-series of phenethylamine drugs. Drug Test Analysis. 5(8):634–645.
  • Zuba D, Sekuła K, Buczek A. 2013. 25C-NBOMe – new potent hallucinogenic substance identified on the drug market. Forensic Sci Int. 227(1-3):7–14.
  • Zwartsen A, Hondebrink L, Westerink RH. 2019. Changes in neuronal activity in rat primary cortical cultures induced by illicit drugs and new psychoactive substances (NPS) following prolonged exposure and washout to mimic human exposure scenarios. Neurotoxicology. 74:28–39.
  • Zwartsen A, Verboven AHA, van Kleef RGDM, Wijnolts FMJ, Westerink RHS, Hondebrink L. 2017. Measuring inhibition of monoamine reuptake transporters by new psychoactive substances (NPS) in real-time using a high-throughput, fluorescence-based assay. Toxicol in Vitro. 45(Pt 1):60–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.