571
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity

ORCID Icon & ORCID Icon
Pages 330-343 | Received 30 Nov 2023, Accepted 05 Apr 2024, Published online: 04 Jun 2024

References

  • Abreu-Villaça Y, Levin ED. 2017. Developmental neurotoxicity of succeeding generations of insecticides. Environ Int. 99:55–77. doi: 10.1016/j.envint.2016.11.019.
  • American Psychiatric Association. 2013. Diagnostic and statistical manual of mental disorders. 5th ed. Washington (DC): American Psychiatric Publishing.
  • Antonangeli LM, Kenzhebekova S, Colosio C. 2023. Neurobehavioral effects of low-dose chronic exposure to insecticides: a review. Toxics. 11(2):192. doi: 10.3390/toxics11020192.
  • Antunes Dos Santos A, Appel Hort M, Culbreth M, López-Granero C, Farina M, Rocha JB, Aschner M. 2016. Methylmercury and brain development: a review of recent literature. J Trace Elem Med Biol. 38:99–107. doi: 10.1016/j.jtemb.2016.03.001.
  • Ardiel EL, Rankin CH. 2010. An elegant mind: learning and memory in Caenorhabditis elegans. Learn Mem. 17(4):191–201. doi: 10.1101/lm.960510.
  • Aschner M, Ceccatelli S, Daneshian M, Fritsche E, Hasiwa N, Hartung T, Hogberg HT, Leist M, Li A, Mundi WR, et al. 2017. Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX. 34(1):49–74. doi: 10.14573/altex.1604201s.
  • Astle DE, Holmes J, Kievit R, Gathercole SE. 2021. Annual Research Review: the transdiagnostic revolution in neurodevelopmental disorders. J Child Psychol Psychiatry. 63(4):397–417. doi: 10.1111/jcpp.13481.
  • Atzei A, Jense I, Zwart EP, Legradi J, Venhuis BJ, van der Ven LTM, Heusinkveld HJ, Hessel EVS. 2021. Developmental neurotoxicity of environmentally relevant pharmaceuticals and mixtures thereof in a zebrafish embryo behavioural test. Int J Environ Res Public Health. 18(13):6717. doi: 10.3390/ijerph18136717.
  • Avila D, Helmcke K, Aschner M. 2010. The Caenorhabditis elegans model as a reliable tool in neurotoxicology. Hum Exp Toxicol. 31(3):236–243. doi: 10.1177/0960327110392084.
  • Bacaj T, Tevlin M, Lu Y, Shaham S. 2008. Glia are essential for sensory organ function in C. elegans. Science. 322(5902):744–747. doi: 10.1126/science.1163074.
  • Bahl A, Engert F. 2020. Neural circuits for evidence accumulation and decision making in larval zebrafish. Nat Neurosci. 23(1):94–102. doi: 10.1038/s41593-019-0534-9.
  • Bal-Price A, Lein PJ, Keil KP, Sethi S, Shafer T, Barenys M, Fritsche E, Sachana M, Meek ME. 2017. Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. NeuroToxicology. 59:240–255. doi: 10.1016/j.neuro.2016.05.010.
  • Bal-Price A, Meek MEB. 2017. Adverse outcome pathways: application to enhance mechanistic understanding of neurotoxicity. Pharmacol Ther. 179:84–95. doi: 10.1016/j.pharmthera.2017.05.006.
  • Bal-Price A, Pistollato F, Sachana M, Bopp SK, Munn S, Worth A. 2018. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol Appl Pharmacol. 354:7–18. doi: 10.1016/j.taap.2018.02.008.
  • Barbazuk WB, Korf I, Kadavi C, Heyen J, Tate S, Wun E, Bedell JA, McPherson JD, Johnson SL. 2000. The syntenic relationship of the zebrafish and human genomes. Genome Res. 10(9):1351–1358. doi: 10.1101/gr.144700.
  • Bargmann CI. 1998. Neurobiology of the Caenorhabditis elegans genome. Science. 282(5396):2028–2033. doi: 10.1126/science.282.5396.2028.
  • Bargmann CI. 2012. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays. 34(6):458–465. doi: 10.1002/bies.201100185.
  • Bargmann CI, Marder E. 2013. From the connectome to brain function. Nat Methods. 10(6):483–490. doi: 10.1038/nmeth.2451.
  • Behl M, Ryan K, Hsieh J-H, Parham F, Shapiro AJ, Collins BJ, Sipes NS, Birnbaum LS, Bucher JR, Foster PMD, et al. 2019. Screening for developmental neurotoxicity at the national toxicology program: the future is here. Toxicol Sci. 167(1):6–14. doi: 10.1093/toxsci/kfy278.
  • Bellinger DC. 2018. An overview of environmental chemical exposures and neurodevelopmental impairments in children. Pediatr Med. 1:9–9. doi: 10.21037/pm.2018.11.03.
  • Blum J, Masjosthusmann S, Bartmann K, Bendt F, Dolde X, Dönmez A, Förster N, Holzer AK, Hübenthal U, Keßel HE, et al. 2022. Establishment of a human cell-based in vitro battery to assess developmental neurotoxicity hazard of chemicals. Chemosphere. 311(Pt 2):137035. doi: 10.1016/j.chemosphere.2022.137035.
  • Bourgeron T. 2015. What do we know about early onset neurodevelopmental disorders? Cambridge (MA): MIT Press.
  • Boyd WA, McBride SJ, Rice JR, Snyder DW, Freedman JH. 2010. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol Appl Pharmacol. 245(2):153–159. doi: 10.1016/j.taap.2010.02.014.
  • Boyd WA, Smith MV, Co CA, Pirone JR, Rice JR, Shockley KR, Freedman JH. 2016. Developmental effects of the ToxCastTM phase I and phase II chemicals in Caenorhabditis elegans and corresponding responses in zebrafish, rats and rabbits. Environ Health Perspect. 124(5):586–593. doi: 10.1289/ehp.1409645.
  • Boyes WK, Moser VC, Geller AM, Benignus VA, Bushnell PJ, Kamel F. 2007. Integrating epidemiology and toxicology in neurotoxicity risk assessment. Hum Exp Toxicol. 26(4):283–293. doi: 10.1177/0960327106070481.
  • Brittin CA, Cook SJ, Hall DH, Emmons SW, Cohen N. 2021. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature. 591(7848):105–110. doi: 10.1038/s41586-021-03284-x.
  • Brownlee DJ, Fairweather I. 1999. Exploring the neurotransmitter labyrinth in nematodes. Trends Neurosci. 22(1):16–24. doi: 10.1016/s0166-2236(98)01281-8.
  • Brox S, Seiwert B, Küster E, Reemtsma T. 2016. Toxicokinetics of polar chemicals in zebrafish embryo (Danio rerio): influence of physicochemical properties and of biological processes. Environ Sci Technol. 50(18):10264–10272. doi: 10.1021/acs.est.6b04325.
  • Caioni G, Merola C, Perugini M, d‘Angelo M, Cimini AM, Amorena M, Benedetti E. 2021. An experimental approach to study the effects of realistic environmental mixture of linuron and propamocarb on zebrafish synaptogenesis. Int J Environ Res Public Health. 18(9):4664. doi: 10.3390/ijerph18094664.
  • Carbaugh CM, Widder MW, Phillips CS, Jackson DA, DiVito VT, van der Schalie WH, Glover KP. 2020. Assessment of zebrafish embryo photomotor response sensitivity and phase-specific patterns following acute- and long-duration exposure to neurotoxic chemicals and chemical weapon precursors. J Appl Toxicol. 40(9):1272–1283. doi: 10.1002/jat.3984.
  • Carstens KE, Freudenrich T, Wallace K, Choo S, Carpenter A, Smeltz M, Clifton MS, Henderson WM, Richard AM, Patlewicz G, et al. 2023. Evaluation of per- and polyfluoroalkyl substances (PFAS) in vitro toxicity testing for developmental neurotoxicity. Chem Res Toxicol. 36(3):402–419. doi: 10.1021/acs.chemrestox.2c00344.
  • Chai CM, Torkashvand M, Seyedolmohadesin M, Park H, Venkatachalam V, Sternberg PW. 2022. Interneuron control of C. elegans developmental decision-making. Curr Biol. 32(10):2316–2324.e2314. doi: 10.1016/j.cub.2022.03.077.
  • Chen C-H, Pan C-L. 2021. Live-cell imaging of PVD dendritic growth cone in post-embryonic C. elegans. STAR Protocols. 18(2):100402.
  • Cheroni C, Caporale N, Testa G. 2020. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism. 11(1):69. doi: 10.1186/s13229-020-00370-1.
  • Cherra SJ, III, Jin Y. 2015. Advances in synapse formation: foraging connections in the worms. Wiley Interdiscip Rev Dev Biol. 4(2):85–97. doi: 10.1002/wdev.165.
  • Chowdhury MI, Sana T, Panneerselvan L, Dharmarajan R, Megharaj M. 2021. Acute toxicity and transgenerational effects of perfluorobutane sulfonate on Caenorhabditis elegans. Environ Toxicol Chem. 40(7):1973–1982. doi: 10.1002/etc.5055.
  • Cook SJ, Jarrell TA, Brittin CA, Wang Y, Bloniarz AE, Yakovlev MA, Nguyen KCQ, Tang LT-H, Bayer EA, Duerr JS, et al. 2019. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature. 571(7763):63–71. doi: 10.1038/s41586-019-1352-7.
  • Cook SJ, Kalinski CA, Hobert O. 2023. Neuronal contact predicts connectivity in the C. elegans brain. Curr Biol. 33(11):2315–2320.e2. doi: 10.1016/j.cub.2023.04.071.
  • Corsi AK, Wightman B, Chalfie M. 2015. A transparent window into biology: a primer on Caenorhabditis elegans. Genetics. 200(2):387–407. doi: 10.1534/genetics.115.176099.
  • Couderq A, Leemans M, Fini J-B. 2020. Testing for thyroid hormone disruptors, a review of non-mammalian in vivo models. Mol Cell Endocrinol. 508:110779. doi: 10.1016/j.mce.2020.110779.
  • Crofton KM, Mundy WR. 2021. External scientific report on the interpretation of data from the developmental neurotoxicity in vitro testing assays for use in integrated approaches for testing and assessment. EFS3. 18(10):6924E. doi: 10.2903/sp.efsa.2021.EN-6924.
  • Cronin CJ, Mendel JE, Mukhtar S, Kim YM, Stirbl RC, Bruck J, Sternberg PW. 2005. An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet. 6(1):5. doi: 10.1186/1471-2156-6-5.
  • Davidsen N, Lauvås AJ, Myhre O, Ropstad E, Carpi D, Gyves EM, Berntsen HF, Dirven H, Paulsen RE, Bal-Price A, et al. 2021. Exposure to human relevant mixtures of halogenated persistent organic pollutants (POPs) alters neurodevelopmental processes in human neural stem cells undergoing differentiation. Reprod Toxicol. 100:17–34. doi: 10.1016/j.reprotox.2020.12.013.
  • de Esch C, Slieker R, Wolterbeek A, Woutersen R, de Groot D. 2012. Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotoxicol Teratol. 34(6):545–553. doi: 10.1016/j.ntt.2012.08.006.
  • De Felice A, Ricceri L, Venerosi A, Chiarotti F, Calamandrei G. 2015. Multifactorial origin of neurodevelopmental disorders: approaches to understanding complex etiologies. Toxics. 3(1):89–129. doi: 10.3390/toxics3010089.
  • de Oliveira AAS, Brigante TAV, Oliveira DP. 2021. Tail coiling assay in zebrafish (Danio rerio) embryos: stage of development, promising positive control candidates, and selection of an appropriate organic solvent for screening of developmental neurotoxicity (DNT). Water. 13(2):119. doi: 10.3390/w13020119.
  • DeMarco EC, Stoner GR, Robles E. 2022. A genetic labeling system to study dendritic spine development in zebrafish models of neurodevelopmental disorders. Dis Model Mech. 15(8):dmm049507.
  • Desprez B, Birk B, Blaauboer B, Boobis A, Carmichael P, Cronin MTD, Curie R, Daston G, Hubesch B, Jennings P, et al. 2019. A mode-of-action ontology model for safety evaluation of chemicals: outcome of a series of workshops on repeated dose toxicity. Toxicol in Vitro. 59:44–50. doi: 10.1016/j.tiv.2019.04.005.
  • Dexter PM, Caldwell KA, Caldwell GA. 2012. A predictable worm: application of Caenorhabditis elegans for mechanistic investigation of movement disorders. Neurotherapeutics. 9(2):393–404. doi: 10.1007/s13311-012-0109-x.
  • Diaz AL, Gleeson JG. 2009. The molecular and genetic mechanisms of neocortex development. Clin Perinatol. 36(3):503–512. doi: 10.1016/j.clp.2009.06.008.
  • Directive 2010/63/EU. 2010. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union. 276:33–79.
  • Du XF, Xu B, Zhang Y, Chen MJ, Du JL. 2018. A transgenic zebrafish model for in vivo long-term imaging of retinotectal synaptogenesis. Sci Rep. 8(1):14077. doi: 10.1038/s41598-018-32409-y.
  • Dutra Costa BP, Aquino Moura L, Gomes Pinto SA, Lima-Maximino M, Maximino C. 2020. Zebrafish models in neural and behavioral toxicology across the life stages. Fishes. 5(3):23. doi: 10.3390/fishes5030023.
  • Emmons SW, Yemini E, Zimmer M. 2021. Methods for analyzing neuronal structure and activity in Caenorhabditis elegans. Genetics. 218(4):iyab072. doi: 10.1093/genetics/iyab072.
  • Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J. 2018. Current availablity of stem cell-based in vitro methods for developmental neurotoxicity (DNT) testing. Toxicol Sci. 165(1):21–30. doi: 10.1093/toxsci/kfy178.
  • Fritsche E, Grandjean P, Crofton KM, Aschner M, Goldberg A, Heinonen T, Hessel EVS, Hogberg HT, Bennekou SH, Lein PJ, et al. 2018. Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicol Appl Pharmacol. 354:3–6. doi: 10.1016/j.taap.2018.02.004.
  • Galakhova AA, Hunt S, Wilbers R, Heyer DB, de Kock CPJ, Mansvelder HD, Goriounova NA. 2022. Evolution of cortical neurons supporting human cognition. Trends Cogn Sci. 26(11):909–922. doi: 10.1016/j.tics.2022.08.012.
  • Gerhardt A. 2007. Aquatic behavioral ecotoxicology—prospects and limitations. Hum Ecol Risk Assess Int J. 13(3):481–491. doi: 10.1080/10807030701340839.
  • Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jönsson ME, Nelson DR, Stegeman JJ. 2010. Identification and developmental expression of the full complement of Cytochrome P450 genes in zebrafish. BMC Genomics. 11(1):643. doi: 10.1186/1471-2164-11-643.
  • Grandjean P, Landrigan PJ. 2014. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 13(3):330–338. doi: 10.1016/S1474-4422(13)70278-3.
  • Haddad-Tóvolli R, Dragano NRV, Ramalho AFS, Velloso LA. 2017. Development and function of the blood-brain barrier in the context of metabolic control. Front Neurosci. 11:224. doi: 10.3389/fnins.2017.00224.
  • Hanneman E, Westerfield M. 1989. Early expression of acetylcholinesterase activity in functionally distinct neurons of the zebrafish. J Comp Neurol. 284(3):350–361. doi: 10.1002/cne.902840303.
  • Harlow PH, Perry SJ, Widdison S, Daniels S, Bondo E, Lamberth C, Currie RA, Flemming AJ. 2016. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome. Sci Rep. 6(1):22965. doi: 10.1038/srep22965.
  • Hawkins RD, Byrne JH. 2015. Associative learning in invertebrates. Cold Spring Harb Perspect Biol. 7(5):a021709. doi: 10.1101/cshperspect.a021709.
  • Haynes EM, Ulland TK, Eliceiri KW. 2022. A model of discovery: the role of imaging established and emerging non-mammalian models in neuroscience. Front Mol Neurosci. 15:867010. doi: 10.3389/fnmol.2022.867010.
  • Hering I, Le DT, von Mikecz A. 2022. How to keep up with the analysis of classic and emerging neurotoxins: age-resolved fitness tests in the animal model Caenorhabditis elegans - a step-by-step protocol. Excli J. 21:344–353
  • Hessel EVS, Staal YCM, Piersma AH. 2018. Design and validation of an ontology-driven animal-free testing strategy for developmental neurotoxicity testing. Toxicol Appl Pharmacol. 354:136–152. doi: 10.1016/j.taap.2018.03.013.
  • Heyer DB, Meredith RM. 2017. Environmental toxicology: sensitive periods of development and neurodevelopmental disorders. Neurotoxicology. 58:23–41. doi: 10.1016/j.neuro.2016.10.017.
  • Hillier LW, Coulson A, Murray JI, Bao Z, Sulston JE, Waterston RH. 2005. Genomics in C. elegans: so many genes, such a little worm. Genome Res. 15(12):1651–1660. doi: 10.1101/gr.3729105.
  • Hinz FI, Aizenberg M, Tushev G, Schuman EM. 2013. Protein synthesis-dependent associative long-term memory in larval zebrafish. J Neurosci. 33(39):15382–15387. doi: 10.1523/JNEUROSCI.0560-13.2013.
  • Hong J-H, Park M. 2016. Understanding synaptogenesis and functional connectome in C. elegans by imaging technology. Front Synaptic Neurosci. 8:18. doi: 10.3389/fnsyn.2016.00018.
  • Horzmann KA, Freeman JL. 2016. Zebrafish get connected: investigating neurotransmission targets and alterations in chemical toxicity. Toxics. 4(3):19. doi: 10.3390/toxics4030019.
  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, et al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496(7446):498–503. doi: 10.1038/nature12111.
  • Hughes S, Celikel T. 2019. Prominent inhibitory projections guide sensorimotor computation: an invertebrate perspective. Bioessays. 41(10):e1900088. doi: 10.1002/bies.201900088.
  • Hughes S, van Dop M, Kolsters N, van de Klashorst D, Pogosova A, Rijs AM. 2022. Using a Caenorhabditis elegans Parkinson’s disease model to assess disease progression and therapy efficiency. Pharmaceuticals. 15(5):512. doi: 10.3390/ph15050512.
  • Husson SJ, Costa WS, Schmitt C, Gottschalk A. 2012. Keeping track of worm trackers. The C. elegans Research Community. Pasadena (CA): WormBook. doi: 10.1895/wormbook.1.150.1.
  • Ijaz S, Hoffman EJ. 2016. Zebrafish: a translational model system for studying neuropsychiatric disorders. J Am Acad Child Adolesc Psychiatry. 55(9):746–748. doi: 10.1016/j.jaac.2016.06.008.
  • Inoue T, Hoshino H, Yamashita T, Shimoyama S, Agata K. 2015. Planarian shows decision-making behavior in response to multiple stimuli by integrative brain function. Zoological Lett. 1(1):7. doi: 10.1186/s40851-014-0010-z.
  • Izquierdo PG, O'Connor V, Green AC, Holden-Dye L, Tattersall JEH. 2021. C. elegans pharyngeal pumping provides a whole organism bio-assay to investigate anti-cholinesterase intoxication and antidotes. Neurotoxicology. 82:50–62. doi: 10.1016/j.neuro.2020.11.001.
  • Javer A, Ripoll-Sánchez L, Brown AEX. 2018. Powerful and interpretable behavioural features for quantitative phenotyping of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 373(1758):20170375. doi: 10.1098/rstb.2017.0375.
  • Jedynak P, Maitre L, Guxens M, Gützkow KB, Julvez J, López-Vicente M, Sunyer J, Casas M, Chatzi L, Gražulevičienė R, et al. 2021. Prenatal exposure to a wide range of environmental chemicals and child behaviour between 3 and 7 years of age - an exposome-based approach in 5 European cohorts. Sci Total Environ. 763:144115. doi: 10.1016/j.scitotenv.2020.144115.
  • Jeong J-J, Kwon H-B, Ahn J-C, Kang D, Kwon S-H, Park JA, Kim K-W. 2008. Functional and developmental analysis of the blood-brain barrier in zebrafish. Brain Res Bull. 75(5):619–628. doi: 10.1016/j.brainresbull.2007.10.043.
  • Jin Y. 2002. Synpatogenesis: insights from worm and fly. Curr Opin Neurobiol. 12(1):71–79. doi: 10.1016/s0959-4388(02)00292-1.
  • Jukam D, Desplan C. 2010. Binary fate decision in differentiating neurons. Curr Opin Neurobiol. 20(1):6–13. doi: 10.1016/j.conb.2009.11.002.
  • Julvez J, López-Vicente M, Warembourg C, Maitre L, Philippat C, Gützkow KB, Guxens M, Evandt J, Andrusaityte S, Burgaleta M, et al. 2021. Early life multiple exposures and child cognitive function: a multi-centric birth cohort study in six European countries. Environ Pollut. 284:117404. doi: 10.1016/j.envpol.2021.117404.
  • Kadereit S, Zimmer B, van Thriel C, Hengstler JG, Leist M. 2012. Compound selection for in vitro modeling of developmental neurotoxicity. Front Biosci (Landmark Ed). 17(7):2442–2460. doi: 10.2741/4064.
  • Kaletta T, Hengartner MO. 2006. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov. 5(5):387–398. doi: 10.1038/nrd2031.
  • Kalueff AV, Echevarria DJ, Stewart AM. 2014. Gaining translational momentum: more zebrafish models for neuroscience research. Prog Neuropsychopharmacol Biol Psychiatry. 55:1–6. doi: 10.1016/j.pnpbp.2014.01.022.
  • Keeney JG, Davis JM, Siegenthaler J, Post MD, Nielsen BS, Hopkins WD, Sikela JM. 2015. DUF1220 protein domains drive proliferation in human neural stem cells and are associated with increased cortical volume in anthropoid primates. Brain Struct Funct. 220(5):3053–3060. doi: 10.1007/s00429-014-0814-9.
  • Khan KM, Collier AD, Meshalkina DA, Kysil EV, Khatsko SL, Kolesnikova T, Morzherin YY, Warnick JE, Kalueff AV, Echevarria DJ. 2017. Zebrafish models in neuropsychopharmacology and CNS drug discovery. Br J Pharmacol. 174(13):1925–1944. doi: 10.1111/bph.13754.
  • Kim W, Underwood RS, Greenwald I, Shaye DD. 2018. OrthoList 2: a new comparative genomic analysis of human and Caenorhabditis elegans Genes. Genetics. 210(2):445–461. doi: 10.1534/genetics.118.301307.
  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev Dyn. 203(3):253–310. doi: 10.1002/aja.1002030302.
  • Kozol RA, Abrams AJ, James DM, Buglo E, Yan Q, Dallman JE. 2016. Function over form: modeling groups of inherited neurological conditions in Zebrafish. Front Mol Neurosci. 9:55. doi: 10.3389/fnmol.2016.00055.
  • Kunst M, Laurell E, Mokayes N, Kramer A, Kubo F, Fernandes AM, Förster D, Dal Maschio M, Baier H. 2019. A cellular-resolution atlas of the larval Zebrafish brain. Neuron. 103(1):21–38.e25. doi: 10.1016/j.neuron.2019.04.034.
  • Lai CH, Chou CY, Ch’ang LY, Liu CS, Lin W. 2000. Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res. 10(5):703–713. doi: 10.1101/gr.10.5.703.
  • Landrigan PJ, Lambertini L, Birnbaum LS. 2012. A research strategy to discover the environmental causes of autism and neurodevelopmental disabilities. Environ Health Perspect. 120(7):a258–260. doi: 10.1289/ehp.1104285.
  • Legradi J, el Abdellaoui N, van Pomeren M, Legler J. 2015. Comparability of behavioural assays suing zebrafish larvae to assess neurotoxicity. Environ Sci Pollut Res Int. 22(21):16277–16289. doi: 10.1007/s11356-014-3805-8.
  • Lein P, Silbergeld E, Locke P, Goldberg AM. 2005. In vitro and other alternative approaches to developmental neurotoxicity testing (DNT). Environ Toxicol Pharmacol. 19(3):735–744. doi: 10.1016/j.etap.2004.12.035.
  • Lesanpezeshki L, Hewitt JE, Laranjeiro R, Antebi A, Driscoll M, Szewczyk NJ, Blawzdziewicz J, Lacerda CMR, Vanapalli SA. 2019. Pluronic gel-based burrowing assay for rapid assessment of neuromuscular health in C. elegans. Sci Rep. 9(1):15246. doi: 10.1038/s41598-019-51608-9.
  • Li J, Settivari R, LeBaron MJ, Marty MS. 2019. An industry perspective: a streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity. NeuroToxicology. 73:17–30. doi: 10.1016/j.neuro.2019.02.010.
  • Li Q, Marcu D-C, Palazzo O, Turner F, King D, Spires-Jones TL, Stefan MI, Busch KE. 2020. High neural activity accelerates the decline of cognitive plasticity with age in Caenorhabditis elegans. Elife. 9:e59711. doi: 10.7554/eLife.59711.
  • Lidsky TI, Schneider JS. 2003. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain. 126(Pt 1):5–19. doi: 10.1093/brain/awg014.
  • Liu P, Chen B, Wang Z-W. 2020. GABAergic motor neurons bias locomotor decision-making in C. elegans. Nat Commun. 11(1):5076. doi: 10.1038/s41467-020-18893-9.
  • Loerracher AK, Braunbeck T. 2021. Cytochrome P450-dependent biotransformation capacities in embryonic, juvenile and adult stages of zebrafish (Danio rerio)-a state-of-the-art review. Arch Toxicol. 95(7):2299–2334. doi: 10.1007/s00204-021-03071-7.
  • Makris SL, Raffaele K, Allen S, Bowers WJ, Hass U, Alleva E, Calamandrei G, Sheets L, Amcoff P, Delrue N, et al. 2009. A retrospective performance assessment of the developmental neurotoxicity study in support of OECD test guideline 426. Environ Health Perspect. 117(1):17–25. doi: 10.1289/ehp.11447.
  • Martin MM, Baker NC, Boyes WK, Carstens KE, Culbreth ME, Gilbert ME, Harrill JA, Nyffeler J, Padilla S, Friedman KP, et al. 2022. An expert-driven literature review of "negative" chemicals for developmental neurotoxicity (DNT) in vitro assay evaluation. Neurotoxicol Teratol. 93:107117. doi: 10.1016/j.ntt.2022.107117.
  • Marx-Stoelting P, Solano MdLM, Aoyama H, Adams RH, Bal-Price A, Buschmann J, Chahoud I, Clark R, Fang T, Fujiwara M, et al. 2021. 25th anniversary of the Berlin workshop on developmental toxicology: devTox database update, challenges in risk assessment of developmental neurotoxicity and alternative methodologies in bone development and growth. Reprod Toxicol. 100:155–162. doi: 10.1016/j.reprotox.2020.11.003.
  • Masjosthusmann S, Blum J, Bartmann K, Dolde X, Holzer A, Stürzl L, Keßel EH, Förster N, Dönmez A, Klose J, et al. 2020. Establishment of an a priori protocol for the implementation and interpretation of an in-vitro testing battery for the assessment of developmental neurotoxicity. EFS3. 17(10):1938E. doi: 10.2903/sp.efsa.2020.EN-1938.
  • Maximino C, Silva RXdC, da Silva SdNS, Rodrigues LdSDS, Barbosa H, de Carvalho TS, Leão LKDR, Lima MG, Oliveira KRM, Herculano AM. 2015. Non-mammalian models in behavioral neuroscience: consequences for biological psychiatry. Front Behav Neurosci. 9:233. doi: 10.3389/fnbeh.2015.00233.
  • McVey KA, Mink JA, Snapp i, Timberlake WS, Todt CE, Negga R, Fitsanakis VA. 2012. Caenorhabditis elegans: an emerging model system for pesticide neurotoxicity. Enviro Anal Toxicol. S4:003.
  • Meshalkina DA, Kysil EV, Warnick JE, Demin KA, Kalueff AV. 2017. Adult zebrafish in CNS disease modelling: a tank that’s half-full not half-empty, and still filling. Lab Anim. 46(10):378–387. doi: 10.1038/laban.1345.
  • Meyer D, Williams PL. 2014. Toxicity testing of neurotoxic pesticides in Caenorhabditis elegans. J Toxicol Environ Health B Crit Rev. 17(5):284–306. doi: 10.1080/10937404.2014.933722.
  • Mizumoto K, Jin Y, Bessereau J-L. 2023. Synaptogenesis: unmasking molecular mechanims using Caenorhabditis elegans. Genetics. 223(2):1–26. doi: 10.1093/genetics/iyac176.
  • Moulin TC, Covill LE, Itskov PM, Williams MJ, Schiöth HB. 2021. Rodent and fly models in behavioral neuroscience: an evaluation of methodological advances, comparative research, and future perspectives. Neurosci Biobehav Rev. 120:1–12. doi: 10.1016/j.neubiorev.2020.11.014.
  • Mueller T, Wullimann MF. 2003. Anatomy of neurogenesis in the early zebrafish brain. Brain Res Dev Brain Res. 140(1):137–155. doi: 10.1016/s0165-3806(02)00583-7.
  • Mundy WR, Padilla S, Breier JM, Crofton KM, Gilbert ME, Herr DW, Jensen KF, Radio NM, Raffaele KC, Schumacher K, et al. 2015. Expanding the test set: chemicals with potential to disrupt mammalian brain development. Neurotoxicol Teratol. 52(Pt A):25–35. doi: 10.1016/j.ntt.2015.10.001.
  • Muriana A, Alzualde A, Hsieh J, Ryan K, Behl M, Terron A, Woodland C, Kluver N, Hessel EVS, Ellis L, et al. 2021. An Inter-laboratory case study to harmonize zebrafish light-dark transition test to predict developmental neurotoxicity (WC11). 11th World Congress on Alternative and Animal Use in the Life Sciences 2021; Maastricht, Netherlands.
  • Nagai J, Yu X, Papouin T, Cheong E, Freeman MR, Monk KR, Hastings MH, Haydon PG, Rowitch D, Shaham S, et al. 2021. Behaviorally consequential astrocytic regulation of neural circuits. Neuron. 109(4):576–596. doi: 10.1016/j.neuron.2020.12.008.
  • Nannaware M, Mayilswamy N, Kandasubramanian B. 2024. PFAS: exploration of neurotoxicity and environmental impact. Environ Sci Pollut Res Int. 31(9):12815–12831. doi: 10.1007/s11356-024-32082-x.
  • Nawaji T, Yamashita N, Umeda H, Zhang S, Mizoguchi N, Seki M, Kitazawa T, Teraoka H. 2020. Cytochrome P450 expression and chemical metabolic activity before full liver development in zebrafish. Pharmaceuticals. 13(12):456. doi: 10.3390/ph13120456.
  • Neely SA, Lyons DA. 2021. Insights into central nervous system glial cell formation and function from zebrafish. Front Cell Dev Biol. 9:754606. doi: 10.3389/fcell.2021.754606.
  • OECD. 2007. Test no. 426: developmental neurotoxicity study. Paris: OECD.
  • OECD. 2018a. Developmental neurotoxicity study (OECD TG 426). Paris: OECD.
  • OECD. 2018b. Test no. 443: extended one-generation reproductive toxicity study. Paris: OECD.
  • Oh J, Shin HM, Kannan K, Busgang SA, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. 2022. Childhood exposure to per- and polyfluoroalkyl substances and neurodevelopment in the CHARGE case-control study. Environ Res. 215(Pt 2):114322. doi: 10.1016/j.envres.2022.114322.
  • Oikonomou G, Shaham S. 2011. The glia of Caenorhabditis elegans. Glia. 59(9):1253–1263. doi: 10.1002/glia.21084.
  • Oliver CR, Gourgou E, Bazopoulou D, Chronis N, Hart NJ. 2016. On-demand isolation and manipulation of C. elegans by in vitro maskless photopatterning. PLoS One. 11(1):e0145935. doi: 10.1371/journal.pone.0145935.
  • Orger MB, de Polavieja GG. 2017. Zebrafish behavior: opportunities and challenges. Annu Rev Neurosci. 40(1):125–147. doi: 10.1146/annurev-neuro-071714-033857.
  • Pamies D, Block K, Lau P, Gribaldo L, Pardo CA, Barreras P, Smirnova L, Wiersma D, Zhao L, Harris G, et al. 2018. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol Appl Pharmacol. 354:101–114. doi: 10.1016/j.taap.2018.02.003.
  • Panula P, Chen Y-C, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V. 2010. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiological Disorders. 40(1):46–57.
  • Paparella M, Bennekou SH, Bal-Price A. 2020. An analysis of the limitations and uncertainties of in vivo developmental neurotoxicity testing and assessment to identify the potential for alternative approaches. Reprod Toxicol. 96:327–336. doi: 10.1016/j.reprotox.2020.08.002.
  • Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. 2009. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn. 238(12):2975–3015. doi: 10.1002/dvdy.22113.
  • Peterson EK, Buchwalter DB, Kerby JL, LeFauve MK, Varian-Ramos CW, Swaddle JP. 2017. Integrative behavioral ecotoxicology: bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation. Curr Zool. 63(2):185–194. doi: 10.1093/cz/zox010.
  • Pistollato F, Mendoza de Gyves E, Carpi D, Bopp SK, Nunes C, Worth A, Bal-Price A. 2020. Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Environ Health. 19(1):23. doi: 10.1186/s12940-020-00578-x.
  • Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS. 2000. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res. 10(12):1890–1902. doi: 10.1101/gr.164800.
  • Qin J, Wheeler AR. 2006. Maze exploration and learning in C. elegans. Lab Chip. 2007(7):186–192.
  • Queirós L, Marques C, Pereira JL, Gonçalves FJM, Aschner M, Pereira P. 2021. Overview of chemotaxis behavior assays in Caenorhabditis elegans. Curr Protoc. 1(5):e120. eng.
  • Quinn CC, Wadsworth WG. 2008. Axon guidance: asymmetric signalling orients polarised outgrowth. Trends Cell Biol. 18(12):597–603. doi: 10.1016/j.tcb.2008.09.005.
  • Racz PI, Wildwater M, Rooseboom M, Kerkhof E, Pieters R, Yebra-Pimentel ES, Dirks RP, Spaink HP, Smulders C, Whale GF. 2017. Application of Caenorhabditis elegans (nematode) and Danio rerio embryo (zebrafish) as model systems to screen for developmental and reproductive toxicity of Piperazine compounds. Toxicol in Vitro. 44:11–16. doi: 10.1016/j.tiv.2017.06.002.
  • Rahmani A, Chew YL. 2021. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem. 159(3):417–451. doi: 10.1111/jnc.15510.
  • Randi F, Leifer AM. 2020. Measuring and modeling whole-brain neural dynamics in Caenorhabditis elegans. Curr Opin Neurobiol. 65:167–175. doi: 10.1016/j.conb.2020.11.001.
  • Rapti G. 2020. A perspective on C. elegans neurodevelopment: from early visionaries to a booming neuroscience research. J Neurogenet. 34(3–4):259–272. doi: 10.1080/01677063.2020.1837799.
  • Reemst K, Shahin H, Shahar OD. 2023. Learning and memory formation in zebrafish: protein dynamics and molecular tools. Front Cell Dev Biol. 11:1120984. doi: 10.3389/fcell.2023.1120984.
  • Rice D, Barone JS. 2000. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 108:511–533. doi: 10.2307/3454543.
  • Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD. 2011. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol Teratol. 33(6):608–617. doi: 10.1016/j.ntt.2011.07.007.
  • Roberts AC, Bill BR, Glanzman DL. 2013. Learning and memory in zebrafish larvae. Front Neural Circuits. 7:126. doi: 10.3389/fncir.2013.00126.
  • Rosa JGS, Lima C, Lopes-Ferreira M. 2022. Zebrafish larvae behavior models as a tool for drug screenings and pre-clinical trials: a review. Int J Mol Sci. 23(12):6647. doi: 10.3390/ijms23126647.
  • Rosca A, Coronel R, Moreno M, González R, Oniga A, Martín A, López V, González MDC, Liste I. 2020. Impact of environmental neurotoxic: current methods and usefulness of human stem cells. Heliyon. 6(12):e05773. doi: 10.1016/j.heliyon.2020.e05773.
  • Rubin LL, Staddon JM. 1999. The cell biology of the blood-brain barrier. Annu Rev Neurosci. 22(1):11–28. (doi: 10.1146/annurev.neuro.22.1.11.
  • Ruszkiewicz JA, Pinkas A, Miah MR, Weitz RL, Lawes MJA, Akinyemi AJ, Ijomone OM, Aschner M. 2018. C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol. 354:126–135. doi: 10.1016/j.taap.2018.03.016.
  • Sachana M, Shafer T, Terron A. 2021. Toward a better testing paradigm for developmental neurotoxicity: OECD efforts and regulatory considarations. Biology. 10(2):86. doi: 10.3390/biology10020086.
  • Sachana M, Willett A, Pistollato F, Bal-Price A. 2021. The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays. Reprod Toxicol. 103:159–170. doi: 10.1016/j.reprotox.2021.06.006.
  • Saint-Amant L. 2006. Development of motor networks in zebrafish embryos. Zebrafish. 3(2):173–190. doi: 10.1089/zeb.2006.3.173.
  • Sammi SR, Foguth RM, Nieves CS, De Perre C, Wipf P, McMurray CT, Lee LS, Cannon JR. 2019. Perfluorooctane sulfonate (PFOS) produces dopaminergic neuropathology in Caenorhabditis elegans. Toxicol Sci. 172(2):417–434. doi: 10.1093/toxsci/kfz191.
  • Sandner G, Konig A, Wallner M, Weghuber J. 2021. Alternative model organisms for toxicological fingerprinting of relevant parameters in food and nutrition. Crit Rev Food Sci Nutr. 62(22):5956–5982.
  • Sasakura H, Mori I. 2013. Behavioural plasticity, learning, and memory in C. elegans. Curr Opin Neurobiol. 23(1):92–99. doi: 10.1016/j.conb.2012.09.005.
  • Schmeisser S, Miccoli A, von Bergen M, Berggren E, Braeuning A, Busch W, Desaintes C, Gourmelon A, Grafström R, Harrill J, et al. 2023. New approach methodologies in human regulatory toxicology - Not if, but how and when! Environ Int. 178:108082. doi: 10.1016/j.envint.2023.108082.
  • Selderslaghs IWT, Hooyberghs J, De Coen W, Witters HE. 2010. Locomotor activity in zebrafish embryos: a new method to assess developmental neurotoxicity. Neurotoxicol Teratol. 32(4):460–471. doi: 10.1016/j.ntt.2010.03.002.
  • Shaham S. 2015. Glial development and function in the nervous system of Caenorhabditis elegans. Cold Spring Harb Perspect Biol. 7(4):a020578. doi: 10.1101/cshperspect.a020578.
  • Shan L, Heusinkveld HJ, Paul KC, Hughes S, Darweesh SKL, Bloem BR, Homberg JR. 2023. Towards improved screening of toxins for Parkinson’s risk. NPJ Parkinsons Dis. 9(1):169. doi: 10.1038/s41531-023-00615-9.
  • Shaye DD, Greenwald I. 2011. OrthoList: a compendium of C. elegans genes with human orthologs. PLoS One. 6(5):e20085. doi: 10.1371/journal.pone.0020085.
  • Sheets LP, Slikker JW. 2018. Animal/human concordance. In: Slikker Jr. W, Paule MG, Wang C, editors. Handbook of developmental neurotoxicology. 2nd ed. London: Academic Press; p. 527–538.
  • Shen Q, Truong L, Simonich MT, Huang C, Tanguay RL, Dong Q. 2020. Rapid well-plate assays for motor and social behaviors in larval zebrafish. Behav Brain Res. 391:112625. doi: 10.1016/j.bbr.2020.112625.
  • Shomrat T, Levin M. 2013. An automated training paradigm reveals long-term memory in planarians and its persistence through head regeneration. J Exp Biol. 216(Pt 20):3799–3810. eng.
  • Silva M, Pham N, Lewis C, Iyer S, Kwok E, Solomon G, Zeise L. 2015. A comparison of ToxCast test results with in vivo and other in vitro endpoints for neuro, endocrine, and developmental toxicities: a case study using Endosulfan and Methidathion. Birth Defects Res B Dev Reprod Toxicol. 104(2):71–89. doi: 10.1002/bdrb.21140.
  • Silva MV. 2020. Effects of low-dose chlorpyrifos on neurobehavior and potential mechanisms: a review of studies in rodents, zebrafish, and Caenorhabditis elegans. Birth Defects Res. 112(6):445–479. doi: 10.1002/bdr2.1661.
  • Smirnova L, Hogberg HT, Leist M, Hartung T. 2014. Developmental neurotoxicty - challenges in the 21st century and in vitro opportunities. ALTEX. 31(2):129–156.
  • Spinu N, Bal-Price A, Cronin MTD, Enoch SJ, Madden JC, Worth AP. 2019. Development and analysis of an adverse outcome pathway network for human neurotoxicity. Arch Toxicol. 93(10):2759–2772. doi: 10.1007/s00204-019-02551-1.
  • Stein GM, Murphy CT. 2012. the intersection of aging, longevity pathways, and learning and memory in C. elegans. Front Genet. 3(259):259. doi: 10.3389/fgene.2012.00259.
  • Stewart AM, Kalueff AV. 2012. The developing utility of zebrafish models for cognitive enhancers research. Curr Neuropharmacol. 10(3):263–271.
  • Stout R, Verkhratsky A, Parpura V. 2014. Caenorhabditis elegans glia modulate neuronal activity and behavior. Front Cell Neurosci. 8:67. doi: 10.3389/fncel.2014.00067.
  • Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, et al. 2012. Zebrafish embryos as an alternative to animal experiments–a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol. 33(2):128–132. doi: 10.1016/j.reprotox.2011.06.121.
  • Sulston JE, Horvitz HR. 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol. 56(1):110–156. doi: 10.1016/0012-1606(77)90158-0.
  • Sun H, Hobert O. 2023. Temporal transitions in the postembryonic nervous system of the nematode Caenorhabditis elegans: recent insights and open questions. Semin Cell Dev Biol. 142:67–80. doi: 10.1016/j.semcdb.2022.05.029.
  • Svara F, Förster D, Kubo F, Januszewski M, Dal Maschio M, Schubert PJ, Kornfeld J, Wanner AA, Laurell E, Denk W, et al. 2022. Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain. Nat Methods. 19(11):1357–1366. doi: 10.1038/s41592-022-01621-0.
  • Taylor RW, Hsieh YW, Gamse JT, Chuang CF. 2010. Making a difference together: reciprocal interactions in C. elegans and zebrafish asymmetric neural development. Development. 137(5):681–691. doi: 10.1242/dev.038695.
  • Thapar A, Cooper M, Rutter M. 2017. Neurodevelopmental disorders. Lancet Psychiatry. 4(4):339–346. doi: 10.1016/S2215-0366(16)30376-5.
  • Tilson HA. 1993. Neurobehavioral methods used in neurotoxicological research. Toxicol Lett. 68(1–2):231–240. doi: 10.1016/0378-4274(93)90134-j.
  • Van Damme S, De Fruyt N, Watteyne J, Kenis S, Peymen K, Schoofs L, Beets I. 2021. Neuromodulatory pathways in learning and memory: lessons from invertebrates. J Neuroendocrinol. 33(1):e12911. eng.
  • van Thriel C, Westerink RH, Beste C, Bale AS, Lein PJ, Leist M. 2012. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology. 33(4):911–924. doi: 10.1016/j.neuro.2011.10.002.
  • Vester A, Caudle WM. 2016. The synapse as a central target for neurodevelopmental susceptibility to pesticides. Toxics. 4(3):18. doi: 10.3390/toxics4030018.
  • Vorhees CV, Williams MT, Hawkey AB, Levin ED. 2021. Translating neurobehavioral toxicity across species from zebrafish to rats to humans: implications for risk assessment. Front Toxicol. 3:629229. doi: 10.3389/ftox.2021.629229.
  • Walter KM, Dach K, Hayakawa K, Giersiefer S, Heuer H, Lein PJ, Fritsche E. 2019. Ontogenetic expression of thyroid hormone signalling genes: an in vitro and in vivo species comparison. PLoS One. 14(9):e0221230. doi: 10.1371/journal.pone.0221230.
  • Wang Y, Gai T, Zhang L, Chen L, Wang S, Ye T, Zhang W. 2023. Neurotoxicity of bisphenol A exposure on Caenorhabditis elegans induced by disturbance of neurotransmitter and oxidative damage. Ecotoxicol Environ Saf. 252:114617. doi: 10.1016/j.ecoenv.2023.114617.
  • Wang Y, Liu SS, Huang P, Wang ZJ, Xu YQ. 2021. Assessing the combined toxicity of carbamate mixtures as well as organophosphorus mixtures to Caenorhabditis elegans using the locomotion behaviors as endpoints. Sci Total Environ. 760:143378. doi: 10.1016/j.scitotenv.2020.143378.
  • Weiner AMJ, Irijalba I, Gallego MP, Ibarburu I, Sainz L, Goñi-de-Cerio F, Quevedo C, Muriana A. 2024. Validation of a zebrafish developmental defects assay as a qualified alternative test for its regulatory use following the ICH S5(R3) guideline. Reprod Toxicol. 123:108513. doi: 10.1016/j.reprotox.2023.108513.
  • Wellenberg A, Weides L, Kurzke J, Hennecke T, Bornhorst J, Crone B, Karst U, Brinkmann V, Fritz G, Honnen S. 2021. Use of C. elegans as a 3R-compliant in vivo model for the chemoprevention of cisplatin-induced neurotoxicity. Exp Neurol. 341:113705. doi: 10.1016/j.expneurol.2021.113705.
  • White JG, Southgate E, Thomson JN, Brenner S. 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc London B. 314:1–340.
  • Wilson SW, Ross LS, Parrett T, S.s EJ. 1990. The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio. Development. 108(1):121–145. doi: 10.1242/dev.108.1.121.
  • Wittkowski P, Marx-Stoelting P, Violet N, Fetz V, Schwarz F, Oelgeschläger M, Schönfelder G, Vogl S. 2019. Caenorhabditis elegans as a promising alternative model for environmental chemical mixture effect assessment—a comparative study. Environ Sci Technol. 53(21):12725–12733. doi: 10.1021/acs.est.9b03266.
  • Witvliet D, Mulcahy B, Mitchell JK, Meirovitch Y, Berger DR, Wu Y, Liu Y, Koh WX, Parvathala R, Holmyard D, et al. 2021. Connectomes across development reveal principles of brain maturation. Nature. 596(7871):257–261. doi: 10.1038/s41586-021-03778-8.
  • Wu Y, Ghitani A, Christensen R, Santella A, Du Z, Rondeau G, Bao Z, Colón-Ramos D, Shroff H. 2011. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proc Natl Acad Sci U S A. 108(43):17708–17713. doi: 10.1073/pnas.1108494108.
  • Yan D, Zhang Y, Liu L, Yan H. 2016. Pesticide exposure and risk of Alzheimer’s disease: a systematic review and meta-analysis. Sci Rep. 6(1):32222. doi: 10.1038/srep32222.
  • Yoshimura S, Murray JI, Lu Y, Waterston RH, Shaham S. 2008. mls-2 and vab-3 control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans. Development. 135(13):2263–2275. doi: 10.1242/dev.019547.
  • Zhong X, Harris G, Smirnova L, Zufferey V, Sá RdCdSE, Baldino Russo F, Baleeiro Beltrao Braga PC, Chesnut M, Zurich M-G, Hogberg HT, et al. 2020. Antidepressant paroxetine exerts developmental neurotoxicity in an iPSC-derived 3D human brain model. Front Cell Neurosci. 14:25. doi: 10.3389/fncel.2020.00025.
  • Zhou R, Yu Y, Zhang W, Wang D, Bai Y, Wang Y, Bu Y. 2022. Sensory disturbance by six insecticides in the range of μg/L in Caenorhabditis elegans. Front Environ Sci. 10:859356. doi: 10.3389/fenvs.2022.859356.