386
Views
34
CrossRef citations to date
0
Altmetric
Research Article

The Mu Transpososome Through a Topological Lens

&
Pages 387-405 | Published online: 21 Oct 2008

REFERENCES

  • Aldaz H., Schuster E., Baker T. A. The interwoven architecture of the Mu transposase couples DNA synapsis to catalysis. Cell 1996; 85: 257–269, [INFOTRIEVE], [CSA]
  • Alen C., Sherratt D. J., Colloms S. D. Direct interaction of aminopeptidase A with recombination site DNA in Xer site-specific recombination. Embo J 1997; 16: 5188–5197, [INFOTRIEVE], [CSA], [CROSSREF]
  • Arnold P. H., Blake D. G., Grindley N. D., Boocock M. R., Stark W. M. Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J 1999; 18: 1407–1414, [INFOTRIEVE], [CSA], [CROSSREF]
  • Arnosti D. N., Kulkarni M. M. Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? J Cell Biochem 2005; 94: 890–898, [CSA]
  • Au T. K., Pathania S., Harshey R. M. True reversal of Mu integration. EMBO J 2004; 23: 3408–3420, [INFOTRIEVE], [CSA], [CROSSREF]
  • Baker T. A., Luo L. Identification of residues in the Mu transposase essential for catalysis. Proc Natl Acad Sci USA 1994; 91: 6654–6658, [INFOTRIEVE], [CSA], [CROSSREF]
  • Baker T. A., Mizuuchi K. DNA-promoted assembly of the active tetramer of the Mu transposase. Genes Dev 1992; 6: 2221–2232, [INFOTRIEVE], [CSA]
  • Beatty L. G., Babineau-Clary D., Hogrefe C., Sadowski P. D. FLP site-specific recombinase of yeast 2-micron plasmid. Topological features of the reaction. J Mol Biol 1986; 188: 529–544, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bednarz A. L., Boocock M. R., Sherratt D. J. Determinants of correct res site alignment in site-specific recombination by Tn3 resolvase. Genes Dev 1990; 4: 2366–2375, [INFOTRIEVE], [CSA]
  • Boocock M. R., Brown J. L., Sherratt D. J. Structural and catalytic properties of specific complexes between Tn3 resolvase and the recombination site res. Biochem Soc Trans 1986; 14: 214–216, [INFOTRIEVE], [CSA]
  • Chaconas G., Harshey R. M. Transposition of phage Mu DNA. Mobile DNA II, N. L. Craig, R. Craigie, M. Gellert, A. M. Lambowitz. ASM Press, Washington, DC 2002; 384–402
  • Chen Y., Narendra U., Iype L. E., Cox M. M., Rice P. A. Crystal structure of a Flp recombinase-holliday junction complex. Assembly of an active oligomer by helix swapping. Mol Cell 2000; 6: 885–897, [INFOTRIEVE], [CSA]
  • Colloms S. D., Bath J., Sherratt D. J. Topological selectivity in Xer site-specific recombination. Cell 1997; 88: 855–864, [INFOTRIEVE], [CSA], [CROSSREF]
  • Cozzarelli N. R., Boles T. C., White J. Primer on the topology and geometry of DNA supercoiling. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1990
  • Cozzarelli N. R., Krasnow M. A., Gerrard S. P., White J. A topological treatment of recombination and topoisomerases. Cold Spring Harbor Symp Quant Biol 1984; 49: 383–400, [INFOTRIEVE], [CSA]
  • Craig N. L. Tn7. Mobile DNA II, N. L. Craig, R. Craigie, M. Gellert, A. M. Lambowitz. ASM Press, Washington, DC 2002; 423–456
  • Craig N. L., Craigie R., Gellert M., Lambowitz A. Mobile DNA II. ASM Press, Washington, DC 2002
  • Craigie R., Mizuuchi K. Role of DNA topology in Mu transposition: mechanism of sensing the relative orientation of two DNA segments. Cell 1986; 45: 793–800, [INFOTRIEVE], [CSA], [CROSSREF]
  • Craigie R., Mizuuchi M., Mizuuchi K. Site-specific recognition of the bacteriophage Mu ends by the Mu A protein. Cell 1984; 39: 387–394, [INFOTRIEVE], [CSA], [CROSSREF]
  • Crisona N. J., Kanaar R., Gonzalez T. N., Zechiedrich E. L., Klippel A., Cozzarelli N. R. Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange. J Mol Biol 1994; 243: 437–457, [INFOTRIEVE], [CSA], [CROSSREF]
  • Crisona N. J., Weinberg R. L., Peter B. J., Sumners D. W., Cozzarelli N. R. The topological mechanism of phage lambda integrase. J Mol Biol 1999; 289: 747–775, [INFOTRIEVE], [CSA], [CROSSREF]
  • Davies D. R., Braam L. M., Reznikoff W. S., Rayment I. The three-dimensional structure of a Tn5 transposase-related protein determined to 2.9-A resolution. J Biol Chem 1999; 274: 11904–11913, [INFOTRIEVE], [CSA], [CROSSREF]
  • Davies D. R., Goryshin I. Y., Reznikoff W. S., Rayment I. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 2000; 289: 77–85, [INFOTRIEVE], [CSA], [CROSSREF]
  • Dhar G., Sanders E. R., Johnson R. C. Architecture of the hin synaptic complex during recombination: the recombinase subunits translocate with the DNA strands. Cell 2004; 119: 33–45, [INFOTRIEVE], [CSA], [CROSSREF]
  • Grainge I., Buck D., Jayaram M. Geometry of site alignment during int family recombination: antiparallel synapsis by the flp recombinase. J Mol Biol 2000; 298: 749–764, [INFOTRIEVE], [CSA], [CROSSREF]
  • Grainge I., Pathania S., Vologodskii A., Harshey R. M., Jayaram M. Symmetric DNA sites are functionally asymmetric within Flp and Cre site-specific DNA recombination synapses. J Mol Biol 2002; 320: 515–527, [INFOTRIEVE], [CSA], [CROSSREF]
  • Grindley N. D. The movement of Tn3 like elements: Transposition and cointegrate resolution. Mobile DNA II, N. L. Craig, R. Craigie, M. Gellert, A. M. Lambowitz. ASM Press, Washington, DC 2002; 272–302
  • Gueguen E., Rousseau P., Duval-Valentin G., Chandler M. The transpososome: control of transposition at the level of catalysis. Trends Microbiol 2005; 13: 543–549, [INFOTRIEVE], [CSA], [CROSSREF]
  • Guo F., Gopaul D. N., Van Duyne G. D. Structure of Cre recombinase complexed with DNA in a site-specific recombinase synapse. Nature 1997; 389: 40–46, [INFOTRIEVE], [CSA], [CROSSREF]
  • Haffter P., Bickle T. A. Enhancer-independent mutants of the Cin recombinase have a relaxed topological specificity. EMBO J 1988; 7: 3991–3996, [INFOTRIEVE], [CSA]
  • Haniford D. Transposon Tn. Mobile DNA II, N. L. Craigie, R. Craigie, M. Gellert, A. M. Lambowitz. ASM Press, Washington, DC 2002; 457–483
  • Harshey R. M., Getzoff E. D., Baldwin D. L., Miller J. L., Chaconas G. Primary structure of phage Mu transposase: homology to Mu repressor. Proc Natl Acad Sci USA 1985; 82: 7676–7680, [INFOTRIEVE], [CSA], [CROSSREF]
  • Heichman K. A., Johnson R. C. The Hin invertasome: Protein-mediated joining of distant recombination sites at the enhancer. Science 1990; 249: 511–517, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jayaram M., Tribble G., Grainge I. Site-specific recombination by the Flp protein of Saccharomyces cerevisiae. Mobile DNA II, N. L. Craig, R. Craigie, M. Gellert, A. M. Lambowitz. ASM Press, Washington, DC 2002; 192–218
  • Jiang H., Harshey R. M. The Mu enhancer is functionally asymmetric both in cis and in trans. Topological selectivity of Mu transposition is enhancer-independent. J Biol Chem 2001; 276: 4373–4381, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jiang H., Yang J. Y., Harshey R. M. Criss-crossed interactions between the enhancer and the att sites of phage Mu during DNA transposition. EMBO J 1999; 18: 3845–3855, [INFOTRIEVE], [CSA], [CROSSREF]
  • Johnson R. Bacterial site-specific DNA inversion systems. Mobile DNA II, N. L. Craig, R. Craigie, M. Gellert, A. M. Lambowitz. ASM Press, Washington, DC 2002; 230–271
  • Kanaar R., Klippel A., Shekhtman E., Dungan J. M., Kahmann R., Cozzarelli N. R. Processive recombination by the phage Mu Gin system: implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action. Cell 1990; 62: 353–366, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kazazian H. H., Jr. Mobile elements: drivers of genome evolution. Science 2004; 303: 1626–1632, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kilbride E., Boocock M. R., Stark W. M. Topological selectivity of a hybrid site-specific recombination system with elements from Tn3 res resolvase and bacteriophage P1 loxP Cre. J Mol Biol 1999; 289: 1219–1230, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kim K., Namgoong S. Y., Jayaram M., Harshey R. M. Step-arrest mutants of phage Mu transposase. Implications in DNA-protein assembly, Mu end cleavage, and strand transfer. J Biol Chem 1995; 270: 1472–1479, [INFOTRIEVE], [CSA], [CROSSREF]
  • Klippel A., Cloppenborg K., Kahmann R. Isolation and characterization of unusual gin mutants. EMBO J 1988; 7: 3983–3989, [INFOTRIEVE], [CSA]
  • Kobryn K., Watson M. A., Allison R. G., Chaconas G. The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment. Mol Cell 2002; 10: 659–669, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kuo C. F., Zou A. H., Jayaram M., Getzoff E., Harshey R. DNA-protein complexes during attachment-site synapsis in Mu DNA transposition. EMBO J 1991; 10: 1585–1591, [INFOTRIEVE], [CSA]
  • Lavoie B. D., Chan B. S., Allison R. G., Chaconas G. Structural aspects of a higher order nucleoprotein complex: induction of an altered DNA structure at the Mu-host junction of the Mu type 1 transpososome. EMBO J 1991; 10: 3051–3059, [INFOTRIEVE], [CSA]
  • Lavoie B. D., Shaw G. S., Millner A., Chaconas G. Anatomy of a flexer-DNA complex inside a higher-order transposition intermediate. Cell 1996; 85: 761–771, [INFOTRIEVE], [CSA], [CROSSREF]
  • Lee I., Harshey R. M. The conserved CA TG motif at Mu termini: T specifies stable transpososome assembly. J Mol Biol 2003; 330: 261–275, [INFOTRIEVE], [CSA], [CROSSREF]
  • Leung P. C., Teplow D. B., Harshey R. M. Interaction of distinct domains in Mu transposase with Mu DNA ends and an internal transpositional enhancer. Nature 1989; 338: 656–658, [INFOTRIEVE], [CSA], [CROSSREF]
  • Li W., Kamtekar S., Xiong Y., Sarkis G. J., Grindley N. D., Steitz T. A. Structure of a synaptic gammadelta resolvase tetramer covalently linked to two cleaved DNAs. Science 2005; 309: 1210–1215, [INFOTRIEVE], [CSA], [CROSSREF]
  • Lovell S., Goryshin I. Y., Reznikoff W. R., Rayment I. Two-metal active site binding of a Tn5 transposase synaptic complex. Nat Struct Biol 2002; 9: 278–281, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mizuuchi K. In vitro transposition of bacteriophage Mu: a biochemical approach to a novel replication reaction. Cell 1983; 35: 785–794, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mizuuchi K. Mechanism of transposition of bacteriophage Mu: polarity of the strand transfer reaction at the initiation of transposition. Cell 1984; 39: 395–404, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mizuuchi K. Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu Rev Biochem 1992; 61: 1011–1051, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mizuuchi K. Polynucleotidyl transfer reactions in site-specific DNA recombination. Genes Cells 1997; 2: 1–12, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mizuuchi K., Adzuma K. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 1991; 66: 129–140, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mizuuchi M., Baker T. A., Mizuuchi K. Assembly of the active form of the transposase-Mu DNA complex: a critical control point in Mu transposition. Cell 1992; 70: 303–311, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mizuuchi M., Mizuuchi K. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation. Cell 1989; 58: 399–408, [INFOTRIEVE], [CSA], [CROSSREF]
  • Morgan G. J., Hatfull G. F., Casjens S., Hendrix R. W. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J Mol Biol 2002; 317: 337–359, [CSA], [CROSSREF]
  • Moskowitz I. P., Heichman K. A., Johnson R. C. Alignment of recombination sites in Hin-mediated site-specific DNA recombination. Genes Dev 1991; 5: 1635–1645, [INFOTRIEVE], [CSA]
  • Murley L. L., Grindley N. D. Architecture of the gamma delta resolvase synaptosome: oriented heterodimers identity interactions essential for synapsis and recombination. Cell 1998; 95: 553–562, [INFOTRIEVE], [CSA]
  • Naigamwalla D. Z., Chaconas G. A new set of Mu DNA transposition intermediates: alternate pathways of target capture preceding strand transfer. EMBO J 1997; 16: 5227–5234, [INFOTRIEVE], [CSA]
  • Nakai H., Doseeva V., Jones J. M. Handoff from recombinase to replisome: insights from transposition. Proc Natl Acad Sci USA 2001; 98: 8247–8254, [INFOTRIEVE], [CSA], [CROSSREF]
  • Nakayama C., Teplow D. B., Harshey R. M. Structural domains in phage Mu transposase: identification of the site-specific DNA-binding domain. Proc Natl Acad Sci USA 1987; 84: 1809–1813, [INFOTRIEVE], [CSA], [CROSSREF]
  • Namgoong S. Y., Harshey R. M. The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition. EMBO J 1998; 17: 3775–3785, [INFOTRIEVE], [CSA], [CROSSREF]
  • Pathania S., Jayaram M., Harshey R. M. Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils. Cell 2002; 109: 425–436, [INFOTRIEVE], [CSA], [CROSSREF]
  • Pathania S., Jayaram M., Harshey R. M. A unique right end-enhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition. EMBO J 2003; 22: 3725–3736, [INFOTRIEVE], [CSA], [CROSSREF]
  • Pato M. Bacteriophage Mu. Mobile DNA, D. E. Berg, M. M. Howe. American Society for Microbiology, Washington, DC 1989; 23–52
  • Pato M. L., Banerjee M. The Mu strong gyrase-binding site promotes efficient synapsis of the prophage termini. Mol Microbiol 1996; 22: 283–292, [INFOTRIEVE], [CSA], [CROSSREF]
  • Pato M. L., Howe M. M., Higgins N. P. A DNA gyrase-binding site at the center of the bacteriophage Mu genome is required for efficient replicative transposition. Proc Natl Acad Sci USA 1990; 87: 8716–8720, [INFOTRIEVE], [CSA], [CROSSREF]
  • Rice P. A. Making DNA do a U-turn: IHF and related proteins. Curr Opin Struct Biol 1997; 7: 86–93, [INFOTRIEVE], [CSA], [CROSSREF]
  • Rice P. A., Baker T. A. Comparative architecture of transposase and integrase complexes. Nat Struct Biol 2001; 8: 302–307, [CSA], [CROSSREF]
  • Rice P. A., Steitz T. A. Model for a DNA-mediated synaptic complex suggested by crystal packing of gamma delta resolvase subunits. EMBO J 1994; 13: 1514–1524, [INFOTRIEVE], [CSA]
  • Sarkis G. J., Murley L. L., Leschziner A. E., Boocock M. R., Stark W. M., Grindley N. D. A model for the gamma delta resolvase synaptic complex. Mol Cell 2001; 8: 623–631, [INFOTRIEVE], [CSA], [CROSSREF]
  • Savilahti H., Mizuuchi K. Mu transpositional recombination—donor DNA cleavage and strand transfer in trans By the Mu Transposase. Cell 1996; 85: 271–280, [INFOTRIEVE], [CSA], [CROSSREF]
  • Savilahti H., Rice P. A., Mizuuchi K. The phage Mu transpososome core—DNA requirements for assembly and function. EMBO J 1995; 14: 4893–4903, [INFOTRIEVE], [CSA]
  • Mobile Genetic Elements, J. A. Shapiro. Academic Press. 1983
  • Stark W. M., Sherratt D. J., Boocock M. R. Site-specific recombination by Tn3 resolvase: topological changes in the forward and reverse reactions. Cell 1989; 58: 779–790, [INFOTRIEVE], [CSA], [CROSSREF]
  • Sumners D. W., Ernst C., Spengler S. J., Cozzarelli N. R. Analysis of the mechanism of DNA recombination using tangles. Q Rev Biophysics 1995; 28: 253–313, [CSA]
  • Surette M. G., Buch S. J., Chaconas G. Transpososomes: stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA. Cell 1987; 49: 253–262, [INFOTRIEVE], [CSA], [CROSSREF]
  • Surette M. G., Chaconas G. A protein factor which reduces the negative supercoiling requirement in the Mu DNA strand transfer reaction is Escherichia coli integration host factor. J Biol Chem 1989; 264: 3028–3034, [INFOTRIEVE], [CSA]
  • Surette M. G., Chaconas G. The Mu transpositional enhancer can function in trans: requirement of the enhancer for synapsis but not strand cleavage. Cell 1992; 68: 1101–1108, [INFOTRIEVE], [CSA], [CROSSREF]
  • Surette M. G., Lavoie B. D., Chaconas G. Action at a distance in Mu DNA transposition: an enhancer-like element is the site of action of supercoiling relief activity by integration host factor (IHF). EMBO J 1989; 8: 3483–3489, [INFOTRIEVE], [CSA]
  • Cold Spring Harbor. Phage Mu, N. Symonds, A. Toussaint, P. Van de Putte, M. M. Howe. Cold Spring Harbor Laboratory Press, New York 1987
  • Van Duyne G. D. A structural view of tyrosine recombinase site-specific recombination. Mobile DNA II, N. L. Craig, R. Craigie, M. Gellert, A. M. Lambowitz. ASM Press, Washington, DC 2002; 93–117
  • Wang Z., Harshey R. M. Crucial role for DNA supercoiling in Mu transposition: a kinetic study. Proc Natl Acad Sci USA 1994; 91: 699–703, [INFOTRIEVE], [CSA], [CROSSREF]
  • Wang Z., Namgoong S.-Y., Zhang X., Harshey R. M. Kinetic and structural probing of the pre-cleavage synaptic complex (type 0) formed during phage Mu transposition: action of metal ions and reagents specific to single stranded DNA. J Biol Chem 1996; 271: 9619–9626, [INFOTRIEVE], [CSA], [CROSSREF]
  • Wasserman S. A., Cozzarelli N. R. Biochemical topology: applications to DNA recombination and replication. Science 1986; 232: 951–960, [INFOTRIEVE], [CSA], [CROSSREF]
  • Watson M. A., Chaconas G. Three-site synapsis during Mu DNA transposition: A critical intermediate preceding engagement of the active site. Cell 1996; 85: 435–445, [INFOTRIEVE], [CSA], [CROSSREF]
  • Wu Z., Chaconas G. The Mu transposase tetramer is inactive in unassisted strand transfer: an auto-allosteric effect of Mu A promotes the reaction in the absence of Mu B. J Mol Biol 1997; 267: 132–141, [INFOTRIEVE], [CSA], [CROSSREF]
  • Yang J. Y., Jayaram M., Harshey R. M. Enhancer-independent variants of phage Mu transposase—enhancer-specific stimulation of catalytic activity by a partner transposase. Genes Dev 1995; 9: 2545–2555, [INFOTRIEVE], [CSA]
  • Yang W., Steitz T. A. Crystal structure of the site-specific recombinase gamma delta resolvase complexed with a 34 bp cleavage site. Cell 1995; 82: 193–207, [INFOTRIEVE], [CSA], [CROSSREF]
  • Yin Z., Harshey R. M. Enhancer-independent Mu transposition from two topologically distinct synapses. Proc Natl Acad Sci USA 2005; 102: 18884–18889, [INFOTRIEVE], [CSA], [CROSSREF]
  • Yin Z., Jayaram M., Pathania S., Harshey R. M. The Mu transposase interwraps distant DNA sites within a functional transpososome in the absence of DNA supercoiling. J Biol Chem 2005; 280: 6149–6156, [INFOTRIEVE], [CSA], [CROSSREF]
  • Yuan J. F., Beniac D. R., Chaconas G., Ottensmeyer F. P. 3D reconstruction of the Mu transposase and the Type 1 transpososome: a structuralframework for Mu DNA transposition. Genes Dev 2005; 19: 840–852, [INFOTRIEVE], [CSA], [CROSSREF]
  • Zou A. H., Leung P. C., Harshey R. M. Transposase contacts with Mu DNA ends. J Biol Chem 1991; 266: 20476–20482, [INFOTRIEVE], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.