1,014
Views
73
CrossRef citations to date
0
Altmetric
Research Article

AAA+ ATPases in the Initiation of DNA Replication

&
Pages 163-187 | Published online: 11 Oct 2008

REFERENCES

  • Abbate E. A., Berger J. M., Botchan M. R. The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. Genes Dev 2004; 18: 1981–1996
  • Abe Y., Jo T., Matsuda Y., Matsunaga C., Katayama T., Ueda T. Structure and function of DNAA N-terminal domains: Specific sites and mechanisms in inter-DNAA interaction and in DNAB helicase loading on oriC. J Biol Chem 2007; 282: 17816–27
  • Alexandrov A. I., Botchan M. R., Cozzarelli N. R. Characterization of simian virus 40 T-antigen double hexamers bound to a replication fork. The active form of the helicase. J Biol Chem 2002; 277: 44886–44897
  • Amin A. A., Titolo S., Pelletier A., Fink D., Cordingley M. G., Archambault J. Identification of domains of the HPV11 E1 protein required for DNA replication in vitro. Virology 2000; 272: 137–150
  • Aparicio O. M., Weinstein D. M., Bell S. P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 1997; 91: 59–69
  • Aranovich A., Gdalevsky G. Y., Cohen-Luria R., Fishov I., Parola A. H. Membrane-catalyzed nucleotide exchange on DnaA. Effect of surface molecular crowding. J Biol Chem 2006; 281: 12526–12534
  • Arthur A. K., Hoss A., Fanning E. Expression of simian virus 40 T antigen in Escherichia coli: localization of T-antigen origin DNA-binding domain to within 129 amino acids. J Virol 1988; 62: 1999–2006
  • Atlung T., Clausen E. S., Hansen F. G. Autoregulation of the dnaA gene of Escherichia coli K12. Mol Gen Genet 1985; 200: 442–450
  • Barry E. R., Bell S. D. DNA replication in the archaea. Microbiol Mol Biol Rev 2006; 70: 876–887
  • Bell S. P., Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem 2002; 71: 333–374
  • Bell S. P., Mitchell J., Leber J., Kobayashi R., Stillman B. The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell 1995; 83: 563–568
  • Bell S. P., Stillman B. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 1992; 357: 128–134
  • Berquist B. R., DasSarma S. An archaeal chromosomal autonomously replicating sequence element from an extreme halophile, Halobacterium sp. strain NRC-1. J Bacteriol 2003; 185: 5959–5966
  • Borowiec J. A., Dean F. B., Bullock P. A., Hurwitz J. Binding and unwinding—how T antigen engages the SV40 origin of DNA replication. Cell 1990; 60: 181–184
  • Borowiec J. A., Hurwitz J. Localized melting and structural changes in the SV40 origin of replication induced by T-antigen. EMBO J 1988; 7: 3149–3158
  • Bowers J. L., Randell J. C., Chen S., Bell S. P. ATP hydrolysis by ORC catalyzes reiterative Mcm2-7 assembly at a defined origin of replication. Mol Cell 2004; 16: 967–978
  • Bowman G. D., O'Donnell M., Kuriyan J. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 2004; 429: 724–730
  • Boye E., Stokke T., Kleckner N., Skarstad K. Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc Natl Acad Sci USA 1996; 93: 12206–12211
  • Bramhill D., Kornberg A. Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 1988; 52: 743–755
  • Braun R. E., O'Day K., Wright A. Autoregulation of the DNA replication gene dnaA in E. coli K-12. Cell 1985; 40: 159–169
  • Brewer B. J., Fangman W. L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 1987; 51: 463–471
  • Bullock P. A. The initiation of simian virus 40 DNA replication in vitro. Crit Rev Biochem Mol Biol 1997; 32: 503–568
  • Bult C. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 1996; 273: 1058–1073
  • Camara J. E., Skarstad K., Crooke E. Controlled initiation of chromosomal replication in Escherichia coli requires functional Hda protein. J Bacteriol 2003; 185: 3244–3248
  • Capaldi S. A., Berger J. M. Biochemical characterization of Cdc6/Orc1 binding to the replication origin of the euryarchaeon Methanothermobacter thermoautotrophicus. Nucleic Acids Res 2004; 32: 4821–4832
  • Caruthers J. M., McKay D. B. Helicase structure and mechanism. Curr Opin Struct Biol 2002; 12: 123–133
  • Castella S., Bingham G., Sanders C. M. Common determinants in DNA melting and helicase-catalysed DNA unwinding by papillomavirus replication protein E1. Nucleic Acids Res 2006a; 34: 3008–3019
  • Castella S., Burgin D., Sanders C. M. Role of ATP hydrolysis in the DNA translocase activity of the bovine papillomavirus (BPV-1) E1 helicase. Nucleic Acids Res 2006b; 34: 3731–3741
  • Chakraborty T., Yoshinaga K., Lother H., Messer W. Purification of the E. coli dnaA gene product. EMBO J 1982; 1: 1545–1549
  • Chen G., Stenlund A. Sequential and ordered assembly of E1 initiator complexes on the papillomavirus origin of DNA replication generates progressive structural changes related to melting. Mol Cell Biol 2002; 22: 7712–7720
  • Chen G., Stenlund A. Characterization of the DNA-binding domain of the bovine papillomavirus replication initiator E1. J. Virol 1998; 72: 2567–2576
  • Chen Y. J., Yu X., Kasiviswanathan R., Shin J. H., Kelman Z., Egelman E. H. Structural polymorphism of Methanothermobacter thermautotrophicus MCM. J Mol Biol 2005; 346: 389–394
  • Chesnokov I., Gossen M., Remus D., Botchan M. Assembly of functionally active Drosophila origin recognition complex from recombinant proteins. Genes Dev 1999; 13: 1289–1296
  • Chong J. P., Hayashi M. K., Simon M. N., Xu R. M., Stillman B. A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. Proc Natl Acad Sci USA 2000; 97: 1530–1535
  • Clarey M. G., Erzberger J. P., Grob P., Leschziner A. E., Berger J. M., Nogales E., Botchan M. Nucleotide-dependent conformational changes in the DnaA-like core of the origin recognition complex. Nat Struct Mol Biol 2006; 13: 684–690
  • Costa A., Pape T., van Heel M., Brick P., Patwardhan A., Onesti S. Structural basis of the Methanothermobacter thermautotrophicus MCM helicase activity. Nucleic Acids Res 2006a; 34: 5829–5838
  • Costa A., Pape T., van Heel M., Brick P., Patwardhan A., Onesti S. Structural studies of the archaeal MCM complex in different functional states. J Struct Biol 2006b; 156: 210–219
  • Craig N. E. coli integration host factor binds to specific sites in DNA. Cell 1984; 39: 707–716
  • Cunningham E. L., Berger J. M. Unraveling the early steps of prokaryotic replication. Curr Opin Struct Biol 2005; 15: 68–76
  • Cvetic C., Walter J. C. Eukaryotic origins of DNA replication: could you please be more specific?. Semin Cell Dev Biol 2005; 16: 343–353
  • Davey M. J., Fang L., McInerney P., Georgescu R. E., O'Donnell M. The DnaC helicase loader is a dual ATP/ADP switch protein. EMBO J 2002a; 21: 3148–3159
  • Davey M. J., Jeruzalmi D., Kuriyan J., O'Donnell M. Motors and switches: AAA+ machines within the replisome. Nat Rev Mol Cell Biol 2002b; 3: 826–835
  • Davey M. J., O'Donnell M. Replicative helicase loaders: ring breakers and ring makers. Curr Biol 2003; 13: R594–R596
  • De Felice M., Esposito L., Pucci B., De Falco M., Rossi M., Pisani F. M. A CDC6-like factor from the archaea Sulfolobus solfataricus promotes binding of the mini-chromosome maintenance complex to DNA. J Biol Chem 2004; 279: 43008–43012
  • Dean F. B., Borowiec J. A., Ishimi Y., Deb S., Tegtmeyer P., Hurwitz J. Simian virus 40 large tumor antigen requires three core replication origin domains for DNA unwinding and replication in vitro. Proc Natl Acad Sci USA 1987a; 84: 8267–8271
  • Dean F. B., Bullock P., Murakami Y., Wobbe C. R., Weissbach L., Hurwitz J. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc Natl Acad Sci USA 1987b; 84: 16–20
  • DeFelice M. A CDC6-like factor from the archaea Sulfolobus solfataricus promotes binding of the mini-chromosome maintenance complex to DNA. J Biol Chem 2004; 279: 43008–43012
  • Diffley J. F., Cocker J. H., Dowell S. J., Harwood J., Rowley A. Stepwise assembly of initiation complexes at budding yeast replication origins during the cell cycle. J Cell Sci Suppl 1995; 19: 67–72
  • Diffley J. F., Stillman B. Purification of a yeast protein that binds to origins of DNA replication and a transcriptional silencer. Proc Natl Acad Sci USA 1988; 85: 2120–2124
  • Dueber E. L., Corn J. E., Bell S. D., Berger J. M. Replication origin recognition and deformation by a heterodimeric archaeal Orc1 complex. Science 2007; 317: 1210–1213
  • Edgell D. R., Doolittle W. F. Archaea and the origin(s) of DNA replication proteins. Cell 1997; 89: 995–998
  • Egan E. S., Waldor M. K. Distinct replication requirements for the two Vibrio cholerae chromosomes. Cell 2003; 114: 521–530
  • Enemark E. J., Chen G., Vaughn D. E., Stenlund A., Joshua-Tor L. Crystal structure of the DNA binding domain of the replication initiation protein E1 from papillomavirus. Mol Cell 2000; 6: 149–158
  • Enemark E. J., Joshua-Tor L. Mechanism of DNA translocation in a replicative hexameric helicase. Nature 2006; 442: 270–275
  • Enemark E. J., Stenlund A., Joshua-Tor L. Crystal structures of two intermediates in the assembly of the papillomavirus replication initiation complex. EMBO J 2002; 21: 1487–1496
  • Erzberger J. P., Berger J. M. Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 2006; 35: 93–114
  • Erzberger J. P., Mott M. L., Berger J. M. Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat Struct Mol Biol 2006; 13: 676–683
  • Erzberger J. P., Pirruccello M. M., Berger J. M. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. EMBO J 2002; 21: 4763–4773
  • Fang L., Davey M. J., O'Donnell M. Replisome assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol Cell 1999; 4: 541–553
  • Fanning E. Introduction to simian virus 40: getting by with more than a little help from its host cell. Devel Biol Stand 1998; 94: 3–8
  • Fanning E., Knippers R. Structure and function of simian virus 40 large tumor antigen. Annu Rev Biochem 1992; 61: 55–85
  • Ferran M. C., McBride A. A. Transient viral DNA replication and repression of viral transcription are supported by the C-terminal domain of the bovine papillomavirus type 1 E1 protein. J Virol 1998; 72: 796–801
  • Filutowicz M. Involvement of Fis protein in replication of the Escherichia coli chromosome. J Bacteriol 1992; 174: 398–407
  • Filutowicz M. The requirement of IHF protein for extrachromosomal replication of the Escherichia coli oriC in a mutant deficient in DNA polymerase I activity. New Biologist 1990; 2: 818–827
  • Fletcher R. J., Bishop B. E., Leon R. P., Sclafani R. A., Ogata C. M., Chen X. S. The structure and function of MCM from archaeal M. Thermoautotrophicum. Nat Struct Biol 2003; 10: 160–167
  • Fodje M. N., Hansson A., Hansson M., Olsen J. G., Gough S., Willows R. D., Al-Karadaghi S. Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 2001; 311: 111–122
  • Forterre P., Brochier C., Philippe H. Evolution of the Archaea. Theor Popul Biol 2002; 61: 409–422
  • Fouts E. T., Yu X., Egelman E. H., Botchan M. R. Biochemical and electron microscopic image analysis of the hexameric E1 helicase. J Biol Chem 1999; 274: 4447–4458
  • Fujikawa N., Kurumizaka H., Nureki O., Terada T., Shirouzu M., Katayama T., Yokoyama S. Structural basis of replication origin recognition by the DnaA protein. Nucleic Acids Res 2003; 31: 2077–2086
  • Fuller R. S., Funnell B. E., Kornberg A. The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites. Cell 1984; 38: 889–900
  • Funnell B. E., Baker T. A., Kornberg A. In vitro assembly of a prepriming complex at the origin of the Escherichia coli chromosome. J Biol Chem 1987; 262: 10327–10334
  • Gai D., Li D., Finkielstein C. V., Ott R. D., Taneja P., Fanning E., Chen X. S. Insights into the oligomeric states, conformational changes, and helicase activities of SV40 large tumor antigen. J Biol Chem 2004a; 279: 38952–38959
  • Gai D., Zhao R., Li D., Finkielstein C. V., Chen X. S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 2004b; 119: 47–60
  • Gambus A. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nature Cell Biol 2006; 8: 358–366
  • Gaudier M., Schuwirth B. S., Westcott S. L., Wigley D. B. Structural basis of DNA replication origin recognition by an ORC protein. Science 2007; 317: 1213–1216
  • Gille H. The FIS protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli. Nucleic Acids Res 1991; 19: 4167–4172
  • Gille H., Messer W. Localized DNA melting and structural pertubations in the origin of replication, oriC, of Escherichia coli in vitro and in vivo. EMBO J 1991; 10: 1579–1584
  • Gillespie P. J., Li A., Blow J. J. Reconstitution of licensed replication origins on Xenopus sperm nuclei using purified proteins. BMC Biochem 2001; 2: 15
  • Giraldo R. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol Rev 2003; 26: 533–554
  • Grabowski B., Kelman Z. Archeal DNA replication: eukaryal proteins in a bacterial context. Annu Rev Microbiol 2003; 57: 487–516
  • Grainge I., Gaudier M., Schuwirth B. S., Westcott S. L., Sandall J., Atanassova N., Wigley D. B. Biochemical analysis of a DNA replication origin in the archaeon Aeropyrum pernix. J Mol Biol 2006; 363: 355–369
  • Grainge I. Biochemical analysis of components of the pre-replication complex of Archaeoglobus fulgidus. Nucleic Acids Res 2003; 31: 4888–4898
  • Grimwade J. E., Ryan V. T., Leonard A. C. IHF redistributes bound initiator protein, DnaA, on supercoiled oriC of Escherichia coli. Mol Microbiol 2000; 35: 835–844
  • Grimwade J. E., Torgue J. J., McGarry K. C., Rozgaja T., Enloe S. T., Leonard A. C. Mutational analysis reveals Escherichia coli oriC interacts with both DnaA-ATP and DnaA-ADP during pre-RC assembly. Mol Microbio 2007; 66: 428–439
  • Guenther B., Onrust R., Sali A., O'Donnell M., Kuriyan J. Crystal structure of the delta' subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 1997; 91: 335–345
  • Gulbis J. M., Kazmirski S. L., Finkelstein J., Kelman Z., O'Donnell M., Kuriyan J. Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Eur J Biochem 2004; 271: 439–449
  • Harland R. M., Laskey R. A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell 1980; 21: 761–771
  • Hartman J. J., Vale R. D. Microtubule disassembly by ATP-dependent oligomerization of the AAA enzyme katanin. Science 1999; 286: 782–785
  • Hartwell L. H. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J Bacteriol 1973; 115: 966–974
  • Harvey K. J., Newport J. Metazoan origin selection: origin recognition complex chromatin binding is regulated by CDC6 recruitment and ATP hydrolysis. J Biol Chem 2003; 278: 48524–48528
  • Hassan A. K., Moriya S., Ogura M., Tanaka T., Kawamura F., Ogasawara N. Suppression of initiation defects of chromosome replication in Bacillus subtilis dnaA and oriC-deleted mutants by integration of a plasmid replicon into the chromosomes. J Bacteriol 1997; 179: 2494–2502
  • Heinzel S. S., Krysan P. J., Tran C. T., Calos M. P. Autonomous DNA replication in human cells is affected by the size and the source of the DNA. Mol Cell Biol 1991; 11: 2263–2272
  • Heller, Ryan C Marians, Kenneth J. Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 2006; 7: 932
  • Hiasa H., Marians K. J. Fis cannot support oriC DNA replication in vitro. J Biol Chem 1994; 269: 24999–25003
  • Hickman A. B., Dyda F. Binding and unwinding: SF3 viral helicases. Curr Opin Struct Biol 2005; 15: 77–85
  • Hofmann J. F., Beach D. cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J 1994; 13: 425–434
  • Holz A., Schaefer C., Gille H., Jueterbock W. R., Messer W. Mutations in the DnaA binding sites of the replication origin of Escherichia coli. Mol. Gen. Genet. 1992; 233: 81–88
  • Hsiao C. L., Carbon J. High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc Natl Acad Sci USA 1979; 76: 3829–3833
  • Hughes F. J., Romanos M. A. E1 protein of human papillomavirus is a DNA helicase/ATPase. Nucleic Acids Res 1993; 21: 5817–5823
  • Hwang D. S., Kornberg A. Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF. J Biol Chem 1992; 267: 23083–23086
  • Indiani C., O'Donnell M. The replication clamp-loading machine at work in the three domains of life. Nat Rev Mol Cell Biol 2006; 7: 751–761
  • Ishida T., Akimitsu N., Kashioka T., Hatano M., Kubota T., Ogata Y., Sekimizu K., Katayama T. DiaA, a novel DnaA-binding protein, ensures the timely initiation of Escherichia coli chromosome replication. J Biol Chem 2004; 279: 45546–45555
  • Ishimi Y. A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J Biol Chem 1997; 272: 24508–24513
  • Iyer L. M., Leipe D. D., Koonin E. V., Aravind L. Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 2004a; 146: 11–31
  • Iyer L. M., Makarova K. S., Koonin E. V., Aravind L. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Nucleic Acids Res 2004b; 32: 5260–5279
  • Jacob F., Brenner S., Cuzin F. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp Quant Biol 1963; 28: 329–348
  • Jeruzalmi D., O'Donnell M., Kuriyan J. Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 2001a; 106: 429–441
  • Jeruzalmi D., Yurieva O., Zhao Y., Young M., Stewart J., Hingorani M., O'Donnell M., Kuriyan J. Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III. Cell 2001b; 106: 417–428
  • Johnson A., Yao N. Y., Bowman G. D., Kuriyan J., O'Donnell M. The replication factor C clamp loader requires arginine finger sensors to drive DNA binding and proliferating cell nuclear antigen loading. J Biol Chem 2006; 281: 35531–35543
  • Kadoya R., Hassan A. K., Kasahara Y., Ogasawara N., Moriya S. Two separate DNA sequences within oriC participate in accurate chromosome segregation in Bacillus subtilis. Mol Microbiol 2002; 45: 73–87
  • Kaguni J. M. DnaA: controlling the initiation of bacterial DNA replication and more. Annu Rev Microbiol 2006; 60: 351–375
  • Kaguni J. M. Escherichia coli DnaA protein: the replication initiator. Mol Cells 1997; 7: 145–157
  • Kanemaki M., Sanchez-Diaz A., Gambus A., Labib K. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 2003; 423: 720–724
  • Kaplan D. L., Davey M. J., O'Donnell M. Mcm4, 6, 7 uses a “pump in ring” mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J Biol Chem 2003; 278: 49171–49182
  • Kasiviswanathan R., Shin J. H., Kelman Z. DNA binding by the Methanothermobacter thermautotrophicus Cdc6 protein is inhibited by the minichromosome maintenance helicase. J. Bacteriol 2006; 188: 4577–4580
  • Katayama T., Kubota T., Kurokawa K., Crooke E., Sekimizu K. The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 1998; 94: 61–71
  • Kato J., Katayama T. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli. EMBO J 2001; 20: 4253–4262
  • Kawakami H., Ozaki S., Suzuki S., Nakamura K., Senriuchi T., Su'etsugu M., Fujimitsu K., Katayama T. The exceptionally tight affinity of DnaA for ATP/ADP requires a unique aspartic acid residue in the AAA+ sensor 1 motif. Mol Microbiol 2006a; 62: 1310–1324
  • Kawakami H., Su'etsugu M., Katayama T. An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication. J Struct Biol 2006b; 156: 220–229
  • Kelman L. M., Kelman Z. Multiple origins of replication in archaea. Trends Microbiol 2004; 12: 399–401
  • Kelman L. M., Kelman Z. Archaea: an archetype for replication initiation studies?. Mol. Microbiol. 2003; 48: 605–615
  • Kelman Z., Lee J. K., Hurwitz J. The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum DeltaH contains DNA helicase activity. Proc Natl Acad Sci USA 1999; 96: 14783–14788
  • Kitagawa R., Mitsuki H., Okazaki T., Ogawa T. A novel DnaA protein-binding site at 94.7 min on the Escherichia coli chromosome. Mol Microbiol 1996; 19: 1137–1147
  • Kitchen J. L., Li Z., Crooke E. Electrostatic interactions during acidic phospholipid reactivation of DnaA protein, the Escherichia coli initiator of chromosomal replication. Biochemistry 1999; 38: 6213–6221
  • Klemm R. D., Austin R. J., Bell S. P. Coordinate binding of ATP and origin DNA regulates the ATPase activity of the origin recognition complex. Cell 1997; 88: 493–502
  • Kornberg A., Baker T. A. DNA Replication. W. H. Freeman and Company, New York 1992
  • Kowalski D., Eddy M. J. The DNA unwinding element: a novel, cis-acting component that facilitates opening of the Escherichia coli replication origin. EMBO J 1989; 8: 4335–4344
  • Kubota Y., Takase Y., Komori Y., Hashimoto Y., Arata T., Kamimura Y., Araki H., Takisawa H. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev 2003; 17: 1141–1152
  • Kumar A., Meinke G., Reese D. K., Moine S., Phelan P. J., Fradet-Turcotte A., Archambault J., Bohm A., Bullock P. A. Model for T-antigen-dependent melting of the simian virus 40 core origin based on studies of the interaction of the beta-hairpin with DNA. J Virol 2007; 81: 4808–4818
  • Kurokawa K., Nishida S., Emoto A., Sekimizu K., Katayama T. Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli. EMBO J 1999; 18: 6642–6652
  • Kuznetsov S. V., Sugimura S., Vivas P., Crothers D. M., Ansari A. Direct observation of DNA bending/unbending kinetics in complex with DNA-bending protein IHF. Proc Natl Acad Sci USA 2006; 103: 18515–18520
  • Lee D. G., Bell S. P. ATPase switches controlling DNA replication initiation. Curr Opin Cell Biol 2000; 12: 280–285
  • Lee D. G., Bell S. P. Architecture of the yeast origin recognition complex bound to origins of DNA replication. Mol Cell Biol 1997; 17: 7159–7168
  • Lee D. G., Makhov A. M., Klemm R. D., Griffith J. D., Bell S. P. Regulation of origin recognition complex conformation and ATPase activity: differential effects of single-stranded and double-stranded DNA binding. EMBO J 2000; 19: 4774–4782
  • Lee J. K., Moon K. Y., Jiang Y., Hurwitz J. The Schizosaccharomyces pombe origin recognition complex interacts with multiple AT-rich regions of the replication origin DNA by means of the AT-hook domains of the spOrc4 protein. Proc Natl Acad Sci USA 2001; 98: 13589–13594
  • Lei M., Kawasaki Y., Tye B. K. Physical interactions among Mcm proteins and effects of Mcm dosage on DNA replication in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16: 5081–5090
  • Leipe D. D., Koonin E. V., Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol 2003; 333: 781–815
  • Li D., Zhao R., Lilyestrom W., Gai D., Zhang R., DeCaprio J. A., Fanning E., Jochimiak A., Szakonyi G., Chen X. S. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature 2003; 423: 512–518
  • Liang C., Stillman B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev 1997; 11: 3375–3386
  • Lipford J. R., Bell S. P. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol Cell 2001; 7: 21–30
  • Liu J., Smith C. L., DeRyckere D., DeAngelis K., Martin G. S., Berger J. M. Structure and function of Cdc6/Cdc18: implications for origin recognition and checkpoint control. Mol Cell 2000; 6: 637–648
  • Liu X., Schuck S., Stenlund A. Adjacent residues in the E1 initiator beta-hairpin define different roles of the beta-hairpin in Ori melting, helicase loading, and helicase activity. Mol Cell 2007; 25: 825–837
  • Lopez P., Philippe H., Myllykallio H., Forterre P. Identification of putative chromosomal origins of replication in Archaea. Mol Microbiol 1999; 32: 883–886
  • Luo X., Sanford D. G., Bullock P. A., Bachovchin W. W. Solution structure of the origin DNA-binding domain of SV40 T-antigen. Nat Struct Biol 1996; 3: 1034–1039
  • Mackiewicz P., Zakrzewska-Czerwinska J., Zawilak A., Dudek M. R., Cebrat S. Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res 2004; 32: 3781–3791
  • Maki S. DNA polymerase III holoenzyme of Escherichia coli. II. A novel complex including the gamma subunit essential for processive synthesis. J Biol Chem 1988; 263: 6555–6560
  • Marahrens Y., Stillman B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 1992; 255: 817–823
  • Margulies C., Kaguni J. M. Ordered and sequential binding of DnaA protein to oriC, the chromosomal origin of Escherichia coli. J Biol Chem 1996; 271: 17035–17040
  • Mastrangelo I. A., Hough P. V., Wall J. S., Dodson M., Dean F. B., Hurwitz J. ATP-dependent assembly of double hexamers of SV40 T antigen at the viral origin of DNA replication. Nature 1989; 338: 658–662
  • Matsui M., Oka A., Takanami M., Yasuda S., Hirota Y. Sites of dnaA protein-binding in the replication origin of the Escherichia coli K-12 chromosome. J Mol Biol 1985; 184: 529–533
  • Matsunaga F., Forterre P., Ishino Y., Myllykallio H. In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin. Proc Natl Acad Sci USA 2001; 98: 11152–11157
  • Matsunaga F., Glatigny A., Mucchielli-Giorgi M. H., Agier N., Delacroix H., Marisa L., Durosay P., Ishino Y., Aggerbeck L., Forterre P. Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp. Nucleic Acids Res 2007; 35: 3214–3222
  • McGarry K. C., Ryan V. T., Grimwade J. E., Leonard A. C. Two discriminatory binding sites in the Escherichia coli replication origin are required for DNA strand opening by initiator DnaA-ATP. Proc Natl Acad Sci USA 2004; 101: 2811–2816
  • Mechali M., Kearsey S. Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell 1984; 38: 55–64
  • Meinke G., Bullock P. A., Bohm A. Crystal structure of the simian virus 40 large T-antigen origin-binding domain. J Virol 2006; 80: 4304–4312
  • Meinke G., Phelan P., Moine S., Bochkareva E., Bochkarev A., Bullock P. A., Bohm A. The crystal structure of the SV40 T-antigen origin binding domain in complex with DNA. PLoS Biol 2007; 5: e23
  • Mendez J., Stillman B. Perpetuating the double helix: molecular machines at eukaryotic DNA replication origins. Bioessays 2003; 25: 1158–1167
  • Mendoza R., Gandhi L., Botchan M. R. E1 recognition sequences in the bovine papillomavirus type 1 origin of DNA replication: interaction between half sites of the inverted repeats. J Virol 1995; 69: 3789–3798
  • Messer W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 2002; 26: 355–374
  • Messer W., Blaesing F., Majka J., Nardmann J., Schaper S., Schmidt A., Seitz H., Speck C., Tungler D., Wegrzyn G., et al. Functional domains of DnaA proteins. Biochimie 1999; 81: 819–825
  • Messer W., Weigel C. DnaA initiator–also a transcription factor. Mol Microbiol 1997; 24: 1–6
  • Miyata T., Suzuki H., Oyama T., Mayanagi K., Ishino Y., Morikawa K. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Proc Natl Acad Sci USA 2005; 102: 13795–13800
  • Mohr I. J., Clark R., Sun S., Androphy E. J., MacPherson P., Botchan M. R. Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. Science 1990; 250: 1694–1699
  • Moir D., Stewart S. E., Osmond B. C., Botstein D. Cold-sensitive cell-division-cycle mutants of yeast: isolation, properties, and pseudoreversion studies. Genetics 1982; 100: 547–563
  • Mott M. L., Berger J. M. DNA replication initiation: mechanisms and regulation in bacteria. Nat Rev Microbiol 2007; 5: 343–354
  • Moyer S. E., Lewis P. W., Botchan M. R. Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA 2006; 103: 10236–10241
  • Myllykallio H., Lopez P., Lopez-Garcia P., Heilig R., Saurin W., Zivanovic Y., Philippe H., Forterre P. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 2000; 288: 2212–2215
  • Naktinis V., Onrust R., Fang L., O'Donnell M. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. II. Intermediate complex between the clamp loader and its clamp. J Biol Chem 1995; 270: 13358–13365
  • Naktinis V., Turner J., O'Donnell M. A molecular switch in a replication machine defined by an internal competition for protein rings. Cell 1996; 84: 137–145
  • Natrajan G., Hall D. R., Thompson A. C., Gutsche I., Terradot L. Structural similarity between the DnaA-binding proteins HobA (HP1230) from Helicobacter pylori and DiaA from Escherichia coli. Mol Microbiol 2007; 65: 995–1005
  • Neuwald A. F., Aravind L., Spouge J. L., Koonin E. V. AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 1999; 9: 27–43
  • Ng W. V., Kennedy S. P., Mahairas G. G., Berquist B., Pan M., Shukla H. D., Lasky S. R., Baliga N. S., Thorsson V., Sbrogna J., et al. Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci USA 2000; 97: 12176–12181
  • Nievera C., Torgue J. J., Grimwade J. E., Leonard A. C. SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC. Mol Cell 2006; 24: 581–592
  • Nishida S., Fujimitsu K., Sekimizu K., Ohmura T., Ueda T., Katayama T. A nucleotide switch in the Escherichia coli DnaA protein initiates chromosomal replication: evidnece from a mutant DnaA protein defective in regulatory ATP hydrolysis in vitro and in vivo. J Biol Chem 2002; 277: 14986–14995
  • Nishitani H., Lygerou Z., Nishimoto T., Nurse P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 2000; 404: 625–628
  • Norais C., Hawkins M., Hartman A. L., Eisen J. A., Myllykallio H., Allers T. Genetic and physical mapping of DNA replication origins in Haloferax volcanii. PLoS Genet 2007; 3: e77
  • O'Donnell M., Kuriyan J. Clamp loaders and replication initiation. Curr Opin Struct Biol 2006; 16: 35–41
  • Ogawa T., Yamada Y., Kuroda T., Kishi T., Moriya S. The datA locus predominantly contributes to the initiator titration mechanism in the control of replication initiation in Escherichia coli. Mol Microbiol 2002; 44: 1367–1375
  • Ogura T., Whiteheart S. W., Wilkinson A. J. Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. J Struct Biol 2004; 146: 106–112
  • Ogura T., Wilkinson A. J. AAA+ superfamily ATPases: common structure–diverse function. Genes Cells 2001; 6: 575–597
  • Onrust R. Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader. J Biol Chem 1995; 270: 13348–13357
  • Onrust R. Analysis of the ATPase subassembly which initiates processive DNA synthesis by DNA polymerase III holoenzyme. J Biol Chem 1991; 266: 21681–21686
  • Ozaki S., Kawakami H., Nakamura K., Fujikawa N., Kagawa W., Park S. Y., Yokoyama S., Kurumizaka H., Katayama T. A common mechanism for the ATP-DnaA-dependent formation of open complexes at the replication origin. J Biol Chem 2008; 283: 8351–8362
  • Pacek M., Tutter A. V., Kubota Y., Takisawa H., Walter J. C. Localization of MCM2-7, Cdc45, and GINS to the site of DNA unwinding during eukaryotic DNA replication. Mol Cell 2006; 21: 581–587
  • Pacek M., Walter J. C. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J 2004; 23: 3667–3676
  • Pape T. Hexameric ring structure of the full-length archaeal MCM protein complex. EMBO Reports 2003; 4: 1079–1083
  • Perkins G., Diffley J. F. Nucleotide-dependent prereplicative complex assembly by Cdc6p, a homolog of eukaryotic and prokaryotic clamp-loaders. Mol Cell 1998; 2: 23–32
  • Polaczek P. Role of architectural elements in combinatorial regulation of initiation of DNA replication in Escherichia coli. Mol Microbiol 1997; 26: 261–275
  • Polaczek P. Bending of the origin of replication of E. coli by binding of IHF at a specific site. New Biologist. 1990; 2: 265–271
  • Poloumienko A. Completion of replication map of Saccharomyces cerevisiae chromosome III. Molecular Biol Cell. 2001; 12: 3317–3327
  • Prelich G., Kostura M., Marshak D. R., Mathews M. B., Stillman B. The cell-cycle regulated proliferating cell nuclear antigen is required for SV40 DNA replication in vitro. Nature 1987; 326: 471–475
  • Pritchard A. A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of deltadelta' with DnaX(4) forms DnaX(3)deltadelta'. The EMBO J 2000; 19: 6536–6545
  • Randell J. C., Bowers J. L., Rodriguez H. K., Bell S. P. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Mol Cell 2006; 21: 29–39
  • Ray S., Anderson M. E., Loeber G., McVey D., Tegtmeyer P. Functional characterization of temperature-sensitive mutants of simian virus 40 large T antigen. J Virol 1992; 66: 6509–6516
  • Reese D. K., Sreekumar K. R., Bullock P. A. Interactions required for binding of simian virus 40 T antigen to the viral origin and molecular modeling of initial assembly events. J Virol 2004; 78: 2921–2934
  • Remus D., Beall E. L., Botchan M. R. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J 2004; 23: 897–907
  • Rice P. A., Yang S., Mizuuchi K., Nash H. A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 1996; 87: 1295–1306
  • Robinson N. P., Bell S. D. Origins of DNA replication in the three domains of life. FEBS J 2005; 272: 3757–3766
  • Robinson N. P., Blood K. A., McCallum S. A., Edwards P. A., Bell S. D. Sister chromatid junctions in the hyperthermophilic archaeon Sulfolobus solfataricus. EMBO J 2007; 26: 816–824
  • Robinson N. P., Dionne I., Lundgren M., Marsh V. L., Bernander R., Bell S. D. Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus. Cell 2004; 116: 25–38
  • Roth A. Functions of histone-like proteins in the initiation of DNA replication at oriC of Escherichia coli. Biochimie 1994; 76: 917–923
  • Roth A., Messer W. The DNA binding domain of the initiator protein DnaA. EMBO J 1995; 14: 2106–2111
  • Ryan V. T., Grimwade J. E., Camara J. E., Crooke E., Leonard A. C. Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA. Mol Microbiol 2004; 51: 1347–1359
  • Sakakibara Y., Yuasa S. Continuous synthesis of the dnaA gene product of Escherichia coli in the cell cycle. Mol Gen Genet 1982; 186: 87–94
  • Sanders C. M., Stenlund A. Recruitment and loading of the E1 initiator protein: an ATP-dependent process catalysed by a transcription factor. EMBO J 1998; 17: 7044–7055
  • Sato M. Electron microscopic observation and single-stranded DNA binding activity of the Mcm4, 6, 7 complex. J Mol Biol. 2000; 300: 421–431
  • Schepers A., Diffley J. F. Mutational analysis of conserved sequence motifs in the budding yeast Cdc6 protein. J Mol Biol 2001; 308: 597–608
  • Schuck S., Stenlund A. ATP-dependent minor groove recognition of TA base pairs is required for template melting by the E1 initiator protein. J Virol 2007; 81: 3293–3302
  • Schuck S., Stenlund A. Assembly of a double hexameric helicase. Mol Cell 2005; 20: 377–389
  • Sedman J., Stenlund A. The papillomavirus E1 protein forms a DNA-dependent hexameric complex with ATPase and DNA helicase activities. J Virol 1998; 72: 6893–6897
  • Sedman J., Stenlund A. The initiator protein E1 binds to the bovine papillomavirus origin of replication as a trimeric ring-like structure. EMBO J 1996; 15: 5085–5092
  • Sedman J., Stenlund A. Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J 1995; 14: 6218–6228
  • Seitz H., Weigel C., Messer W. The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli. Mol Microbiol 2000; 37: 1270–1279
  • Seki T., Diffley J. F. Stepwise assembly of initiation proteins at budding yeast replication origins in vitro. Proc Natl Acad Sci USA 2000; 97: 14115–14120
  • Sekimizu K., Bramhill D., Kornberg A. ATP activates dnaA protein in initiating replication of plasmids bearing the origin of the E. coli chromosome. Cell 1987; 50: 259–265
  • Seo Y. S., Muller F., Lusky M., Hurwitz J. Bovine papilloma virus (BPV)-encoded E1 protein contains multiple activities required for BPV DNA replication. Proc Natl Acad Sci USA 1993; 90: 702–706
  • Seybert A., Scott D. J., Scaife S., Singleton M. R., Wigley D. B. Biochemical characterisation of the clamp/clamp loader proteins from the euryarchaeon Archaeoglobus fulgidus. Nucleic Acids Res 2002; 30: 4329–4338
  • Seybert A., Singleton M. R., Cook N., Hall D. R., Wigley D. B. Communication between subunits within an archaeal clamp-loader complex. EMBO J 2006; 25: 2209–2218
  • Seybert A., Wigley D. B. Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader. EMBO J 2004; 23: 1360–1371
  • She Q., Singh R. K., Confalonieri F., Zivanovic Y., Allard G., Awayez M. J., Chan-Weiher C. C., Clausen I. G., Curtis B. A., De Moors A., et al. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 2001; 98: 7835–7840
  • Shechter D. F., Ying C. Y., Gautier J. The intrinsic DNA helicase activity of Methanobacterium thermoautotrophicum delta H minichromosome maintenance protein. J Biol Chem. 2000; 275: 15049–15059
  • Shen J., Gai D., Patrick A., Greenleaf W. B., Chen X. S. The roles of the residues on the channel beta-hairpin and loop structures of simian virus 40 hexameric helicase. Proc Natl Acad Sci USA 2005; 102: 11248–11253
  • Shin J. H., Grabowski B., Kasiviswanathan R., Bell S. D., Kelman Z. Regulation of minichromosome maintenance helicase activity by Cdc6. J Biol Chem 2003; 278: 38059–38067
  • Simmons D. T., Upson R., Wun-Kim K., Young W. Biochemical analysis of mutants with changes in the origin-binding domain of simian virus 40 tumor antigen. J Virol 1993; 67: 4227–4236
  • Singleton M. R., Morales R., Grainge I., Cook N., Isupov M. N., Wigley D. B. Conformational changes induced by nucleotide binding in Cdc6/ORC from Aeropyrum pernix. J Mol Biol 2004; 343: 547–557
  • Slater S., Wold S., Lu M., Boye E., Skarstad K., Kleckner N. E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 1995; 82: 927–936
  • Speck C., Chen Z., Li H., Stillman B. ATPase-dependent cooperative binding of ORC and Cdc6 to origin DNA. Nat Struct Mol Biol 2005; 12: 965–971
  • Speck C., Messer W. Mechanism of origin unwinding: sequential binding of DnaA to double- and single-stranded DNA. EMBO J 2001; 20: 1469–1476
  • Speck C., Stillman B. Cdc6 ATPase activity regulates ORC x Cdc6 stability and the selection of specific DNA sequences as origins of DNA replication. J Biol Chem 2007; 282: 11705–11714
  • Speck C., Weigel C., Messer W. ATP- and ADP-dnaA protein, a molecular switch in gene regulation. EMBO J 1999; 18: 6169–6176
  • Stahl H., Droge P., Knippers R. DNA helicase activity of SV40 large tumor antigen. EMBO J. 1986; 5: 1939–1944
  • Stenlund A. Initiation of DNA replication: lessons from viral initiator proteins. Nat Rev Mol Cell Biol 2003; 4: 777–785
  • Story R. M., Steitz T. A. Structure of the recA protein-ADP complex. Nature 1992; 355: 374–376
  • Su'etsugu M., Shimuta T. R., Ishida T., Kawakami H., Katayama T. Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex. J Biol Chem 2005; 280: 6528–6536
  • Su'etsugu M., Takata M., Kubota T., Matsuda Y., Katayama T. Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex. Genes Cells 2004; 9: 509–522
  • Sugimura S., Crothers D. M. Stepwise binding and bending of DNA by Escherichia coli integration host factor. Proc Natl Acad Sci USA 2006; 103: 18510–18514
  • Sutton M. D., Carr K. M., Vicente M., Kaguni J. M. Escherichia coli DnaA protein. The N-terminal domain and loading of DnaB helicase at the E. coli chromosomal origin. J Biol Chem 1998; 273: 34255–34262
  • Sutton M. D., Kaguni J. M. The Escherichia coli dnaA gene: four functional domains. J Mol Biol 1997; 274: 546–561
  • Takahashi T. S., Wigley D. B., Walter J. C. Pumps, paradoxes and ploughshares: mechanism of the MCM2-7 DNA helicase. Trends Biochem Sci 2005; 30: 437–444
  • Takayama Y., Kamimura Y., Okawa M., Muramatsu S., Sugino A., Araki H. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev 2003; 17: 1153–1165
  • Theis J. F., Newlon C. S. The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence. Proc Natl Acad Sci USA 1997; 94: 10786–10791
  • Tsurimoto T., Stillman B. Replication factors required for SV40 DNA replication in vitro. I. DNA structure-specific recognition of a primer-template junction by eukaryotic DNA polymerases and their accessory proteins. J Biol Chem 1991; 266: 1950–1960
  • Tugal T., Zou-Yang X. H., Gavin K., Pappin D., Canas B., Kobayashi R., Hunt T., Stillman B. The Orc4p and Orc5p subunits of the Xenopus and human origin recognition complex are related to Orc1p and Cdc6p. J Biol Chem 1998; 273: 32421–32429
  • Ustav M., Ustav E., Szymanski P., Stenlund A. Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. EMBO J 1991; 10: 4321–4329
  • Valle M., Chen X. S., Donate L. E., Fanning E., Carazo J. M. Structural basis for the cooperative assembly of large T antigen on the origin of replication. J Mol Biol 2006; 357: 1295–1305
  • Valle M., Gruss C., Halmer L., Carazo J. M., Donate L. E. Large T-antigen double hexamers imaged at the simian virus 40 origin of replication. Mol Cell Biol 2000; 20: 34–41
  • Vashee S., Simancek P., Challberg M. D., Kelly T. J. Assembly of the human origin recognition complex. J Biol Chem 2001; 276: 26666–26673
  • Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1982; 1: 945–951
  • Walter J., Newport J. W. Regulation of replicon size in Xenopus egg extracts. Science 1997; 275: 993–995
  • Wang J. Nucleotide-dependent domain motions within rings of the RecA/AAA(+) superfamily. J Struct Biol 2004; 148: 259–267
  • Weigel C., Schmidt A., Seitz H., Tungler D., Welzeck M., Messer W. The N-terminus promotes oligomerization of the Escherichia coli initiator protein DnaA. Mol Microbiol 1999; 34: 53–66
  • Weigel C., Seitz H. Strand-specific loading of DnaB helicase by DnaA to a substrate mimicking unwound oriC. Mol Microbiol 2002; 46: 1149–1156
  • Weinreich M., Liang C., Stillman B. The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. Proc Natl Acad Sci USA 1999; 96: 441–446
  • Weisshart K., Taneja P., Jenne A., Herbig U., Simmons D. T., Fanning E. Two regions of simian virus 40 T antigen determine cooperativity of double-hexamer assembly on the viral origin of DNA replication and promote hexamer interactions during bidirectional origin DNA unwinding. J Virol 1999; 73: 2201–2211
  • Wilson V. G., Ludes-Meyers J. A bovine papillomavirus E1-related protein binds specifically to bovine papillomavirus DNA. J Virol 1991; 65: 5314–5322
  • Wilson V. G., West M., Woytek K., Rangasamy D. Papillomavirus E1 proteins: form, function, and features. Virus Genes 2002; 24: 275–290
  • Wittinghofer A., Scheffzek K., Ahmadian M. R. The interaction of Ras with GTPase-activating proteins. FEBS Lett 1997; 410: 63–67
  • Wold S., Crooke E., Skarstad K. The Escherichia coli Fis protein prevents initiation of DNA replication from oriC in vitro. Nucleic Acids Res 1996; 24: 3527–3532
  • Wyrick J. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 2001; 294: 2357–2360
  • Yabuta N. Mammalian Mcm2/4/6/7 complex forms a toroidal structure. Genes Cells 2003; 8: 413–421
  • Yang L., Mohr I., Fouts E., Lim D. A., Nohaile M., Botchan M. The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase. Proc Natl Acad Sci USA 1993; 90: 5086–5090
  • You Z. Biochemical analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity. Mole Cell Biol 1999; 19: 8003–8015
  • Yu X., VanLoock M. S., Poplawski A., Kelman Z., Xiang T., Tye B. K., Egelman E. H. The Methanobacterium thermoautotrophicum MCM protein can form heptameric rings. EMBO Rep 2002; 3: 792–797
  • Zakrzewska-Czerwinska J., Jakimowicz D., Zawilak-Pawlik A., Messer W. Regulation of the initiation of chromosomal replication in bacteria. FEMS Microbiol Rev 2007; 31: 378–387

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.