6,379
Views
660
CrossRef citations to date
0
Altmetric
Research Article

Structures and Mechanisms of Viral Membrane Fusion Proteins: Multiple Variations on a Common Theme

, , &
Pages 189-219 | Published online: 11 Oct 2008

REFERENCES

  • Abrahamyan L., Markosyan R., Moore J., Cohen F., Melikyan G. Human immunodeficiency virus type 1 Env with an intersubunit disulfide bond engages coreceptors but requires bond reduction after engagement to induce fusion. J Virol 2003; 77: 5829–5836
  • Abrahamyan L., Mkrtchyan S., Binley J., Lu M., Melikyan G., Cohen F. The cytoplasmic tail slows the folding of human immunodeficiency virus type 1 Env from a late prebundle configuration into the six-helix bundle. J Virol 2005; 79: 106–115
  • Adam B., Lins L., Stroobant V., Thomas A., Brasseur R. Distribution of hydrophobic residues is crucial for the fusogenic properties of the Ebola virus GP2 fusion peptide. J Virol 2004; 78: 2131–2136
  • Aguilar H. C., Matreyek K. A., Choi D. Y., Filone C. M., Young S., Lee B. Polybasic KKR motif in the cytoplasmic tail of Nipah virus fusion protein modulates membrane fusion by inside-out signaling. J Virol 2007; 81: 4520–4532
  • Aguilar H. C., Matreyek K. A., Filone C. M., Hashimi S. T., Levroney E. L., Negrete O. A., Bertolotti-Ciarlet A., Choi D. Y., McHardy I., Fulcher J. A., Su S. V., Wolf M. C., Kohatsu L., Baum L. G., Lee B. N-Glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J Virol 2006; 80: 4878–4889
  • Ahn A., Gibbons D., Kielian M. The fusion peptide of Semliki Forest virus associates with sterol-rich membrane domains. J Virol 2002; 76: 3267–3275
  • Armstrong R., Kushnir A., White J. The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J Cell Biol 2000; 151: 425–437
  • Atanasiu D., Whitbeck J. C., Cairns T. M., Reilly B., Cohen G. H., Eisenberg R. J. Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proc Natl Acad Sci U S A 2007; 104: 18718–18723
  • Babel A. R., Bruce J., Young J. A. The hr1 and fusion peptide regions of the subgroup B avian sarcoma and leukosis virus envelope glycoprotein influence low pH-dependent membrane fusion. PLoS ONE 2007; 2: e171
  • Backovic M., Jardetzky T. S., Longnecker R. Hydrophobic residues that form putative fusion loops of Epstein-Barr virus glycoprotein B are critical for fusion activity. J Virol 2007; 81: 9596–9600
  • Backovic M., Leser G., Lamb R., Longnecker R., Jardetzky T. Characterization of EBV gB indicates properties of both class I and class II viral fusion proteins. Virology 2007; 368: 102–113
  • Bar S., Takada A., Kawaoka Y., Alizon M. Detection of cell-cell fusion mediated by ebola virus glycoproteins. J Virol 2006; 80: 2815–2822
  • Bellamy-McIntyre A., Lay C., Baär S., Maerz A., Talbo G., Drummer H., Poumbourios P. Functional links between the fusion peptide-proximal polar segment and membrane-proximal region of human immunodeficiency virus gp41 in distinct phases of membrane fusion. J Biol Chem 2007; 282: 23104–23116
  • Beniac D., Devarennes S., Andonov A., He R., Booth T. Conformational Reorganization of the SARS coronavirus spike following receptor binding: Implications for membrane fusion. PLoS ONE 2007; 2: e1082
  • Bissonnette M. L., Connolly S. A., Young D. F., Randall R. E., Paterson R. G., Lamb R. A. Analysis of the pH requirement for membrane fusion of different isolates of the paramyxovirus parainfluenza virus 5. J Virol 2006; 80: 3071–3077
  • Blumenthal R., Sarkar D. P., Durell S., Howard D. E., Morris S. J. Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events. J Cell Biol 1996; 135: 63–71
  • Borrego-Diaz E., Peeples M. E., Markosyan R. M., Melikyan G. B., Cohen F. S. Completion of trimeric hairpin formation of influenza virus hemagglutinin promotes fusion pore opening and enlargement. Virology 2003; 316: 234–244
  • Bossart K. N., Broder C. C. Paramyxovirus entry. Viral Entry into Host Cells, S. Pohlmann, G. Simmons. Landes Bioscience, Austin, TX 2008, in press
  • Bressanelli S., Stiasny K., Allison S. L., Stura E. A., Duquerroy S., Lescar J., Heinz F. X., Rey F. A. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. Embo J 2004; 23: 728–738
  • Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 1994; 371: 37–43
  • Bultmann A., Muranyi W., Seed B., Haas J. Identification of two sequences in the cytoplasmic tail of the human immunodeficiency virus type 1 envelope glycoprotein that inhibit cell surface expression. J Virol 2001; 75: 5263–5276
  • Buzon V., Cladera J. Effect of cholesterol on the interaction of the HIV GP41 fusion peptide with model membranes. Importance of the membrane dipole potential. Biochemistry 2006; 45: 15768–15775
  • Chan D. C., Fass D., Berger J. M., Kim P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89: 263–273
  • Chan W. E., Lin H. H., Chen S. S. Wild-type-like viral replication potential of human immunodeficiency virus type 1 envelope mutants lacking palmitoylation signals. J Virol 2005; 79: 8374–8387
  • Chandran K., Sullivan N., Felbor U., Whelan S., Cunningham J. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 2005; 308: 1643–1645
  • Chanel-Vos C., Kielian M. A conserved histidine in the ij loop of the Semliki Forest virus E1 protein plays an important role in membrane fusion. J Virol 2004; 78: 13543–13552
  • Chen B., Vogan E., Gong H., Skehel J., Wiley D., Harrison S. Structure of an unliganded simian immunodeficiency virus gp120 core. Nature 2005; 433: 834–841
  • Chen B. J., Takeda M., Lamb R. A. Influenza virus hemagglutinin (H3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly. J Virol 2005; 79: 13673–13684
  • Chen J., Skehel J. J., Wiley D. C. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. Proc Natl Acad Sci USA 1999; 96: 8967–8972
  • Chen S. S., Lee S. F., Wang C. T. Cellular membrane-binding ability of the C-terminal cytoplasmic domain of human immunodeficiency virus type 1 envelope transmembrane protein gp41. J Virol 2001; 75: 9925–9938
  • Cheng S. F., Wu C. W., Kantchev E. A., Chang D. K. Structure and membrane interaction of the internal fusion peptide of avian sarcoma leukosis virus. Eur J Biochem 2004; 271: 4725–4736
  • Chernomordik L. V., Kozlov M. M. Membrane hemifusion: crossing a chasm in two leaps. Cell 2005; 123: 375–382
  • Chernomordik L. V., Zimmerberg J., Kozlov M. M. Membranes of the world unite!. J Cell Biol 2006; 175: 201–207
  • Chin J. F., Chu J. J., Ng M. L. The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect 2007; 9: 1–6
  • Chu V. C., McElroy L. J., Chu V., Bauman B. E., Whittaker G. R. The avian coronavirus infectious bronchitis virus undergoes direct low-pH-dependent fusion activation during entry into host cells. J Virol 2006; 80: 3180–3188
  • Clement C., Tiwari V., Scanlan P. M., Valyi-Nagy T., Yue B. Y., Shukla D. A novel role for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol 2006; 174: 1009–1021
  • Cleverley D. Z., Lenard J. The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc Natl Acad Sci USA 1998; 95: 3425–3430
  • Cohen F. S., Melikyan G. B. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J Membr Biol 2004; 199: 1–14
  • Connolly S., Leser G., Yin H., Jardetzky T., Lamb R. Refolding of a paramyxovirus F protein from pre-fusion to post-fusion conformations observed by liposome binding and electron microscopy. Proc Natl Acad Sci USA 2006; 103: 17903–17908
  • Corcoran J., Salsman J., de Antueno R., Touhami A., Jericho M., Clancy E., Duncan R. The p14 fusion-associated small transmembrane (FAST) protein effects membrane fusion from a subset of membrane microdomains. J Biol Chem 2006; 281: 31778–31789
  • Corey E. A., Iorio R. M. Mutations in the stalk of the measles virus hemagglutinin protein decrease fusion but do not interfere with virus-specific interaction with the homologous fusion protein. J Virol 2007; 81: 9900–9910
  • Corver J., Ortiz A., Allison S. L., Schalich J., Heinz F. X., Wilschut J. Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. Virology 2000; 269: 37–46
  • Cousens C., Maeda N., Murgia C., Dagleish M., Palmarini M., Fan H. In vivo tumorigenesis by Jaagsiekte sheep retrovirus (JSRV) requires Y590 in Env TM, but not full-length orfX open reading frame. Virology 2007; 367: 413–421
  • Crennell S., Takimoto T., Portner A., Taylor G. Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nat Struct Biol 2000; 7: 1068–1074
  • Damico R. L., Crane J., Bates P. Receptor-triggered membrane association of a model retroviral glycoprotein. Proc Natl Acad Sci USA 1998; 95: 2580–2585
  • Danieli T., Pelletier S. L., Henis Y. I., White J. M. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J Cell Biol 1996; 133: 559–569
  • Delboy M. G., Patterson J. L., Hollander A. M., Nicola A. V. Nectin-2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells. Virol J 2006; 3: 105
  • Delos S. E., Brecher M. B., Chen Z., Melder D. C., Federspiel M. J., White J. M. Cysteines flanking the internal fusion peptide enable the avian sarcoma/leukisus virus glycoprotein to mediate the lipid mixing stage of fusion with high efficiency. J. Virol. 2008; 82: 3131–3134
  • Delos S. E., Gilbert J. M., White J. M. The central proline of an internal viral fusion peptide serves two important roles. J Virol 2000; 74: 1686–1693
  • Delos S. E., Godby J. A., White J. M. Receptor-induced conformational changes in the SU subunit of the avian sarcoma/leukosis virus a envelope protein: Implications for fusion activation. J Virol 2005; 79: 3488–3499
  • Delos S. E., White J. M. Critical role for the cysteines flanking the internal fusion peptide of avian sarcoma/leukosis virus envelope glycoprotein. J Virol 2000; 74: 9738–9741
  • Dennison S. M., Greenfield N., Lenard J., Lentz B. R. VSV transmembrane domain (TMD) peptide promotes PEG-mediated fusion of liposomes in a conformationally sensitive fashion. Biochemistry 2002; 41: 14925–14934
  • Dimitrov A. S., Jacobs A., Finnegan C. M., Stiegler G., Katinger H., Blumenthal R. Exposure of the membrane-proximal external region of HIV-1 gp41 in the course of HIV-1 envelope glycoprotein-mediated fusion. Biochemistry 2007; 46: 1398–1401
  • Duelli D., Lazebnik Y. Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 2007; 7: 968–976
  • Durell S. R., Martin I., Ruysschaert J. M., Shai Y., Blumenthal R. What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review). Mol Membr Biol 1997; 14: 97–112
  • Dutch R. E., Lamb R. A. Deletion of the cytoplasmic tail of the fusion protein of the paramyxovirus simian virus 5 affects fusion pore enlargement. J Virol 2001; 75: 5363–5369
  • Earp L. J., Delos S. E., Netter R. C., Bates P., White J. M. The avian retrovirus avian sarcoma/leukosis virus subtype A reaches the lipid mixing stage of fusion at neutral pH. J Virol 2003; 77: 3058–3066
  • Earp L. J., Delos S. E., Park H. E., White J. M. The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol 2005; 285: 25–66
  • Eckert D. M., Kim P. S. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 2001; 70: 777–810
  • Eifart P., Ludwig K., Bottcher C., de Haan C. A., Rottier P. J., Korte T., Herrmann A. The role of endocytosis and low pH in cell entry of the murine hepatitis virus MHV-A59. J Virol 2007; 81: 10758–10768
  • Este J. A., Telenti A. HIV entry inhibitors. Lancet 2007; 370: 81–88
  • Fenouillet E., Barbouche R., Jones I. M. Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. Antioxid Redox Signal 2007; 9: 1009–1034
  • Ferlenghi I., Clarke M., Ruttan T., Allison S. L., Schalich J., Heinz F. X., Harrison S. C., Rey F. A., Fuller S. D. Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. Mol Cell 2001; 7: 593–602
  • Finnegan C., Berg W., Lewis G., DeVico A. Antigenic properties of the human immunodeficiency virus envelope during cell-cell fusion. J Virol 2001; 75: 11096–11105
  • Follis K., York J., Nunberg J. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology 2006; 350: 358–369
  • Frampton A. R., Jr., Stolz D. B., Uchida H., Goins W. F., Cohen J. B., Glorioso J. C. Equine herpesvirus 1 enters cells by two different pathways, and infection requires the activation of the cellular kinase ROCK1. J Virol 2007; 81: 10879–10889
  • Freed E. O., Mouland A. J. The cell biology of HIV-1 and other retroviruses. Retrovirology 2006; 3: 77
  • Freitas M. S., Gaspar L. P., Lorenzoni M., Almeida F. C., Tinoco L. W., Almeida M. S., Maia L. F., Degreve L., Valente A. P., Silva J. L. Structure of the Ebola fusion peptide in a membrane-mimetic environment and the interaction with lipid rafts. J Biol Chem 2007; 282: 27306–27314
  • Frey G., Rits-Volloch S., Zhang X. Q., Schooley R. T., Chen B., Harrison S. C. Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion. Proc Natl Acad Sci USA 2006; 103: 13938–13943
  • Furuta R., Wild C., Weng Y., Weiss C. Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol 1998; 5: 276–279
  • Gabrys C. M., Weliky D. P. Chemical shift assignment and structural plasticity of a HIV fusion peptide derivative in dodecylphosphocholine micelles. Biochim Biophys Acta 2007; 1768: 3225–3234
  • Galdiero S., Falanga A., Vitiello M., D'Isanto M., Collins C., Orrei V., Browne H., Pedone C., Galdiero M. Evidence for a role of the membrane-proximal region of herpes simplex virus Type 1 glycoprotein H in membrane fusion and virus inhibition. Chembiochem 2007; 8: 885–895
  • Gallo S., Finnegan C., Viard M., Raviv Y., Dimitrov A., Rawat S., Puri A., Durell S., Blumenthal R. The HIV Env-mediated fusion reaction. Biochim Biophys Acta 2003; 1614: 36–50
  • Gallo S., Puri A., Blumenthal R. HIV-1 gp41 six-helix bundle formation occurs rapidly after the engagement of gp120 by CXCR4 in the HIV-1 Env-mediated fusion process. Biochemistry 2001; 40: 2231–12236
  • Gallo S., Reeves J., Garg H., Foley B., Doms R., Blumenthal R. Kinetic studies of HIV-1 and HIV-2 envelope glycoprotein-mediated fusion. Retrovirology 2006; 3: 90
  • Gardner A., Dutch R. A conserved region in the F(2) subunit of paramyxovirus fusion proteins is involved in fusion regulation. J Virol 2007; 81: 8303–8314
  • Gardner A., Martin K., Dutch R. A conserved region between the heptad repeats of paramyxovirus fusion proteins is critical for proper F protein folding. Biochemistry 2007; 46: 5094–5105
  • Garg H., Joshi A., Freed E., Blumenthal R. Site-specific mutations in HIV-1 gp41 reveal a correlation between HIV-1-mediated bystander apoptosis and fusion/hemifusion. J Biol Chem 2007; 282: 16899–16906
  • Garry C., Garry R. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes). Theor Biol Medi Model 2004; 1: 10
  • Gaudin Y. Reversibility in fusion protein conformational changes. The intriguing case of rhabdovirus-induced membrane fusion. Subcell Biochem 2000; 34: 379–408
  • Giannecchini S., Bonci F., Pistello M., Matteucci D., Sichi O., Rovero P., Bendinelli M. The membrane-proximal tryptophan-rich region in the transmembrane glycoprotein ectodomain of feline immunodeficiency virus is important for cell entry. Virology 2004; 320: 156–166
  • Gibbons D., Ahn A., Liao M., Hammar L., Cheng R., Kielian M. Multistep regulation of membrane insertion of the fusion peptide of Semliki Forest virus. J Virol 2004; 78: 3312–3318
  • Gibbons D., Vaney M., Roussel A., Vigouroux A., Reilly B., Lepault J., Kielian M., Rey F. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 2004; 427: 320–325
  • Gilbert J. M., Hernandez L. D., Balliet J. W., Bates P., White J. M. Receptor-induced conformational changes in the subgroup A avian leukosis and sarcoma virus envelope glycoprotein. J Virol 1995; 69: 7410–7415
  • Gilbert J. M., Mason D., White J. M. Fusion of Rous sarcoma virus with host cells does not require exposure to low pH. J Virol 1990; 64: 5106–5113
  • Glebe D., Urban S. Viral and cellular determinants involved in hepadnaviral entry. World J Gastroenterol 2007; 13: 22–38
  • Godley L., Pfeifer J., Steinhauer D., Ely B., Shaw G., Kaufmann R., Suchanek E., Pabo C., Skehel J. J., Wiley D. C., Wharton S. Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell 1992; 68: 635–645
  • Gomara M. J., Mora P., Mingarro I., Nieva J. L. Roles of a conserved proline in the internal fusion peptide of Ebola glycoprotein. FEBS Lett 2004; 569: 261–266
  • Han X., Bushweller J. H., Cafiso D. S., Tamm L. K. Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat Struct Biol 2001; 8: 715–720
  • Hannah B. P., Heldwein E. E., Bender F. C., Cohen G. H., Eisenberg R. J. Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B. J Virol 2007; 81: 4858–4865
  • Harman A., Browne H., Minson T. The transmembrane domain and cytoplasmic tail of herpes simplex virus type 1 glycoprotein H play a role in membrane fusion. J Virol 2002; 76: 10708–10716
  • Harrison S. C. Mechanism of membrane fusion by viral envelope proteins. Adv Virus Res 2005; 64: 231–261
  • He Y., Vassell R., Zaitseva M., Nguyen N., Yang Z., Weng Y., Weiss C. Peptides trap the human immunodeficiency virus type 1 envelope glycoprotein fusion intermediate at two sites. J Virol 2003; 77: 1666–1671
  • Heldwein E. E., Lou H., Bender F. C., Cohen G. H., Eisenberg R. J., Harrison S. C. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 2006; 313: 217–220
  • Hernandez L., Peters R., Delos S., Young J., Agard D., White J. Activation of a retroviral membrane fusion protein: soluble receptor-induced liposome binding of the ALSV envelope glycoprotein. J Cell Biol 1997; 139: 1455–1464
  • Hernandez L., White J. Mutational analysis of the candidate internal fusion peptide of the avian leukosis and sarcoma virus subgroup A envelope glycoprotein. J Virol 1998; 72: 3259–3267
  • Howard M. W., Travanty E. A., Jeffers S. A., Smith M. K., Wennier S. T., Thackray L. B., Holmes K. V. Aromatic amino acids in the juxtamembrane domain of severe acute respiratory syndrome coronavirus spike glycoprotein are important for receptor-dependent virus entry and cell-cell fusion. J Virol 2008; 82: 2883–2894
  • Howard M. W., Tripet B., Jobling M. G., Holmes R. K., Holmes K. V., Hodges R. S. Dissection of the fusion machine of SARS-coronavirus. Adv Exp Med Biol 2006; 581: 319–322
  • Hrobowski Y. M., Garry R. F., Michael S. F. Peptide inhibitors of dengue virus and West Nile virus infectivity. Virol J 2005; 2: 49
  • Huang C. C., Lam S. N., Acharya P., Tang M., Xiang S. H., Hussan S. S., Stanfield R. L., Robinson J., Sodroski J., Wilson I. A., Wyatt R., Bewley C. A., Kwong P. D. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 2007; 317: 1930–1934
  • Ito H., Watanabe S., Sanchez A., Whitt M. A., Kawaoka Y. Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol 1999; 73: 8907–8912
  • Jahn R., Scheller R. H. SNAREs–engines for membrane fusion. Nat Rev Mol Cell Biol 2006; 7: 631–643
  • Jaroniec C. P., Kaufman J. D., Stahl S. J., Viard M., Blumenthal R., Wingfield P. T., Bax A. Structure and dynamics of micelle-associated human immunodeficiency virus gp41 fusion domain. Biochemistry 2005; 44: 16167–16180
  • Jeetendra E., Ghosh K., Odell D., Li J., Ghosh H. P., Whitt M. A. The membrane-proximal region of vesicular stomatitis virus glycoprotein G ectodomain is critical for fusion and virus infectivity. J Virol 2003; 77: 12807–12818
  • Jeetendra E., Robison C. S., Albritton L. M., Whitt M. A. The membrane-proximal domain of vesicular stomatitis virus G protein functions as a membrane fusion potentiator and can induce hemifusion. J Virol 2002; 76: 12300–12311
  • Jeffers S. A., Sanders D. A., Sanchez A. Covalent modifications of the ebola virus glycoprotein. J Virol 2002; 76: 12463–12472
  • Jin H., Subbarao K., Bagai S., Leser G. P., Murphy B. R., Lamb R. A. Palmitylation of the influenza virus hemagglutinin (H3) is not essential for virus assembly or infectivity. J Virol 1996; 70: 1406–1414
  • Joshi S. B., Dutch R. E., Lamb R. A. A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. Virology 1998; 248: 20–34
  • Kaletsky R., Simmons G., Bates P. Proteolysis of the Ebola glycoproteins enhances virus binding and infectivity. J Virol. 2007; 81: 13378–13384
  • Kalia V., Sarkar S., Gupta P., Montelaro R. C. Antibody neutralization escape mediated by point mutations in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41. J Virol 2005; 79: 2097–2107
  • Kampmann T., Mueller D. S., Mark A. E., Young P. R., Kobe B. The Role of histidine residues in low-pH-mediated viral membrane fusion. Structure 2006; 14: 1481–1487
  • Kemble G. W., Bodian D. L., Rose J., Wilson I. A., White J. M. Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin. J Virol 1992; 66: 4940–4950
  • Kemble G. W., Danieli T., White J. M. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 1994; 76: 383–391
  • Kielian M. Class II virus membrane fusion proteins. Virology 2006; 344: 38–47
  • Kielian M., Rey F. A. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 2006; 4: 67–76
  • Kilby J. M., Hopkins S., Venetta T. M., DiMassimo B., Cloud G. A., Lee J. Y., Alldredge L., Hunter E., Lambert D., Bolognesi D., Matthews T., Johnson M. R., Nowak M. A., Shaw G. M., Saag M. S. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 1998; 4: 1302–1307
  • Klewitz C., Klenk H., ter Meulen J. Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity. J Gen Virol 2007; 88: 2320–2328
  • Kliger Y., Aharoni A., Rapaport D., Jones P., Blumenthal R., Shai Y. Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell Fusion. Structure-function study. J Biol Chem 1997; 272: 13496–13505
  • Kliger Y., Gallo S. A., Peisajovich S. G., Munoz-Barroso I., Avkin S., Blumenthal R., Shai Y. Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J Biol Chem 2001; 276: 1391–1397
  • Kochan G., Escors D., González J., Casasnovas J., Esteban M. Membrane cell fusion activity of the vaccinia virus A17-A27 protein complex. Cell Microbiol. 2007; 10: 149–164
  • Kol N., Shi Y., Tsvitov M., Barlam D., Shneck R. Z., Kay M. S., Rousso I. A stiffness switch in human immunodeficiency virus. Biophys J 2007; 92: 1777–1783
  • Kopp A., Blewett E., Misra V., Mettenleiter T. Proteolytic cleavage of bovine herpesvirus 1 (BHV-1) glycoprotein gB is not necessary for its function in BHV-1 or pseudorabies virus. J Virol 1994; 68: 1667–1674
  • Kozerski C., Ponimaskin E., Schroth-Diez B., Schmidt M. F., Herrmann A. Modification of the cytoplasmic domain of influenza virus hemagglutinin affects enlargement of the fusion pore. J Virol 2000; 74: 7529–7537
  • Kozlov M. M., Chernomordik L. V. The protein coat in membrane fusion: lessons from fission. Traffic 2002; 3: 256–267
  • Krummenacher C., Carfi A., Eisenberg R. J., Cohen G. H. Entry of herpesviruses into cells: the enigma variations. Viral Entry into Host Cells, S. Pohlmann, G. Simmons. Landes Bioscience, Austin, TX 2008, in press
  • Krummenacher C., Supekar V., Whitbeck J., Lazear E., Connolly S., Eisenberg R., Cohen G., Wiley D., Carfí A. Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. EMBO J 2005; 24: 4144–4153
  • Kumar P., Nachagari D., Fields C., Franks J., Albritton L. M. Host cell cathepsins potentiate Moloney murine leukemia virus infection. J Virol. 2007; 81: 10506–10514
  • Kwong P. Human immunodeficiency virus: refolding the envelope. Nature 2005; 433: 815–816
  • Kwong P., Wyatt R., Robinson J., Sweet R., Sodroski J., Hendrickson W. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998; 393: 648–659
  • Lai A. L., Park H., White J. M., Tamm L. K. Fusion peptide of influenza hemagglutinin requires a fixed angle boomerang structure for activity. J Biol Chem 2006; 281: 5760–5770
  • Lai A. L., Tamm L. K. Locking the kink in the influenza hemagglutinin fusion domain structure. J Biol Chem 2007; 282: 23946–23956
  • Lamb R. Paramyxovirus fusion: a hypothesis for changes. Virology 1993; 197: 1–11
  • Lamb R. A., Jardetzky T. S. Structural basis of viral invasion: lessons from paramyxovirus F. Curr Opin Struct Biol 2007; 17: 427–436
  • Lavillette D., Maurice M., Roche C., Russell S. J., Sitbon M., Cosset F. L. A proline-rich motif downstream of the receptor binding domain modulates conformation and fusogenicity of murine retroviral envelopes. J Virol 1998; 72: 9955–9965
  • Lavillette D., Pécheur E., Donot P., Fresquet J., Molle J., Corbau R., Dreux M., Penin F., Cosset F. Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus. J Virol 2007; 81: 8752–8765
  • Lawrence M., Borg N., Streltsov V., Pilling P., Epa V., Varghese J., McKimm-Breschkin J., Colman P. Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. J Mol Biol 2004; 335: 1343–1357
  • Lee J. K., Prussia A., Paal T., White L. K., Snyder J. P., Plemper R. K. Functional interaction between paramyxovirus fusion and attachment proteins. J Biol Chem 2008, Epub, accession # 18426797
  • Lescar J., Roussel A., Wien M. W., Navaza J., Fuller S. D., Wengler G., Wengler G., Rey F. A. The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 2001; 105: 137–148
  • Li F., Berardi M., Li W., Farzan M., Dormitzer P., Harrison S. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J Virol 2006; 80: 6794–6800
  • Li J., Tong S., Lee H. B., Perdigoto A. L., Spangenberg H. C., Wands J. R. Glycine decarboxylase mediates a postbinding step in duck hepatitis B virus infection. J Virol 2004; 78: 1873–1881
  • Li K., Zhang S., Kronqvist M., Ekström M., Wallin M., Garoff H. The conserved His8 of the Moloney murine leukemia virus Env SU subunit directs the activity of the SU-TM disulphide bond isomerase. Virology 2007; 361: 149–160
  • Li Y., Han X., Lai A. L., Bushweller J. H., Cafiso D. S., Tamm L. K. Membrane structures of the hemifusion-inducing fusion peptide mutant G1S and the fusion-blocking mutant G1V of influenza virus hemagglutinin suggest a mechanism for pore opening in membrane fusion. J Virol 2005; 79: 12065–12076
  • Li Y., Tamm L. K. Structure and plasticity of the human immunodeficiency virus gp41 fusion domain in lipid micelles and bilayers. Biophys J 2007; 93: 876–885
  • Liao M., Kielian M. Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. J Cell Biol 2005; 171: 111–120
  • Lin E., Spear P. Random linker-insertion mutagenesis to identify functional domains of herpes simplex virus type 1 glycoprotein B. Proc Natl Acad Sci USA 2007; 104: 13140–13145
  • Lin X., Derdeyn C. A., Blumenthal R., West J., Hunter E. Progressive truncations C terminal to the membrane-spanning domain of simian immunodeficiency virus Env reduce fusogenicity and increase concentration dependence of Env for fusion. J Virol 2003; 77: 7067–7077
  • Liu S., Wu S., Jiang S. HIV entry inhibitors targeting gp41: from polypeptides to small-molecule compounds. Curr Pharm Des 2007; 13: 143–162
  • Lorizate M., Gomara M. J., de la Torre B. G., Andreu D., Nieva J. L. Membrane-transferring sequences of the HIV-1 Gp41 ectodomain assemble into an immunogenic complex. J Mol Biol 2006; 360: 45–55
  • Luque L., Russell C. Spring-loaded heptad repeat residues regulate the expression and activation of paramyxovirus fusion protein. J Virol 2007; 81: 3130–3141
  • Maenz C., Chang S., Iwanski A., Bruns M. Entry of duck hepatitis B virus into primary duck liver and kidney cells after discovery of a fusogenic region within the large surface protein. J Virol 2007; 81: 5014–5023
  • Maerz A., Center R., Kemp B., Kobe B., Poumbourios P. Functional implications of the human T-lymphotropic virus type 1 transmembrane glycoprotein helical hairpin structure. J Virol 2000; 74: 6614–6621
  • Maerz A., Drummer H., Wilson K., Poumbourios P. Functional analysis of the disulfide-bonded loop/chain reversal region of human immunodeficiency virus type 1 gp41 reveals a critical role in gp120-gp41 association. J Virol 2001; 75: 6635–6644
  • Maier C., Delagrave S., Zhang Z., Brown N., Monath T., Pugachev K., Guirakhoo F. A single M protein mutation affects the acid inactivation threshold and growth kinetics of a chimeric flavivirus. Virology 2007; 362: 468–474
  • Mancini E. J., Clarke M., Gowen B. E., Rutten T., Fuller S. D. Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol Cell 2000; 5: 255–266
  • Markosyan R. M., Cohen F. S., Melikyan G. B. HIV-1 envelope proteins complete their folding into six-helix bundles immediately after fusion pore formation. Mol Biol Cell 2003; 14: 926–938
  • Markosyan R. M., Cohen F. S., Melikyan G. B. The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) Is capable of Inducing nonenlarging fusion pores. Mol. Biol. Cell 2000; 11: 1143–1152
  • Marsh M., Helenius A. Virus entry: open sesame. Cell 2006; 124: 729–740
  • Martin I., Defrise-Quertain F., Decroly E., Vandenbranden M., Brasseur R., Ruysschaert J. M. Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes. Biochim Biophys Acta 1993; 1145: 124–133
  • Martin I., Ruysschaert J. M. Common properties of fusion peptides from diverse systems. Biosci Rep 2000; 20: 483–500
  • Matsuyama S., Delos S. E., White J. M. Sequential roles of receptor binding and low pH in forming prehairpin and hairpin conformations of a retroviral envelope glycoprotein. J Virol 2004; 78: 8201–8209
  • Matsuyama S., Taguchi F. Receptor-induced conformational changes of murine coronavirus spike protein. J Virol 2002; 76: 11819–11826
  • Matsuyama S., Ujike M., Morikawa S., Tashiro M., Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci USA 2005; 102: 12543–12547
  • McClure M. O., Sommerfelt M. A., Marsh M., Weiss R. A. The pH independence of mammalian retrovirus infection. J Gen Virol 1990; 71: 767–773
  • McShane M., Longnecker R. Cell-surface expression of a mutated Epstein-Barr virus glycoprotein B allows fusion independent of other viral proteins. Proc Natl Acad Sci USA 2004; 101: 17474–17479
  • Melanson V. R., Iorio R. M. Amino acid substitutions in the F-specific domain in the stalk of the newcastle disease virus HN protein modulate fusion and interfere with its interaction with the F protein. J Virol 2004; 78: 13053–13061
  • Melikyan G., Barnard R., Abrahamyan L., Mothes W., Young J. Imaging individual retroviral fusion events: from hemifusion to pore formation and growth. Proc Natl Acad Sci USA 2005; 102: 8728–8733
  • Melikyan G., Barnard R., Markosyan R., Young J., Cohen F. Low pH is required for avian sarcoma and leukosis virus Env-induced hemifusion and fusion pore formation but not for pore growth. J Virol 2004; 78: 3753–3762
  • Melikyan G., Markosyan R., Hemmati H., Delmedico M., Lambert D., Cohen F. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 2000; 151: 413–423
  • Melikyan G. B., Jin H., Lamb R. A., Cohen F. S. The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. Virology 1997; 235: 118–128
  • Melikyan G. B., Markosyan R. M., Brener S. A., Rozenberg Y., Cohen F. S. Role of the cytoplasmic tail of ecotropic moloney murine leukemia virus Env protein in fusion pore formation. J Virol 2000; 74: 447–455
  • Melikyan G. B., Markosyan R. M., Roth M. G., Cohen F. S. A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion. Mol Biol Cell 2000; 11: 3765–3775
  • Melikyan G. B., White J. M., Cohen F. S. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol 1995; 131: 679–691
  • Milne R. S., Nicola A. V., Whitbeck J. C., Eisenberg R. J., Cohen G. H. Glycoprotein D receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1. J Virol 2005; 79: 6655–6663
  • Mkrtchyan S., Markosyan R., Eadon M., Moore J., Melikyan G., Cohen F. Ternary complex formation of human immunodeficiency virus type 1 Env, CD4, and chemokine receptor captured as an intermediate of membrane fusion. J Virol 2005; 79: 11161–11169
  • Moesby L., Corver J., Erukulla R. K., Bittman R., Wilschut J. Sphingolipids activate membrane fusion of Semliki Forest virus in a stereospecific manner. Biochemistry 1995; 34: 10319–10324
  • Moore J., Doms R. The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci USA 2003; 100: 10598–10602
  • Morrison T. Structure and function of a paramyxovirus fusion protein. Biochim Biophys Acta 2003; 1614: 73–84
  • Mothes W., Boerger A. L., Narayan S., Cunningham J. M., Young J. A. Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell 2000; 103: 679–689
  • Munch J., Standker L., Adermann K., Schulz A., Schindler M., Chinnadurai R., Pohlmann S., Chaipan C., Biet T., Peters T., Meyer B., Wilhelm D., Lu H., Jing W., Jiang S., Forssmann W. G., Kirchhoff F. Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 2007; 129: 263–275
  • Munoz-Barroso I., Salzwedel K., Hunter E., Blumenthal R. Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J Virol 1999; 73: 6089–6092
  • Murakami T., Ablan S., Freed E. O., Tanaka Y. Regulation of human immunodeficiency virus type 1 Env-mediated membrane fusion by viral protease activity. J Virol 2004; 78: 1026–1031
  • Narayan S., Barnard R. J., Young J. A. Two retroviral entry pathways distinguished by lipid raft association of the viral receptor and differences in viral infectivity. J Virol 2003; 77: 1977–1983
  • Netter R., Amberg S., Balliet J., Biscone M., Vermeulen A., Earp L., White J., Bates P. Heptad repeat 2-based peptides inhibit avian sarcoma and leukosis virus subgroup a infection and identify a fusion intermediate. J Virol 2004; 78: 13430–13439
  • Neumann G., Feldmann H., Watanabe S., Lukashevich I., Kawaoka Y. Reverse genetics demonstrates that proteolytic processing of the Ebola virus glycoprotein is not essential for replication in cell culture. J Virol 2002; 76: 406–410
  • Neumann G., Geisbert T., Ebihara H., Geisbert J., Daddario-DiCaprio K., Feldmann H., Kawaoka Y. Proteolytic processing of the Ebola virus glycoprotein is not critical for Ebola virus replication in nonhuman primates. J Virol 2007; 81: 2995–2998
  • Nicola A. V., McEvoy A. M., Straus S. E. Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 2003; 77: 5324–53032
  • Nieva J. L., Nir S., Muga A., Goni F. M., Wilschut J. Interaction of the HIV-1 fusion peptide with phospholipid vesicles: different structural requirements for fusion and leakage. Biochemistry 1994; 33: 3201–3209
  • Niles W. D., Cohen F. S. Single event recording shows that docking onto receptor alters the kinetics of membrane fusion mediated by influenza hemagglutinin. Biophys J 1993; 65: 171–176
  • Ofek G., Tang M., Sambor A., Katinger H., Mascola J. R., Wyatt R., Kwong P. D. Structure and mechanistic analysis of the anti-human immunodeficiency virus type 1 antibody 2F5 in complex with its gp41 epitope. J Virol 2004; 78: 10724–10737
  • Ohuchi M., Ohuchi R., Sakai T., Matsumoto A. Tight binding of influenza virus hemagglutinin to its receptor interferes with fusion pore dilation. J Virol 2002; 76: 12405–12413
  • Opstelten D. J., Wallin M., Garoff H. Moloney murine leukemia virus envelope protein subunits, gp70 and Pr15E, form a stable disulfide-linked complex. J Virol 1998; 72: 6537–6545
  • Owens R. J., Burke C., Rose J. K. Mutations in the membrane-spanning domain of the human immunodeficiency virus envelope glycoprotein that affect fusion activity. J Virol 1994; 68: 570–574
  • Pager C. T., Craft W. W., Jr., Patch J., Dutch R. E. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 2006; 346: 251–257
  • Pager C. T., Dutch R. E. Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J Virol 2005; 79: 12714–12720
  • Park H. E., Gruenke J. A., White J. M. Leash in the groove mechanism of membrane fusion. Nat Struct Biol 2003; 10: 1048–1053
  • Peisajovich S. G., Epand R. F., Epand R. M., Shai Y. Sendai virus N-terminal fusion peptide consists of two similar repeats, both of which contribute to membrane fusion. Eur J Biochem 2002; 269: 4342–4350
  • Perez L. G., Hunter E. Mutations within the proteolytic cleavage site of the Rous sarcoma virus glycoprotein that block processing to gp85 and gp37. J Virol 1987; 61: 1609–1614
  • Petit C. M., Chouljenko V. N., Iyer A., Colgrove R., Farzan M., Knipe D. M., Kousoulas K. G. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion. Virology 2007; 360: 264–274
  • Pietschmann T., Zentgraf H., Rethwilm A., Lindemann D. An evolutionarily conserved positively charged amino acid in the putative membrane-spanning domain of the foamy virus envelope protein controls fusion activity. J Virol 2000; 74: 4474–4482
  • Pinter A., Kopelman R., Li Z., Kayman S. C., Sanders D. A. Localization of the labile disulfide bond between SU and TM of the murine leukemia virus envelope protein complex to a highly conserved CWLC motif in SU that resembles the active-site sequence of thiol-disulfide exchange enzymes. J Virol 1997; 71: 8073–8077
  • Platt E. J., Durnin J. P., Kabat D. Kinetic factors control efficiencies of cell entry, efficacies of entry inhibitors, and mechanisms of adaptation of human immunodeficiency virus. J Virol 2005; 79: 4347–4356
  • Platt E. J., Durnin J. P., Shinde U., Kabat D. An allosteric rheostat in HIV-1 gp120 reduces CCR5 stoichiometry required for membrane fusion and overcomes diverse entry limitations. J Mol Biol 2007; 374: 64–79
  • Plattet P., Cherpillod P., Wiener D., Zipperle L., Vandevelde M., Wittek R., Zurbriggen A. Signal peptide and helical bundle domains of virulent canine distemper virus fusion protein restrict fusogenicity. J Virol 2007; 81: 11413–11425
  • Plemper R., Hammond A., Gerlier D., Fielding A., Cattaneo R. Strength of envelope protein interaction modulates cytopathicity of measles virus. J Virol 2002; 76: 5051–5061
  • Podbilewicz B., Leikina E., Sapir A., Valansi C., Suissa M., Shemer G., Chernomordik L. V. The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev Cell 2006; 11: 471–481
  • Pohlmann S., Reeves J. D. Cellular entry of HIV: Evaluation of therapeutic targets. Curr Pharm Des 2006; 12: 1963–1973
  • Porotto M., Fornabaio M., Kellogg G., Moscona A. A second receptor binding site on human parainfluenza virus type 3 hemagglutinin-neuraminidase contributes to activation of the fusion mechanism. J Virol 2007; 81: 3216–3228
  • Poumbourios P., Drummer H. Recent advances in our understanding of receptor binding, viral fusion and cell entry of hepatitis C virus: new targets for the design of antiviral agents. Antivir Chem Chemother 2007; 18: 169–189
  • Qiao H., Armstrong R. T., Melikyan G. B., Cohen F. S., White J. M. A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype. Mol Biol Cell 1999; 10: 2759–2769
  • Qiao H., Pelletier S., Hoffman L., Hacker J., Armstrong R. T., White J. M. Specific single or double proline substitutions in the “spring-loaded” coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity. J Cell Biol 1998; 141: 1335–1347
  • Qiu Z., Hingley S. T., Simmons G., Yu C., Das Sarma J., Bates P., Weiss S. R. Endosomal proteolysis by cathepsins is necessary for murine coronavirus mouse hepatitis virus type 2 spike-mediated entry. J Virol 2006; 80: 5768–5776
  • Rachakonda P. S., Veit M., Korte T., Ludwig K., Bottcher C., Huang Q., Schmidt M. F., Herrmann A. The relevance of salt bridges for the stability of the influenza virus hemagglutinin. Faseb J 2007; 21: 995–1002
  • Rafalski M., Lear J. D., DeGrado W. F. Phospholipid interactions of synthetic peptides representing the N-terminus of HIV gp41. Biochemistry 1990; 29: 7917–7922
  • Reichert J., Grasnick D., Afonin S., Buerck J., Wadhwani P., Ulrich A. S. A critical evaluation of the conformational requirements of fusogenic peptides in membranes. Eur Biophys J 2007; 36: 405–413
  • Rey F. Molecular gymnastics at the herpesvirus surface. EMBO Rep 2006; 7: 1000–1005
  • Rey F. A., Heinz F. X., Mandl C., Kunz C., Harrison S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 1995; 375: 291–298
  • Rocha A., Ruiz S., Tafalla C., Coll J. M. Conformation- and fusion-defective mutations in the hypothetical phospholipid-binding and fusion peptides of viral hemorrhagic septicemia salmonid rhabdovirus protein G. J Virol 2004; 78: 9115–9122
  • Roche S., Bressanelli S., Rey F. A., Gaudin Y. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 2006; 313: 187–191
  • Roche S., Rey F. A., Gaudin Y., Bressanelli S. Structure of the pre-fusion form of the vesicular stomatitis virus glycoprotein G. Science 2007; 315: 843–848
  • Ross S. R., Schofield J. J., Farr C. J., Bucan M. Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proc Natl Acad Sci USA 2002; 99: 12386–12390
  • Ruel N., Zago A., Spear P. G. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry. Virology 2006; 346: 229–237
  • Ruiz-Arguello M. B., Goni F. M., Pereira F. B., Nieva J. L. Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus. J Virol 1998; 72: 1775–1781
  • Russell C., Luque L. The structural basis of paramyxovirus invasion. Trends Microbiol 2006; 14: 243–246
  • Russell C. J., Jardetzky T. S., Lamb R. A. Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion. Embo J 2001; 20: 4024–4034
  • Russell C. J., Kantor K. L., Jardetzky T. S., Lamb R. A. A dual-functional paramyxovirus F protein regulatory switch segment: activation and membrane fusion. J Cell Biol 2003; 163: 363–374
  • Russell R. J., Gamblin S. J., Haire L. F., Stevens D. J., Xiao B., Ha Y., Skehel J. J. H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. Virology 2004; 325: 287–296
  • Ryckman B. J., Jarvis M. A., Drummond D. D., Nelson J. A., Johnson D. C. Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol 2006; 80: 710–722
  • Saez-Cirion A., Gomara M. J., Agirre A., Nieva J. L. Pre-transmembrane sequence of Ebola glycoprotein. Interfacial hydrophobicity distribution and interaction with membranes. FEBS Lett 2003; 533: 47–53
  • Sainz B., Jr., Rausch J. M., Gallaher W. R., Garry R. F., Wimley W. C. The aromatic domain of the coronavirus class I viral fusion protein induces membrane permeabilization: putative role during viral entry. Biochemistry 2005; 44: 947–958
  • Sakai T., Ohuchi R., Ohuchi M. Fatty acids on the A/USSR/77 influenza virus hemagglutinin facilitate the transition from hemifusion to fusion pore formation. J Virol 2002; 76: 4603–4611
  • Salzwedel K., West J. T., Hunter E. A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J Virol 1999; 73: 2469–2480
  • Sanchez-Martinez S., Lorizate M., Hermann K., Kunert R., Basanez G., Nieva J. L. Specific phospholipid recognition by human immunodeficiency virus type-1 neutralizing anti-gp41 2F5 antibody. FEBS Lett 2006; 580: 2395–2399
  • Sanders D. Sulfhydryl involvement in fusion mechanisms. Fusion of Biological Membranes and Related Problems, vol. 34, H. A. Fuller. Kluwer Academic/Plenum Publishers, New York 2000
  • Saunders A. A., Ting J. P., Meisner J., Neuman B. W., Perez M., de la Torre J. C., Buchmeier M. J. Mapping the landscape of the lymphocytic choriomeningitis virus stable signal peptide reveals novel functional domains. J Virol 2007; 81: 5649–5657
  • Schibli D. J., Montelaro R. C., Vogel H. J. The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. Biochemistry 2001; 40: 9570–9578
  • Schornberg K., Matsuyama S., Kabsch K., Delos S., Bouton A., White J. Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol 2006; 80: 4174–4178
  • Schowalter R. M., Smith S. E., Dutch R. E. Characterization of human metapneumovirus F protein-promoted membrane fusion: critical roles for proteolytic processing and low pH. J Virol 2006; 80: 10931–10941
  • Schrempf S., Froeschke M., Giroglou T., von Laer D., Dobberstein B. Signal Peptide requirements for lymphocytic choriomeningitis virus glycoprotein C maturation and virus infectivity. J Virol 2007; 81: 12515–12524
  • Seth S., Vincent A., Compans R. Activation of fusion by the SER virus F protein: a low-pH-dependent paramyxovirus entry process. J Virol 2003; 77: 6520–6527
  • Shokralla S., Chernish R., Ghosh H. P. Effects of double-site mutations of vesicular stomatitis virus glycoprotein G on membrane fusion activity. Virology 1999; 256: 119–129
  • Sieczkarski S. B., Whittaker G. R. Viral entry. Curr Topics Microbiol Immunol 2005; 285: 1–23
  • Simmons G., Gosalia D. N., Rennekamp A. J., Reeves J. D., Diamond S. L., Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 2005; 102: 11876–11881
  • Skehel J. J., Wiley D. C. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 2000; 69: 531–569
  • Smit J. M., Bittman R., Wilschut J. Deacylation of the transmembrane domains of Sindbis virus envelope glycoproteins E1 and E2 does not affect low-pH-induced viral membrane fusion activity. FEBS Lett 2001; 498: 57–61
  • Smith J. G., Mothes W., Blacklow S. C., Cunningham J. M. The mature avian leukosis virus subgroup A envelope glycoprotein is metastable, and refolding induced by the synergistic effects of receptor binding and low pH is coupled to infection. J Virol 2004; 78: 1403–1410
  • Spear P., Manoj S., Yoon M., Jogger C., Zago A., Myscofski D. Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry. Virology 2006; 344: 17–24
  • Steinhauer D. A., Wharton S. A., Wiley D. C., Skehel J. J. Deacylation of the hemagglutinin of influenza A/Aichi/2/68 has no effect on membrane fusion properties. Virology 1991; 184: 445–448
  • Stevens J., Corper A. L., Basler C. F., Taubenferger J. K., Palese P., Wilson I. A. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. Science 2004; 303: 1866–1870
  • Stiasny K., Bressanelli S., Lepault J., Rey F. A., Heinz F. X. Characterization of a membrane-associated trimeric low-pH-induced Form of the class II viral fusion protein E from tick-borne encephalitis virus and its crystallization. J Virol 2004; 78: 3178–3183
  • Stiasny K., Heinz F. Flavivirus membrane fusion. J Gen Virol 2006; 87: 2755–2766
  • Stiasny K., Koessl C., Heinz F. X. Involvement of lipids in different steps of the flavivirus fusion mechanism. J Virol 2003; 77: 7856–7862
  • Strive T., Borst E., Messerle M., Radsak K. Proteolytic processing of human cytomegalovirus glycoprotein B is dispensable for viral growth in culture. J Virol 2002; 76: 1252–1264
  • Suarez T., Nir S., Goni F. M., Saez-Cirion A., Nieva J. L. The pre-transmembrane region of the human immunodeficiency virus type-1 glycoprotein: a novel fusogenic sequence. FEBS Lett 2000; 477: 145–149
  • Subramanian R., Geraghty R. Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B. Proc Natl Acad Sci USA 2007; 104: 2903–2908
  • Sun X., Belouzard S., Whittaker G. R. Molecular architecture of the bipartite fusion loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein. J Biol Chem 2008; 283: 6418–6427
  • Sun Z. Y., Oh K. J., Kim M., Yu J., Brusic V., Song L., Qiao Z., Wang J. H., Wagner G., Reinherz E. L. HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. Immunity 2008; 28: 52–63
  • Takada A., Robison C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y. A system for functional analysis of Ebola virus glycoprotein. PNAS 1997; 94: 14764–14769
  • Tamm L. K. Hypothesis: spring-loaded boomerang mechanism of influenza hemagglutinin-mediated membrane fusion. Biochim Biophys Acta 2003; 1614: 14–23
  • Taylor G. M., Sanders D. A. Structural criteria for regulation of membrane fusion and virion incorporation by the murine leukemia virus TM cytoplasmic domain. Virology 2003; 312: 295–305
  • Taylor G. M., Sanders D. A. The role of the membrane-spanning domain sequence in glycoprotein-mediated membrane fusion. Mol Biol Cell 1999; 10: 2803–2815
  • Teissier E., Pecheur E. I. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Eur Biophys J 2007; 36: 887–899
  • Thoennes S., Li Z. N., Lee B. J., Langley W. A., Skehel J. J., Russell R. J., Steinhauer D. A. Analysis of residues near the fusion peptide in the influenza hemagglutinin structure for roles in triggering membrane fusion. Virology 2007; 370: 403–414
  • Tong S., Compans R. W. Oligomerization, secretion, and biological function of an anchor-free parainfluenza virus type 2 (PI2) fusion protein. Virology 2000; 270: 368–376
  • Tong S., Yi F., Martin A., Yao Q., Li M., Compans R. W. Three membrane-proximal amino acids in the human parainfluenza type 2 (HPIV 2) F protein are critical for fusogenic activity. Virology 2001; 280: 52–61
  • Ujike M., Nakajima K., Nobusawa E. Influence of acylation sites of influenza B virus hemagglutinin on fusion pore formation and dilation. J Virol 2004; 78: 11536–1143
  • Waarts B., Bittman R., Wilschut J. Sphingolipid and cholesterol dependence of alphavirus membrane fusion. Lack of correlation with lipid raft formation in target liposomes. J Biol Chem 2002; 277: 38141–38147
  • Wagenaar T., Moss B. Association of vaccinia virus fusion regulatory proteins with the multicomponent entry/fusion complex. J Virol 2007; 81: 6286–6293
  • Wagner R., Herwig A., Azzouz N., Klenk H. D. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. J Virol 2005; 79: 6449–6458
  • Waheed A. A., Ablan S. D., Roser J. D., Sowder R. C., Schaffner C. P., Chertova E., Freed E. O. HIV-1 escape from the entry-inhibiting effects of a cholesterol-binding compound via cleavage of gp41 by the viral protease. Proc Natl Acad Sci USA 2007; 104: 8467–8471
  • Wallin M., Ekström M., Garoff H. Isomerization of the intersubunit disulphide-bond in Env controls retrovirus fusion. EMBO J 2004; 23: 54–65
  • Wallin M., Ekström M., Garoff H. Receptor-triggered but alkylation-arrested env of murine leukemia virus reveals the transmembrane subunit in a prehairpin conformation. J Virol 2006; 80: 9921–9925
  • Wallin M., Ekström M., Garoff H. The fusion-controlling disulfide bond isomerase in retrovirus Env is triggered by protein destabilization. J Virol 2005a; 79: 1678–1685
  • Wallin M., Löving R., Ekström M., Li K., Garoff H. Kinetic analyses of the surface-transmembrane disulfide bond isomerization-controlled fusion activation pathway in Moloney murine leukemia virus. J Virol 2005b; 79: 13856–13864
  • Waning D. L., Schmitt A. P., Leser G. P., Lamb R. A. Roles for the cytoplasmic tails of the fusion and hemagglutinin-neuraminidase proteins in budding of the paramyxovirus simian virus 5. J Virol 2002; 76: 9284–9297
  • Weis W. I., Brunger A. T., Skehel J. J., Wiley D. C. Refinement of the influenza virus hemagglutinin by simulated annealing. J Mol Biol 1990; 212: 737–761
  • Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 1997; 387: 426–430
  • Weissenhorn W., Hinz A., Gaudin Y. Virus membrane fusion. FEBS Lett 2007; 581: 2150–2155
  • Welch B., Vandemark A., Heroux A., Hill C., Kay M. Potent D-peptide inhibitors of HIV-1 entry. Proc Natl Acad Sci USA 2007; 104: 16828–16833
  • West J. T., Johnston P. B., Dubay S. R., Hunter E. Mutations within the putative membrane-spanning domain of the simian immunodeficiency virus transmembrane glycoprotein define the minimal requirements for fusion, incorporation, and infectivity. J Virol 2001; 75: 9601–9612
  • Whitbeck J., Zuo Y., Milne R., Cohen G., Eisenberg R. Stable association of herpes simplex virus with target membranes is triggered by low pH in the presence of the gD receptor, HVEM. J Virol 2006; 80: 3773–3780
  • White J. M., Wilson I. A. Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin. J Cell Biol 1987; 105: 2887–2896
  • White S. H., Wimley W. C., Ladokhin A. S., Hristova K. Protein folding in membranes: determining energetics of peptide-bilayer interactions. Methods Enzymol 1998; 295: 62–87
  • Whitt M. A., Rose J. K. Fatty acid acylation is not required for membrane fusion activity or glycoprotein assembly into VSV virions. Virology 1991; 185: 875–878
  • Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 1981; 289: 366–373
  • Wool-Lewis R., Bates P. Endoproteolytic processing of the ebola virus envelope glycoprotein: cleavage is not required for function. J Virol 1999; 73: 1419–1426
  • Wool-Lewis R. J., Bates P. Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol 1998; 72: 3155–3160
  • Wu S. R., Haag L., Hammar L., Wu B., Garoff H., Xing L., Murata K., Cheng R. H. The dynamic envelope of a fusion class II virus. pre-fusion stages of semliki forest virus revealed by electron cryomicroscopy. J Biol Chem 2007; 282: 6752–6762
  • Wyma D. J., Jiang J., Shi J., Zhou J., Lineberger J. E., Miller M. D., Aiken C. Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 2004; 78: 3429–3435
  • Wyss S., Dimitrov A. S., Baribaud F., Edwards T. G., Blumenthal R., Hoxie J. A. Regulation of human immunodeficiency virus type 1 envelope glycoprotein fusion by a membrane-interactive domain in the gp41 cytoplasmic tail. J Virol 2005; 79: 12231–12241
  • Yang C., Compans R. W. Palmitoylation of the murine leukemia virus envelope glycoprotein transmembrane subunits. Virology 1996; 221: 87–97
  • Yang X., Kurteva S., Ren X., Lee S., Sodroski J. Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J Virol 2005; 79: 12132–13147
  • Yin H. S., Paterson R. G., Wen X., Lamb R. A., Jardetzky T. S. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc Natl Acad Sci USA 2005; 102: 9288–9293
  • Yin H. S., Wen X., Paterson R. G., Lamb R. A., Jardetzky T. S. Structure of the parainfluenza virus 5 F protein in its metastable, pre-fusion conformation. Nature 2006; 439: 38–44
  • York J., Nunberg J. Role of the stable signal peptide of Junín arenavirus envelope glycoprotein in pH-dependent membrane fusion. J Virol 2006; 80: 7775–7780
  • Yuan P., Thompson T., Wurzburg B., Paterson R., Lamb R., Jardetzky T. Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. Structure 2005; 13: 803–815
  • Zaitsev V., von Itzstein M., Groves D., Kiefel M., Takimoto T., Portner A., Taylor G. Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. J Virol 2004; 78: 3733–3741
  • Zanetti G., Briggs J. A., Grunewald K., Sattentau Q. J., Fuller S. D. Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog 2006; 2: e83
  • Zavorotinskaya T., Qian Z., Franks J., Albritton L. M. A point mutation in the binding subunit of a retroviral envelope protein arrests virus entry at hemifusion. J Virol 2004; 78: 473–481
  • Zelus B. D., Schickli J. H., Blau D. M., Weiss S. R., Holmes K. V. Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C either by soluble murine CEACAM1 receptors or by pH 8. J Virol 2003; 77: 830–840
  • Zheng Z., Yang R., Bodner M. L., Weliky D. P. Conformational flexibility and strand arrangements of the membrane-associated HIV fusion peptide trimer probed by solid-state NMR spectroscopy. Biochemistry 2006; 45: 12960–12975
  • Zhu P., Liu J., Bess J., Jr., Chertova E., Lifson J. D., Grise H., Ofek G. A., Taylor K. A., Roux K. H. Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 2006; 441: 847–852

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.