1,944
Views
409
CrossRef citations to date
0
Altmetric
Research Article

SSB as an Organizer/Mobilizer of Genome Maintenance Complexes

, , , &
Pages 289-318 | Published online: 03 Nov 2008

REFERENCES

  • N. Acharya, and U. Varshney. (2002). Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J Mol Biol 318:1251.
  • G. C. AllenJr., and A. Kornberg. (1993). Assembly of the primosome of DNA replication in Escherichia coli. J Biol Chem 268:19204.
  • N. D. Allgood, and T. J. Silhavy. (1991). Escherichia coli xonA (sbcB) mutants enhance illegitimate recombination. Genetics 127:671.
  • A. A. Al Mamun, and M. Z. Humayun. (2006). Escherichia coli DNA polymerase II can efficiently bypass 3, N(4)-ethenocytosine lesions in vitro in vivo. Mutat Res 593:164.
  • J. C. Alonso, A. C. Stiege, B. Dobrinski, and R. Lurz. (1993). Purification and properties of the RecR protein from Bacillus subtilis 168. J Biol Chem 268:1424.
  • G. Arad, A. Hendel, C. Urbanke, U. Curth, and Z. Livneh. (2008). Single-stranded DNA-binding protein recruits DNA polymerase V to primer termini on RecA-coated DNA. J Biol Chem 283:8274.
  • K. Arai, R. L. Low, and A. Kornberg. (1981). Movement and site selection for priming by the primosome in phage phi X174 DNA replication. Proc Natl Acad Sci USA 78:707.
  • T. A. Arenson, O. V. Tsodikov, and M. M. Cox. (1999). Quantitative analysis of the kinetics of end-dependent disassembly of RecA filaments from ssDNA. J Mol Biol 288:391.
  • M. Arifuzzaman, M. Maeda, A. Itoh, K. Nishikata, C. Takita, R. Saito, T. Ara, K. Nakahigashi, H. C. Huang, A. Hirai, K. Tsuzuki, S. Nakamura, M. Altaf-Ul-Amin, T. Oshima, T. Baba, N. Yamamoto, T. Kawamura, T. Ioka-Nakamichi, M. Kitagawa, M. Tomita, S. Kanaya, C. Wada, and H. Mori. (2006). Large-scale identification of protein–protein interaction of Escherichia coli K-12. Genome Res 16:686.
  • T. Asai, and T. Kogoma. (1994). The RecF pathway of homologous recombination can mediate the initiation of DNA damage-inducible replication of the Escherichia coli chromosome. J Bacteriol 176:7113.
  • C. Z. Bachrati, and I. D. Hickson. (2003). RecQ helicases: suppressors of tumorigenesis and premature aging. Biochem J 374:577.
  • S. Bailey, W. K. Eliason, and T. A. Steitz. (2007). Structure of hexameric DnaB helicase and its complex with a domain of DnaG primase. Science 318:459.
  • T. A. Baker, and S. P. Bell. (1998). Polymerases and the replisome: machines within machines. Cell 92:295.
  • M. Banach-Orlowska, I. J. Fijalkowska, R. M. Schaaper, and P. Jonczyk. (2005). DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Mol MicroBiol 58:61.
  • O. J. Becherel, and R. P. Fuchs. (2001). Mechanism of DNA polymerase II-mediated frameshift mutagenesis. Proc Natl Acad Sci USA 98:8566.
  • O. J. Becherel, R. P. Fuchs, and J. Wagner. (2002). Pivotal role of the beta-clamp in translesion DNA synthesis and mutagenesis in E. coli cells. DNA Repair (Amst) 1:703.
  • H. T. Beernink, and S. W. Morrical. (1999). RMPs: recombination/replication mediator proteins. Trends Biochem Sci 24:385.
  • J. J. Belle, A. Casey, C. T. Courcelle, and J. Courcelle. (2007). Inactivation of the DnaB helicase leads to the collapse and degradation of the replication fork: a comparison to UV-induced arrest. J Bacteriol 189:5452.
  • S. J. Benkovic, A. M. Valentine, and F. Salinas. (2001). Replisome-mediated DNA replication. Annu Rev Biochem 70:181.
  • R. J. Bennett, and J. L. Keck. (2004). Structure and function of RecQ DNA helicases. Crit Rev Biochem Mol Biol 39:79.
  • M. Berardini, P. L. Foster, and E. L. Loechler. (1999). DNA polymerase II (polB) is involved in a new DNA repair pathway for DNA interstrand cross-links in Escherichia coli. J Bacteriol 181:2878.
  • H. Berges, J. Oreglia, E. Joseph-Liauzun, and O. Fayet. (1997). Isolation and characterization of a priB mutant of Escherichia coli influencing plasmid copy number of delta rop ColE1-type plasmids. J Bacteriol 179:956.
  • D. A. Bernstein, J. M. Eggington, M. P. Killoran, A. M. Misic, M. M. Cox, and J. L. Keck. (2004). Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc Natl Acad Sci USA 101:8575.
  • S. Bhattacharyya, and M. A. Griep. (2000). DnaB helicase affects the initiation specificity of Escherichia coli primase on single-stranded DNA templates. Biochemistry 39:745.
  • A. Bochkarev, R. A. Pfuetzner, A. M. Edwards, and L. Frappier. (1997). Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385:176.
  • C. A. Bonner, S. K. Randall, C. Rayssiguier, M. Radman, R. Eritja, B. E. Kaplan, K. McEntee, and M. F. Goodman. (1988). Purification and characterization of an inducible Escherichia coli DNA polymerase capable of insertion and bypass at abasic lesions in DNA. J Biol Chem 263:18946.
  • C. A. Bonner, S. Hays, K. McEntee, and M. F. Goodman. (1990). DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli. Proc Natl Acad Sci USA 87:7663.
  • C. A. Bonner, P. T. Stukenberg, M. Rajagopalan, R. Eritja, M. O'Donnell, K. McEntee, H. Echols, and M. F. Goodman. (1992). Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins. J Biol Chem 267:11431.
  • J. M. Bork, M. M. Cox, and R. B. Inman. (2001a). The RecOR proteins modulate RecA protein function at 5′ ends of single-stranded DNA. EMBO J 20:7313.
  • J. M. Bork, M. M. Cox, and R. B. Inman. (2001b). RecA protein filaments disassemble in the 5′ to 3′ direction on single-stranded DNA. J Biol Chem 276:45740.
  • G. S. Briggs, A. A. Mahdi, G. R. Weller, Q. Wen, and R. G. Lloyd. (2004). Interplay between DNA replication, recombination and repair based on the structure of RecG helicase. Philos Trans R Soc Lond B Biol Sci 359:49.
  • G. S. Briggs, A. A. Mahdi, Q. Wen, and R. G. Lloyd. (2005). DNA binding by the substrate specificity (wedge) domain of RecG helicase suggests a role in processivity. J Biol Chem 280:13921.
  • R. S. Brody. (1991). Nucleotide positions responsible for the processivity of the reaction of exonuclease I with oligodeoxyribonucleotides. Biochemistry 30:7072.
  • R. S. Brody, K. G. Doherty, and P. D. Zimmerman. (1986). Processivity and kinetics of the reaction of exonuclease I from Escherichia coli with polydeoxyribonucleotides. J Biol Chem 261:7136.
  • R. M. BroshJr., and V. A. Bohr. (2007). Human premature aging, DNA repair and RecQ helicases. Nucleic Acids Res 35:7527.
  • I. Bruck, R. Woodgate, K. McEntee, and M. F. Goodman. (1996). Purification of a soluble UmuD'C complex from Escherichia coli. Cooperative binding of UmuD'C to single-stranded DNA. J Biol Chem 271:10767.
  • D. Brutlag, R. Schekman, and A. Kornberg. (1971). A possible role for RNA polymerase in the initiation of M13 DNA synthesis. Proc Natl Acad Sci USA 68:2826.
  • W. Bujalowski, and T. M. Lohman. (1986). Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA. Biochemistry 25:7799.
  • W. Bujalowski, and T. M. Lohman. (1989). Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions. II. Salt, temperature and oligonucleotide length effects. J Mol Biol 207:269.
  • W. Bujalowski, and T. M. Lohman. (1991a). Monomer-tetramer equilibrium of the Escherichia coli ssb-1 mutant single strand binding protein. J Biol Chem 266:1616.
  • W. Bujalowski, and T. M. Lohman. (1991b). Monomers of the Escherichia coli SSB-1 mutant protein bind single-stranded DNA. J Mol Biol 217:63.
  • W. Bujalowski, L. B. Overman, and T. M. Lohman. (1988). Binding mode transitions of Escherichia coli single strand binding protein-single-stranded DNA complexes. Cation, anion, pH, and binding density effects. J Biol Chem 263:4629.
  • V. Burdett, C. Baitinger, M. Viswanathan, S. T. Lovett, and P. Modrich. (2001). In vivo requirement for RecJ, ExoVII, ExoI, and ExoX in methyl-directed mismatch repair. Proc Natl Acad Sci USA 98:6765.
  • R. L. Burke, B. M. Alberts, and J. Hosoda. (1980). Proteolytic removal of the COOH terminus of the T4 gene 32 helix-destabilizing protein alters the T4 in vitro replication complex. J Biol Chem 255:11484.
  • G. Butland, J. M. Peregrin-Alvarez, J. Li, W. Yang, X. Yang, V. Canadien, A. Starostine, D. Richards, B. Beattie, N. Krogan, M. Davey, J. Parkinson, J. Greenblatt, and A. Emili. (2005). Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433:531.
  • M. Bzymek, C. J. Saveson, V. V. Feschenko, and S. T. Lovett. (1999). Slipped misalignment mechanisms of deletion formation: in vivo susceptibility to nucleases. J Bacteriol 181:477.
  • C. J. Cadman, and P. McGlynn. (2004). PriA helicase and SSB interact physically and functionally. Nucleic Acids Res 32:6378.
  • C. J. Cadman, M. Lopper, P. B. Moon, J. L. Keck, and P. McGlynn. (2005). PriB stimulates PriA helicase via an interaction with single-stranded DNA. J Biol Chem 280:39693.
  • J. R. Casas-Finet, M. I. Khamis, A. H. Maki, and J. W. Chase. (1987). Tryptophan 54 and phenylalanine 60 are involved synergistically in the binding of E. coli SSB protein to single-stranded polynucleotides. FEBS Lett 220:347.
  • R. C. Centore, and S. J. Sandler. (2007). UvrD limits the number and intensities of RecA-green fluorescent protein structures in Escherichia coli K-12. J Bacteriol 189:2915.
  • J. W. Chase, J. J. L'Italien, J. B. Murphy, E. K. Spicer, and K. R. Williams. (1984). Characterization of the Escherichia coli SSB-113 mutant single-stranded DNA-binding protein. Cloning of the gene, DNA and protein sequence analysis, high pressure liquid chromatography peptide mapping, and DNA-binding studies. J Biol Chem 259:805.
  • H. Chen, S. K. Bryan, and R. E. Moses. (1989). Cloning the polB gene of Escherichia coli and identification of its product. J Biol Chem 264:20591.
  • N. Y. Cho, M. Choi, and L. B. Rothman-Denes. (1995). The bacteriophage N4-coded single-stranded DNA-binding protein (N4SSB) is the transcriptional activator of Escherichia coli RNA polymerase at N4 late promoters. J Mol Biol 246:461.
  • K. H. Chow, and J. Courcelle. (2004). RecO acts with RecF and RecR to protect and maintain replication forks blocked by UV-induced DNA damage in Escherichia coli. J Biol Chem 279:3492.
  • K. H. Chow, and J. Courcelle. (2007). RecBCD and RecJ/RecQ initiate DNA degradation on distinct substrates in UV-irradiated Escherichia coli. Radiat Res 168:499.
  • S. Chrysogelos, and J. Griffith. (1982). Escherichia coli single-strand binding protein organizes single-stranded DNA in nucleosome-like units. Proc Natl Acad Sci USA 79:5803.
  • A. J. Clark, and S. J. Sandler. (1994). Homologous genetic recombination: the pieces begin to fall into place. Crit Rev MicroBiol 20:125.
  • J. A. Cobb, and L. Bjergbaek. (2006). RecQ helicases: lessons from model organisms. Nucleic Acids Res 34:4106.
  • M. Cordeiro-Stone, A. M. Makhov, L. S. Zaritskaya, and J. D. Griffith. (1999). Analysis of DNA replication forks encountering a pyrimidine dimer in the template to the leading strand. J Mol Biol 289:1207.
  • J. Courcelle, and P. C. Hanawalt. (1999). RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Mol Gen Genet 262:543.
  • J. Courcelle, C. Carswell-Crumpton, and P. C. Hanawalt. (1997). recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc Natl Acad Sci USA 94:3714.
  • J. Courcelle, D. J. Crowley, and P. C. Hanawalt. (1999). Recovery of DNA replication in UV-irradiated Escherichia coli requires both excision repair and recF protein function. J Bacteriol 181:916.
  • J. Courcelle, J. R. Donaldson, K. H. Chow, and C. T. Courcelle. (2003). DNA damage-induced replication fork regression and processing in Escherichia coli. Science 299:1064.
  • C. T. Courcelle, K. H. Chow, A. Casey, and J. Courcelle. (2006). Nascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli. Proc Natl Acad Sci USA 103:9154.
  • M. M. Cox. (1999). Recombinational DNA repair in bacteria and the RecA protein. Prog Nucleic Acid Res Mol Biol 63:311.
  • M. M. Cox. (2001). Historical overview: Searching for replication help in all of the rec places. Proc Natl Acad Sci USA 98:8173.
  • M. M. Cox. (2007). Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42:41.
  • M. M. Cox, and I. R. Lehman. (1981). recA protein of Escherichia coli promotes branch migration, a kinetically distinct phase of DNA strand exchange. Proc Natl Acad Sci USA 78:3433.
  • M. M. Cox, and I. R. Lehman. (1987). Enzymes of general recombination. Annu Rev Biochem 56:229.
  • M. M. Cox, D. A. Soltis, Z. Livneh, and I. R. Lehman. (1983). On the role of single-stranded DNA binding protein in recA protein-promoted DNA strand exchange. J Biol Chem 258:2577.
  • M. M. Cox, M. F. Goodman, K. N. Kreuzer, D. J. Sherratt, S. J. Sandler, and K. J. Marians. (2000). The importance of repairing stalled replication forks. Nature 404:37.
  • J. M. Cox, O. V. Tsodikov, and M. M. Cox. (2005). Organized unidirectional waves of ATP hydrolysis within a RecA filament. PLoS Biology 3:231.
  • J. M. Cox, S. N. Abbott, S. Chitteni-Pattu, R. B. Inman, and M. M. Cox. (2006). Complementation of one RecA protein point mutation by another. Evidence for trans catalysis of ATP hydrolysis. J Biol Chem 281:12968.
  • G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner. (2004). WebLogo: a sequence logo generator. Genome Res 14:1188.
  • R. P. Cunningham, A. M. Wu, T. Shibata, C. Das Gupta, and C. M. Radding. (1981). Homologous pairing and topological linkage of DNA molecules by combined action of E. coli RecA protein and topoisomerase I. Cell 24:213.
  • U. Curth, J. Greipel, C. Urbanke, and G. Maass. (1993). Multiple binding modes of the single-stranded DNA binding protein from Escherichia coli as detected by tryptophan fluorescence and site-directed mutagenesis. Biochemistry 32:2585.
  • U. Curth, J. Genschel, C. Urbanke, and J. Greipel. (1996). In vitro in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res 24:2706.
  • S. Dabrowski, M. Olszewski, R. Piatek, A. Brillowska-Dabrowska, G. Konopa, and J. Kur. (2002a). Identification and characterization of single-stranded-DNA-binding proteins from Thermus thermophilus and Thermus aquaticus – new arrangement of binding domains. Microbiology 148:3307.
  • S. Dabrowski, M. Olszewski, R. Piatek, and J. Kur. (2002b). Novel thermostable ssDNA-binding proteins from Thermus thermophilus and T. aquaticus-expression and purification. Protein Expr Purif 26:131.
  • B. P. Dalrymple, K. Kongsuwan, G. Wijffels, N. E. Dixon, and P. A. Jennings. (2001). A universal protein–protein interaction motif in the eubacterial DNA replication and repair systems. Proc Natl Acad Sci USA 98:11627.
  • M. J. Davey, and M. O'Donnell. (2000). Mechanisms of DNA replication. Curr Opin Chem Biol 4:581.
  • E. K. Davydova, and L. B. Rothman-Denes. (2003). Escherichia coli single-stranded DNA-binding protein mediates template recycling during transcription by bacteriophage N4 virion RNA polymerase. Proc Natl Acad Sci USA 100:9250.
  • E. K. Davydova, T. J. Santangelo, and L. B. Rothman-Denes. (2007). Bacteriophage N4 virion RNA polymerase interaction with its promoter DNA hairpin. Proc Natl Acad Sci USA 104:7033.
  • G. Dianov, and T. Lindahl. (1994). Reconstitution of the DNA base excision-repair pathway. Curr Biol 4:1069.
  • G. Dianov, B. Sedgwick, G. Daly, M. Olsson, S. Lovett, and T. Lindahl. (1994). Release of 5′-terminal deoxyribose-phosphate residues from incised abasic sites in DNA by the Escherichia coli RecJ protein. Nucleic Acids Res 22:993.
  • K. M. Doherty, J. A. Sommers, M. D. Gray, J. W. Lee, C. von Kobbe, N. H. Thoma, R. P. Kureekattil, M. K. Kenny, and R. M. BroshJr.. (2005). Physical and functional mapping of the replication protein a interaction domain of the werner and bloom syndrome helicases. J Biol Chem 280:29494.
  • J. C. Drees, S. L. Lusetti, S. Chitteni-Pattu, R. B. Inman, and M. M. Cox. (2004a). A RecA filament capping mechanism for RecX protein. Mol Cell 15:789.
  • J. C. Drees, S. L. Lusetti, and M. M. Cox. (2004b). Inhibition of RecA protein by the Escherichia coli RecX protein: modulation by the RecA C terminus and filament functional state. J Biol Chem 279:52991.
  • A. M. Dri, and P. L. Moreau. (1991). Properties of RecA441 protein reveal a possible role for RecF and SSB proteins in Escherichia coli. Mol Gen Genet 227:488.
  • D I. D'Souza, and L. Harrison. (2003). Repair of clustered uracil DNA damages in Escherichia coli. Nucleic Acids Res 31:4573.
  • J. M. Eggington, N. Haruta, E. A. Wood, and M. M. Cox. (2004). The single-stranded DNA-binding protein of Deinococcus radiodurans. BMC MicroBiol 4:2.
  • A. L. Eggler, S. L. Lusetti, and M. M. Cox. (2003). The C terminus of the Escherichia coli RecA protein modulates the DNA binding competition with single-stranded DNA-binding protein. J Biol Chem 278:16389.
  • C. Egner, E. Azhderian, S. S. Tsang, C. M. Radding, and J. W. Chase. (1987). Effects of various single-stranded-DNA-binding proteins on reactions promoted by RecA protein. J Bacteriol 169:3422.
  • D. G. Ennis, A. S. Levine, W. H. Koch, and R. Woodgate. (1995). Analysis of recA mutants with altered SOS functions. Mutat Res 336:39.
  • M. Escarceller, J. Hicks, G. Gudmundsson, G. Trump, D. Touati, S. Lovett, P. L. Foster, K. McEntee, and M. F. Goodman. (1994). Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation. J Bacteriol 176:6221.
  • S. C. Falco, K. V. Laan, and L. B. Rothman-Denes. (1977). Virion-associated RNA polymerase required for bacteriophage N4 development. Proc Natl Acad Sci USA 74:520.
  • E. Fanning, V. Klimovich, and A. R. Nager. (2006). A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34:4126.
  • S. S. Flory, J. Tsang, K. Muniyappa, M. Bianchi, D. Gonda, R. Kahn, E. Azhderian, C. Egner, S. Shaner, and C. M. Radding. (1984). Intermediates in homologous pairing promoted by RecA protein and correlations of recombination in vitro in vivo. Cold Spring Harb Symp Quant Biol 49:513.
  • P. L. Foster, G. Gudmundsson, J. M. Trimarchi, H. Cai, and M. F. Goodman. (1995). Proofreading-defective DNA polymerase II increases adaptive mutation in Escherichia coli. Proc Natl Acad Sci USA 92:7951.
  • R. P. Fuchs, N. Koffel-Schwartz, S. Pelet, R. Janel-Bintz, R. Napolitano, O. J. Becherel, T. H. Broschard, D. Y. Burnouf, and J. Wagner. (2001). DNA polymerases II and V mediate respectively mutagenic (−2 frameshift) and error-free bypass of a single N-2-acetylaminofluorene adduct. Biochem Soc Trans 29:191.
  • S. Fujii, A. Isogawa, and R. P. Fuchs. (2006). RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. EMBO J 25:5754.
  • A. Fukuoh, H. Iwasaki, K. Ishioka, and H. Shinagawa. (1997). ATP-dependent resolution of R-loops at the ColE1 replication origin by Escherichia coli RecG protein, a Holliday junction-specific helicase. EMBO J 16:203.
  • R. Galletto, I. Amitani, R. J. Baskin, and S. C. Kowalczykowski. (2006). Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443:875.
  • S. L. Gasior, H. Olivares, U. Ear, D. M. Hari, R. Weichselbaum, and D. K. Bishop. (2001). Assembly of RecA-like recombinases: Distinct roles for mediator proteins in mitosis and meiosis. Proc Natl Acad Sci USA 98:8411.
  • J. Genschel, U. Curth, and C. Urbanke. (2000). Interaction of E. coli single-stranded DNA binding protein (SSB) with exonuclease I. The carboxy-terminus of SSB is the recognition site for the nuclease. Biol Chem 381:183.
  • B. P. Glover, and C. S. McHenry. (1998). The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template. J Biol Chem 273:23476.
  • M. A. Glucksmann-Kuis, X. Dai, P. Markiewicz, and L. B. Rothman-Denes. (1996). E. coli SSB activates N4 virion RNA polymerase promoters by stabilizing a DNA hairpin required for promoter recognition. Cell 84:147.
  • E. I. Golub, R. C. Gupta, T. Haaf, M. S. Wold, and C. M. Radding. (1998). Interaction of human rad51 recombination protein with single-stranded DNA binding protein, RPA. Nucleic Acids Res 26:5388.
  • M. F. Goodman. (2000). Coping with replication ‘train wrecks’ in Escherichia coli using Pol V, Pol II and RecA proteins. Trends Biochem Sci 25:189.
  • J. Greenberg, and J. Donch. (1974). Sensitivity to elevated temperatures in exrB strains of Escherichia coli. Mutat Res 25:403.
  • J. Greenberg, L. J. Berends, J. Donch, and M. H. Green. (1974). exrB: a malB-linked gene in Escherichia coli B involved in sensitivity to radiation and filament formation. Genet Res 23:175.
  • A. V. Gregg, P. McGlynn, R. P. Jaktaji, and R. G. Lloyd. (2002). Direct rescue of stalled DNA replication forks via the combined action of PriA and RecG helicase activities. Mol Cell 9:241.
  • J. Greipel, G. Maass, and F. Mayer. (1987). Complexes of the single-stranded DNA-binding protein from Escherichia coli (Eco SSB) with poly(dT). An investigation of their structure and internal dynamics by means of electron microscopy and NMR. Biophys Chem 26:149.
  • M. A. Griep. (1995). Primase structure and function. Indian J Biochem Biophys 32:171.
  • T. J.T. Griffin, and R. D. Kolodner. (1990). Purification and preliminary characterization of the Escherichia coli K-12 recF protein. J Bacteriol 172:6291.
  • J. D. Griffith, L. D. Harris, and J. Register3rd. (1984). Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA filaments. Cold Spring Harb Symp Quant Biol 49:553.
  • G. Grompone, N. Sanchez, S. Dusko Ehrlich, and B. Michel. (2004a). Requirement for RecFOR-mediated recombination in priA mutant. Mol MicroBiol 52:551.
  • G. Grompone, V. Bidnenko, S. D. Ehrlich, and B. Michel. (2004b). PriA is essential for viability of the Escherichia coli topoisomerase IV parE10(Ts) mutant. J Bacteriol 186:1197.
  • G. Grompone, D. Ehrlich, and B. Michel. (2004c). Cells defective for replication restart undergo replication fork reversal. EMBO Rep 5:607.
  • E. S. Han, D. L. Cooper, N. S. Persky, V. A. SuteraJr., R. D. Whitaker, M. L. Montello, and S. T. Lovett. (2006). RecJ exonuclease: substrates, products and interaction with SSB. Nucleic Acids Res 34:1084.
  • K. Hanada, and I. D. Hickson. (2007). Molecular genetics of RecQ helicase disorders. Cell Mol Life Sci 64:2306.
  • K. Hanada, T. Ukita, Y. Kohno, K. Saito, J. Kato, and H. Ikeda. (1997). RecQ DNA helicase is a suppressor of illegitimate recombination in Escherichia coli. Proc Natl Acad Sci USA 94:3860.
  • P. C. Hanawalt. (1966). The U.V. sensitivity of bacteria: its relation to the DNA replication cycle. Photochem PhotoBiol 5:1.
  • P. C. Hanawalt. (1967). Normal replication of DNA after repair replication in bacteria. Nature 214 (5085):269.
  • P. C. Hanawalt, and R. H. Haynes. (1967). The repair of DNA. Sci Am 216:36.
  • P. Handa, N. Acharya, and U. Varshney. (2001). Chimeras between single-stranded DNA-binding proteins from Escherichia coli and Mycobacterium tuberculosis reveal that their C-terminal domains interact with uracil DNA glycosylases. J Biol Chem 276:16992.
  • F. G. Harmon, and S. C. Kowalczykowski. (1998). RecQ helicase, in concert with RecA and SSB proteins, initiates and disrupts DNA recombination. Genes Dev 12:1134.
  • F. G. Harmon, R. J. DiGate, and S. C. Kowalczykowski. (1999). RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol Cell 3:611.
  • F. G. Harmon, J. P. Brockman, and S. C. Kowalczykowski. (2003). RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase III. J Biol Chem 278:42668.
  • S. Hegde, S. J. Sandler, A. J. Clark, and M. V. Madiraju. (1995). recO and recR mutations delay induction of the SOS response in Escherichia coli. Mol Gen Genet 246:254.
  • S. P. Hegde, M. H. Qin, X. H. Li, M. A. Atkinson, A. J. Clark, M. Rajagopalan, and M. V. Madiraju. (1996). Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc Natl Acad Sci USA 93:14468.
  • R. C. Heller, and K. J. Marians. (2005a). Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks. J Biol Chem 280:34143.
  • R. C. Heller, and K. J. Marians. (2005b). The disposition of nascent strands at stalled replication forks dictates the pathway of replisome loading during restart. Mol Cell 17:733.
  • R. C. Heller, and K. J. Marians. (2007). Non-replicative helicases at the replication fork. DNA Repair (Amst) 6:945.
  • H. Hiasa, and K. J. Marians. (1999). Initiation of bidirectional replication at the chromosomal origin is directed by the interaction between helicase and primase. J Biol Chem 274:27244.
  • K. Higuchi, T. Katayama, S. Iwai, M. Hidaka, T. Horiuchi, and H. Maki. (2003). Fate of DNA replication fork encountering a single DNA lesion during oriC plasmid DNA replication in vitro. Genes to Cells 8:437.
  • T. Hishida, Y. W. Han, T. Shibata, Y. Kubota, Y. Ishino, H. Iwasaki, and H. Shinagawa. (2004). Role of the Escherichia coli RecQ DNA helicase in SOS signaling and genome stabilization at stalled replication forks. Genes Dev 18:1886.
  • M. D. Hobbs, A. Sakai, and M. M. Cox. (2007). SSB protein limits RecOR binding onto single-stranded DNA. J Biol Chem 282:11058.
  • M. R. Hodskinson, L. M. Allen, D. P. Thomson, and J. R. Sayers. (2007). Molecular interactions of Escherichia coli ExoIX and identification of its associated 3′-5′ exonuclease activity. Nucleic Acids Res 35:4094.
  • M. Honda, J. Inoue, M. Yoshimasu, Y. Ito, T. Shibata, and T. Mikawa. (2006). Identification of the RecR Toprim domain as the binding site for both RecF and RecO. A role of RecR in RecFOR assembly at double-stranded DNA-single-stranded DNA junctions. J Biol Chem 281:18549.
  • Z. Horii, and A. J. Clark. (1973). Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol 80:327.
  • J. Hosoda, and H. Moise. (1978). Purification and physicochemical properties of limited proteolysis products of T4 helix destabilizing protein (gene 32 protein). J Biol Chem 253:7547.
  • J. S. Hu, H. Feng, W. Zeng, G. X. Lin, and X. G. Xi. (2005). Solution structure of a multifunctional DNA- and protein-binding motif of human Werner syndrome protein. Proc Natl Acad Sci USA 102:18379.
  • C. Y. Huang, C. H. Hsu, Y. J. Sun, H. N. Wu, and C. D. Hsiao. (2006). Complexed crystal structure of replication restart primosome protein PriB reveals a novel single-stranded DNA-binding mode. Nucleic Acids Res 34:3878.
  • H. Ikeda, K. Shiraishi, and Y. Ogata. (2004). Illegitimate recombination mediated by double-strand break and end-joining in Escherichia coli. Adv Biophys 38:3.
  • J. Inoue, M. Honda, S. Ikawa, T. Shibata, and T. Mikawa. (2008). The process of displacing the single-stranded DNA-binding protein from single-stranded DNA by RecO and RecR proteins. Nucleic Acids Res 36:94.
  • K. Ishioka, H. Iwasaki, and H. Shinagawa. (1997). Roles of the recG gene product of Escherichia coli in recombination repair: effects of the delta recG mutation on cell division and chromosome partition. Genes Genet Syst 72:91.
  • I. Ivancic-Bace, P. Peharec, S. Moslavac, N. Skrobot, E. Salaj-Smic, and K. Brcic-Kostic. (2003). RecFOR function is required for DNA repair and recombination in a RecA loading-deficient recB mutant of Escherichia coli. Genetics 163:485.
  • I. Ivancic-Bace, E. Salaj-Smic, and K. Brcic-Kostic. (2005). Effects of recJ, recQ, and recFOR mutations on recombination in nuclease-deficient recB recD double mutants of Escherichia coli. J Bacteriol 187:1350.
  • H. Iwasaki, A. Nakata, G. C. Walker, and H. Shinagawa. (1990). The Escherichia coli polB gene, which encodes DNA polymerase II, is regulated by the SOS system. J Bacteriol 172:6268.
  • D. Jeruzalmi, M. O'Donnell, and J. Kuriyan. (2001). Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106:429.
  • A. Johnson, and M. O'Donnell. (2005). Cellular DNA replicases: components and dynamics at the replication fork. Annu Rev Biochem 74:283.
  • B. F. Johnson. (1984). Two-dimensional electrophoretic analysis of the regulation of SOS proteins in three ssb mutants. Arch MicroBiol 138:106.
  • S. K. Johnson, S. Bhattacharyya, and M. A. Griep. (2000). DnaB helicase stimulates primer synthesis activity on short oligonucleotide templates. Biochemistry 39:736.
  • J. M. Jones, and H. Nakai. (1999). Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate. J Mol Biol 289:503.
  • C. Joo, S. A. McKinney, M. Nakamura, I. Rasnik, S. Myong, and T. Ha. (2006). Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126:515.
  • J. M. Kaguni, and A. Kornberg. (1984). Replication initiated at the origin (oriC) of the E. coli chromosome reconstituted with purified enzymes. Cell 38:183.
  • N. Kantake, M. V. Madiraju, T. Sugiyama, and S. C. Kowalczykowski. (2002). Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination. Proc Natl Acad Sci USA 99:15327.
  • J. L. Keck, D. D. Roche, A. S. Lynch, and J. M. Berger. (2000). Structure of the RNA polymerase domain of E. coli primase. Science 287:2482.
  • Z. Kelman, A. Yuzhakov, J. Andjelkovic, and M. O'Donnell. (1998). Devoted to the lagging strand-the c subunit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J 17:2436.
  • M. I. Khamis, J. R. Casas-Finet, A. H. Maki, J. B. Murphy, and J. W. Chase. (1987). Investigation of the role of individual tryptophan residues in the binding of Escherichia coli single-stranded DNA binding protein to single-stranded polynucleotides. A study by optical detection of magnetic resonance and site-selected mutagenesis. J Biol Chem 262:10938.
  • T. Kitani, K. Yoda, T. Ogawa, and T. Okazaki. (1985). Evidence that discontinuous DNA replication in Escherichia coli is primed by approximately 10 to 12 residues of RNA starting with a purine. J Mol Biol 184:45.
  • K. L. Knight, K. H. Aoki, E. L. Ujita, and K. McEntee. (1984). Identification of the amino acid substitutions in two mutant forms of the RecA protein from Escherichia coli: RecA441 and RecA629. J Biol Chem 259:11279.
  • T. Kogoma, G. W. Cadwell, K. G. Barnard, and T. Asai. (1996). The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J Bacteriol 178:1258.
  • R. Kolodner, R. A. Fishel, and M. Howard. (1985). Genetic recombination of bacterial plasmid DNA: effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J Bacteriol 163:1060.
  • A. Kornberg. (1984). Enzyme studies of replication of the Escherichia coli chromosome. Adv Exp Med Biol 179:3.
  • A. Kornberg, and T. A. Baker. DNA Replication. W. H. Freeman, New York, (1992) .
  • O. Koroleva, N. Makharashvili, C. T. Courcelle, J. Courcelle, and S. Korolev. (2007). Structural conservation of RecF and Rad50: implications for DNA recognition and RecF function. Embo Journal 26:867.
  • S. C. Kowalczykowski, J. Clow, R. Somani, and A. Varghese. (1987). Effects of the Escherichia coli SSB protein on the binding of Escherichia coli RecA protein to single-stranded DNA. Demonstration of competitive binding and the lack of a specific protein–protein interaction. J Mol Biol 193:81.
  • S. C. Kowalczykowski, D. A. Dixon, A. K. Eggleston, S. D. Lauder, and W. M. Rehrauer. (1994). Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401.
  • A. G. Kozlov, and T. M. Lohman. (2002). Kinetic mechanism of direct transfer of Escherichia coli SSB tetramers between single-stranded DNA molecules. Biochemistry 41:11611.
  • N. V. Kumar, and U. Varshney. (1997). Contrasting effects of single stranded DNA binding protein on the activity of uracil DNA glycosylase from Escherichia coli towards different DNA substrates. Nucleic Acids Res 25:2336.
  • S. Kumaran, A. G. Kozlov, and T. M. Lohman. (2006). Saccharomyces cerevisiae replication protein A binds to single-stranded DNA in multiple salt-dependent modes. Biochemistry 45:11958.
  • H. Kurumizaka, H. Aihara, S. Ikawa, T. Kashima, L. R. Bazemore, K. Kawasaki, A. Sarai, C. M. Radding, and T. Shibata. (1996). A possible role of the C-terminal domain of the RecA protein. A gateway model for double-stranded DNA binding. J Biol Chem 271:33515.
  • S. R. Kushner, H. Nagaishi, and A. J. Clark. (1972). Indirect suppression of recB and recC mutations by exonuclease I deficiency. Proc Natl Acad Sci USA 69:1366.
  • S. R. Kushner, H. Nagaishi, and A. J. Clark. (1974). Isolation of exonuclease VIII: the enzyme associated with sbcA indirect suppressor. Proc Natl Acad Sci USA 71:3593.
  • A. Kuzminov. (1996). Unraveling the late stages of recombinational repair: metabolism of DNA junctions in Escherichia coli. [78 refs]. Bioessays 18:757.
  • A. Kuzminov. (1999). Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751.
  • A. Kuzminov. (2001a). DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination. Proc Natl Acad Sci USA 98:8461.
  • A. Kuzminov. (2001b). Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci USA 98:8241.
  • R. S. Lahue, K. G. Au, and P. Modrich. (1989). DNA mismatch correction in a defined system. Science 245:160.
  • R. S. Lasken, and A. Kornberg. (1988). The primosomal protein n' of Escherichia coli is a DNA helicase. J Biol Chem 263:5512.
  • P. E. Lavery, and S. C. Kowalczykowski. (1990). Properties of recA441 protein-catalyzed DNA strand exchange can be attributed to an enhanced ability to compete with SSB protein. J Biol Chem 265:4004.
  • P. E. Lavery, and S. C. Kowalczykowski. (1992). A postsynaptic role for single-stranded DNA-binding protein in recA protein-promoted DNA strand exchange. J Biol Chem 267:9315.
  • F. Lecointe, C. Serena, M. Velten, A. Costes, S. McGovern, J. C. Meile, J. Errington, S. D. Ehrlich, P. Noirot, and P. Polard. (2007). Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO J 26:4239.
  • B. I. Lee, K. H. Kim, S. J. Park, S. H. Eom, H. K. Song, and S. W. Suh. (2004a). Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. EMBO J 23:2029.
  • B. I. Lee, K. H. Kim, S. M. Shim, K. S. Ha, J. K. Yang, H. J. Yoon, J. Y. Ha, and S. W. Suh. (2004b). Crystallization and preliminary X-ray crystallographic analysis of the RecR protein from Deinococcus radiodurans, a member of the RecFOR DNA-repair pathway. Acta Crystallogr D Biol Crystallogr 60:379.
  • E. H. Lee, and A. Kornberg. (1991). Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n' protein. Proc Natl Acad Sci USA 88:3029.
  • J. W. Lee, and M. M. Cox. (1990). Inhibition of RecA protein-promoted ATP hydrolysis. II. Longitudinal assembly and disassembly of RecA protein filaments mediated by ATP and ADP. Biochemistry 29:7677.
  • M. S. Lee, and K. J. Marians. (1987). Escherichia coli replication factor Y, a component of the primosome, can act as a DNA helicase. Proc Natl Acad Sci USA 84:8345.
  • I. R. Lehman. (1960). The deoxyribonucleases of Escherichia coli. I. Purification and properties of a phosphodiesterase. J Biol Chem 235:1479.
  • I. R. Lehman, and A. L. Nussbaum. (1964). The Deoxyribonucleases of Escherichia coli. V. On the Specificity of Exonuclease I (Phosphodiesterase). J Biol Chem 239:2628.
  • I. Leiros, J. Timmins, D. R. Hall, and S. McSweeney. (2005). Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. Embo Journal 24:906.
  • L. K. Lewis, G. R. Harlow, L. A. Gregg-Jolly, and D. W. Mount. (1994). Identification of high affinity binding sites for LexA which define new DNA damage-inducible genes in Escherichia coli. J Mol Biol 241:507.
  • L. K. Lewis, M. E. Jenkins, and D. W. Mount. (1992). Isolation of DNA damage-inducible promoters in Escherichia coli: regulation of polB (dinA), dinG, and dinH by LexA repressor. J Bacteriol 174:3377.
  • H. B. Lieberman, and E. M. Witkin. (1981). Variable expression of the Ssb-1 allele in different strains of Escherichia coli K12 and B – differential suppression of its effects on DNA replication, DNA repair and ultraviolet mutagenesis. Molecular & General Genetics 183:348.
  • H. B. Lieberman, and E. M. Witkin. (1983). DNA degradation, UV sensitivity and SOS-mediated mutagenesis in strains of Escherichia coli deficient in single-strand DNA binding protein: effects of mutations and treatments that alter levels of exonuclease V or RecA protein. Mol Gen Genet 190:92.
  • T. Lindahl. (1974). An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc Natl Acad Sci USA 71:3649.
  • T. Lindahl. (1982). DNA repair enzymes. Annu Rev Biochem 51:61.
  • T. Lindahl, S. Ljungquist, W. Siegert, B. Nyberg, and B. Sperens. (1977). DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. J Biol Chem 252:3286.
  • G. Lindberg, S. C. Kowalczykowski, J. K. Rist, A. Sugino, and L. B. Rothman-Denes. (1989). Purification and characterization of the coliphage N4-coded single-stranded DNA binding protein. J Biol Chem 264:12700.
  • J. W. Little. (1984). Autodigestion of LexA and phage lambda repressors. Proc Natl Acad Sci USA 81:1375.
  • J. W. Little. (1991). Mechanism of specific LexA cleavage – autodigestion and the role of RecA coprotease. Biochimie 73:411.
  • J. Liu, P. Nurse, and K. J. Marians. (1996). The ordered assembly of the phiX174-type primosome. III. PriB facilitates complex formation between PriA and DnaT. J Biol Chem 271:15656.
  • J. H. Liu, T. W. Chang, C. Y. Huang, S. U. Chen, H. N. Wu, M. C. Chang, and C. D. Hsiao. (2004). Crystal structure of PriB, a primosomal DNA replication protein of Escherichia coli. J Biol Chem 279:50465.
  • Z. Livneh. (2001). DNA damage control by novel DNA polymerases: translesion replication and mutagenesis. J Biol Chem 276:25639.
  • R. G. Lloyd. (1991). Conjugational recombination in resolvase-deficient ruvC mutants of Escherichia coli K-12 depends on recG. J Bacteriol 173:5414.
  • R. G. Lloyd, M. C. Porton, and C. Buckman. (1988). Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K12. Mol Gen Genet 212:317.
  • T. M. Lohman, and M. E. Ferrari. (1994). Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527.
  • T. M. Lohman, and L. B. Overman. (1985). Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J Biol Chem 260:3594.
  • T. M. Lohman, W. Bujalowski, and L. B. Overman. (1988). E. coli single strand binding protein: a new look at helix-destabilizing proteins. Trends Biochem Sci 13:250.
  • T. M. Lohman, L. B. Overman, and S. Datta. (1986). Salt-dependent changes in the DNA binding co-operativity of Escherichia coli single strand binding protein. J Mol Biol 187:603.
  • M. J. Lombardo, I. Aponyi, M. P. Ray, M. Sandigursky, W. A. Franklin, and S. M. Rosenberg. (2003). xni-deficient Escherichia coli are proficient for recombination and multiple pathways of repair. DNA Repair (Amst) 2:1175.
  • N. Lonberg, S. C. Kowalczykowski, L. S. Paul, and P. H. von Hippel. (1981). Interactions of bacteriophage T4-coded gene 32 protein with nucleic acids. III. Binding properties of two specific proteolytic digestion products of the protein (G32P*I and G32P*III). J Mol Biol 145:123.
  • M. Lopper, J. M. Holton, and J. L. Keck. (2004). Crystal structure of PriB, a component of the Escherichia coli replication restart primosome. Structure 12:1967.
  • M. Lopper, R. Boonsombat, S. J. Sandler, and J. L. Keck. (2007). A hand-off mechanism for primosome assembly in replication restart. Mol Cell 26:781.
  • S. T. Lovett, and A. J. Clark. (1984). Genetic analysis of the recJ gene of Escherichia coli K-12. J Bacteriol 157:190.
  • S. T. Lovett, and R. D. Kolodner. (1989). Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc Natl Acad Sci USA 86:2627.
  • R. L. Low, J. Shlomai, and A. Kornberg. (1982). Protein n, a primosomal DNA replication protein of Escherichia coli. Purification and characterization. J Biol Chem 257:6242.
  • D. Lu, and J. L. Keck. (2008). Structural basis of E. coli single-stranded DNA-binding protein stimulation of Exonuclease I. Proc Natl Acad Sci USA in press
  • Y. B. Lu, P. V. Ratnakar, B. K. Mohanty, and D. Bastia. (1996). Direct physical interaction between DnaG primase and DnaB helicase of Escherichia coli is necessary for optimal synthesis of primer RNA. Proc Natl Acad Sci USA 93:12902.
  • C. Luisi-DeLuca. (1995). Homologous pairing of single-stranded DNA and superhelical double-stranded DNA catalyzed by RecO protein from Escherichia coli. J Bacteriol 177:566.
  • C. Luisi-DeLuca, and R. Kolodner. (1994). Purification and characterization of the Escherichia coli RecO protein. Renaturation of complementary single-stranded DNA molecules catalyzed by the RecO protein. J Mol Biol 236:124.
  • C. Luisi-DeLuca, S. T. Lovett, and R. D. Kolodner. (1989). Genetic and physical analysis of plasmid recombination in recB recC sbcB and recB recC sbcA Escherichia coli K-12 mutants. Genetics 122:269.
  • S. L. Lusetti, and M. M. Cox. (2002). The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annu Rev Biochem 71:71.
  • S. L. Lusetti, J. J. Shaw, and M. M. Cox. (2003a). Magnesium ion-dependent activation of the RecA protein involves the C terminus. J Biol Chem 278:16381.
  • S. L. Lusetti, E. A. Wood, C. D. Fleming, M. J. Modica, J. Korth, L. Abbott, D. W. Dwyer, A. I. Roca, R. B. Inman, and M. M. Cox. (2003b). C-terminal deletions of the Escherichia coli RecA protein. Characterization of in vivo in vitro effects. J Biol Chem 278:16372.
  • S. L. Lusetti, M. D. Hobbs, E. A. Stohl, S. Chitteni-Pattu, R. B. Inman, H. S. Seifert, and M. M. Cox. (2006). The RecF protein antagonizes RecX function via direct interaction. Mol Cell 21:41.
  • V. Mackay, and S. Linn. (1976). Selective inhibition of the dnase activity of the recBC enzyme by the DNA binding protein from Escherichia coli. J Biol Chem 251:3716.
  • M. V. Madiraju, and A. J. Clark. (1990). Use of recA803, a partial suppressor of recF, to analyze the effects of the mutant Ssb (single-stranded DNA-binding) proteins in vivo in vitro. Mol Gen Genet 224:129.
  • M. V. Madiraju, A. Templin, and A. J. Clark. (1988). Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination. Proc Natl Acad Sci USA 85:6592.
  • M. V. Madiraju, P. E. Lavery, S. C. Kowalczykowski, and A. J. Clark. (1992). Enzymatic properties of the RecA803 protein, a partial suppressor of recF mutations. Biochemistry 31:10529.
  • D. B. Magner, M. D. Blankschien, J. A. Lee, J. M. Pennington, J. R. Lupski, and S. M. Rosenberg. (2007). RecQ promotes toxic recombination in cells lacking recombination intermediate-removal proteins. Mol Cell 26:273.
  • A. A. Mahdi, and R. G. Lloyd. (1989a). Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair. Mol Gen Genet 216:503.
  • A. A. Mahdi, and R. G. Lloyd. (1989b). The recR locus of Escherichia coli K-12: molecular cloning, DNA sequencing and identification of the gene product. Nucleic Acids Res 17:6781.
  • A. A. Mahdi, G. S. Briggs, G. J. Sharples, Q. Wen, and R. G. Lloyd. (2003). A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins. EMBO J 22:724.
  • A. A. Mahdi, C. Buckman, L. Harris, and R. G. Lloyd. (2006). Rep and PriA helicase activities prevent RecA from provoking unnecessary recombination during replication fork repair. Genes Dev 20:2135.
  • N. Makharashvili, O. Koroleva, S. Bera, D. P. Grandgenett, and S. Korolev. (2004). A novel structure of DNA repair protein RecO from Deinococcus radiodurans. Structure 12:1881.
  • A. Maor-Shoshani, and Z. Livneh. (2002). Analysis of the stimulation of DNA polymerase V of Escherichia coli by processivity proteins. Biochemistry 41:14438.
  • K. J. Marians. (1984). Enzymology of DNA in replication in prokaryotes. CRC Crit Rev Biochem 17:153.
  • K. J. Marians. (1992). Prokaryotic DNA replication. Annu Rev Biochem 61:673.
  • K. J. Marians. (1999). PriA: at the crossroads of DNA replication and recombination. Prog Nucleic Acid Res Mol Biol 63:39.
  • K. J. Marians. (2000). PriA-directed replication fork restart in Escherichia coli. Trends Biochem Sci 25:185.
  • B. Marintcheva, A. Marintchev, G. Wagner, and C. C. Richardson. (2008). Acidic C-terminal tail of the ssDNA-binding protein of bacteriophage T7 and ssDNA compete for the same binding surface. Proc Natl Acad Sci USA 105:1855.
  • P. Markiewicz, C. Malone, J. W. Chase, and L. B. Rothman-Denes. (1992). Escherichia coli single-stranded DNA-binding protein is a supercoiled template-dependent transcriptional activator of N4 virion RNA polymerase. Genes Dev 6:2010.
  • H. Masai, T. Asai, Y. Kubota, K. Arai, and T. Kogoma. (1994). Escherichia coli PriA protein is essential for inducible and constitutive stable DNA replication. EMBO J 13:5338.
  • T. Matsumoto, Y. Morimoto, N. Shibata, T. Kinebuchi, N. Shimamoto, T. Tsukihara, and N. Yasuoka. (2000). Roles of functional loops and the C-terminal segment of a single-stranded DNA binding protein elucidated by X-Ray structure analysis. J Biochem 127:329.
  • J. P. McDonald, E. E. Maury, A. S. Levine, and R. Woodgate. (1998). Regulation of UmuD cleavage: role of the amino-terminal tail. J Mol Biol 282:721.
  • K. McEntee. (1977). Protein X is the product of the recA gene of Escherichia coli. Proc Natl Acad Sci USA 74:5275.
  • K. McEntee, G. M. Weinstock, and I. R. Lehman. (1979). Initiation of general recombination catalyzed in vitro by the RecA protein of Escherichia coli. Proc Natl Acad Sci USA 76:2615.
  • K. McEntee, G. M. Weinstock, and I. R. Lehman. (1980). recA protein-catalyzed strand assimilation: stimulation by Escherichia coli single-stranded DNA-binding protein. Proc Natl Acad Sci USA 77:857.
  • P. McGlynn, A. A. Al-Deib, J. Liu, K. J. Marians, and R. G. Lloyd. (1997). The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol 270:212.
  • P. McGlynn, and R. G. Lloyd. (1999). RecG helicase activity at three- and four-strand DNA structures. Nucleic Acids Res 27:3049.
  • P. McGlynn, and R. G. Lloyd. (2002). Genome stability and the processing of damaged replication forks by RecG. Trends Genet 18:413.
  • P. McGlynn, A. A. Mahdi, and R. G. Lloyd. (2000). Characterisation of the catalytically active form of RecG helicase. Nucleic Acids Res 28:2324.
  • P. McInerney, and M. O'Donnell. (2007). Replisome fate upon encountering a leading strand block and clearance from DNA by recombination proteins. J Biol Chem 282:25903.
  • T. R. Meddows, A. P. Savory, and R. G. Lloyd. (2004). RecG helicase promotes DNA double-strand break repair. Mol MicroBiol 52:119.
  • V. M. Mendonca, and S. W. Matson. (1995). Genetic analysis of delta helD and delta uvrD mutations in combination with other genes in the RecF recombination pathway in Escherichia coli: suppression of a ruvB mutation by a uvrD deletion. Genetics 141:443.
  • B. M. Merrill, K. R. Williams, J. W. Chase, and W. H. Konigsberg. (1984). Photochemical cross-linking of the Escherichia coli single-stranded DNA-binding protein to oligodeoxynucleotides. Identification of phenylalanine 60 as the site of cross-linking. J Biol Chem 259:10850.
  • R. R. Meyer, and P. S. Laine. (1990). The single-stranded DNA-binding protein of Escherichia coli. Microbiol Rev 54:342.
  • R. R. Meyer, J. Glassberg, J. V. Scott, and A. Kornberg. (1980). A temperature-sensitive single-stranded DNA-binding protein from Escherichia coli. J Biol Chem 255:2897.
  • R. R. Meyer, D. C. Rein, and J. Glassberg. (1982). The product of the lexC gene of Escherichia coli is single-stranded DNA-binding protein. J Bacteriol 150:433.
  • B. Michel. (2000). Replication fork arrest and DNA recombination. Trends in Biochemical Sciences 25:173.
  • B. Michel, M. J. Flores, E. Viguera, G. Grompone, M. Seigneur, and V. Bidnenko. (2001). Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci USA 98:8181.
  • B. Michel, G. Grompone, M. J. Flores, and V. Bidnenko. (2004). Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA 101:12783.
  • A. Miller, X. Dai, M. Choi, M. A. Glucksmann-Kuis, and L. B. Rothman-Denes. (1996). Single-stranded DNA-binding proteins as transcriptional activators. Methods Enzymol 274:9.
  • I. J. Molineux, and M. L. Gefter. (1974). Properties of the Escherichia coli in DNA binding (unwinding) protein: interaction with DNA polymerase and DNA. Proc Natl Acad Sci USA 71:3858.
  • I. J. Molineux, and M. L. Gefter. (1975). Properties of the Escherichia coli DNA-binding (unwinding) protein interaction with nucleolytic enzymes and DNA. J Mol Biol 98:811.
  • I. J. Molineux, S. Friedman, and M. L. Gefter. (1974). Purification and properties of the Escherichia coli deoxyribonucleic acid-unwinding protein. Effects on deoxyribonucleic acid synthesis in vitro. J Biol Chem 249:6090.
  • I. J. Molineux, A. Pauli, and M. L. Gefter. (1975). Physical studies of the interaction between the Escherichia coli DNA binding protein and nucleic acids. Nucleic Acids Res 2:1821.
  • P. L. Moreau. (1988). Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli. J Bacteriol 170:2493.
  • K. Morimatsu, and S. C. Kowalczykowski. (2003). RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11:1337.
  • S. W. Morrical, J. Lee, and M. M. Cox. (1986). Continuous association of Escherichia coli single-stranded DNA binding protein with stable complexes of recA protein and single-stranded DNA. Biochemistry 25:1482.
  • P. T. Morrison, S. T. Lovett, L. E. Gilson, and R. Kolodner. (1989). Molecular analysis of the Escherichia coli recO gene. J Bacteriol 171:3641.
  • D. W. Mosbaugh, and S. E. Bennett. (1994). Uracil-excision DNA repair. Prog Nucleic Acid Res Mol Biol 48:315.
  • K. Muniyappa, S. L. Shaner, S. S. Tsang, and C. M. Radding. (1984). Mechanism of the concerted action of recA protein and helix-destabilizing proteins in homologous recombination. Proc Natl Acad Sci USA 81:2757.
  • K. Muniyappa, K. Williams, J. W. Chase, and C. M. Radding. (1990). Active nucleoprotein filaments of single-stranded binding protein and recA protein on single-stranded DNA have a regular repeating structure. Nucleic Acids Res 18:3967.
  • A. G. Murzin. (1993). OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12:861.
  • H. Nakayama, K. Nakayama, R. Nakayama, N. Irino, Y. Nakayama, and P. C. Hanawalt. (1984). Isolation and genetic characterization of a thymineless death-resistant mutant of Escherichia coli K12: identification of a new mutation (recQ1) that blocks the RecF recombination pathway. Mol Gen Genet 195:474.
  • K. Nakayama, N. Irino, and H. Nakayama. (1985). The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol Gen Genet 200:266.
  • K. Nakayama, S. Shiota, and H. Nakayama. (1988). Thymineless death in Escherichia coli mutants deficient in the RecF recombination pathway. Can J MicroBiol 34:905.
  • E. A. Namsaraev, and P. Berg. (2000). Rad51 uses one mechanism to drive DNA strand exchange in both directions. J Biol Chem 275:3970.
  • R. Napolitano, R. Janel-Bintz, J. Wagner, and R. P. Fuchs. (2000). All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J 19:6259.
  • J. Y. Ng, and K. J. Marians. (1996). The ordered assembly of the phiX174-type primosome. I. Isolation and identification of intermediate protein-DNA complexes. J Biol Chem 271:15642.
  • T. Nohmi, J. R. Battista, L. A. Dodson, and G. C. Walker. (1988). RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttranslational activation. Proc Natl Acad Sci USA 85:1816.
  • A. Nowosielska, C. Janion, and E. Grzesiuk. (2004). Effect of deletion of SOS-induced polymerases, pol II, IV, and V, on spontaneous mutagenesis in Escherichia coli mutD5. Environ Mol Mutagen 43:226.
  • P. Nurse, J. Liu, and K. J. Marians. (1999). Two modes of PriA binding to DNA. J Biol Chem 274:25026.
  • A. J. Oakley, K. V. Loscha, P. M. Schaeffer, E. Liepinsh, G. Pintacuda, M. C. Wilce, G. Otting, and N. E. Dixon. (2005). Crystal and solution structures of the helicase-binding domain of Escherichia coli primase. J Biol Chem 280:11495.
  • M. O'Donnell. (2006). Replisome architecture and dynamics in Escherichia coli. J Biol Chem 281:10653.
  • T. Ogawa, T. A. Baker, A. van der Ende, and A. Kornberg. (1985). Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: contributions of RNA polymerase and primase. Proc Natl Acad Sci USA 82:3562.
  • M. W. Olson, H. G. Dallmann, and C. S. McHenry. (1995). DnaX complex of Escherichia coli DNA polymerase III holoenzyme. The chi psi complex functions by increasing the affinity of tau and gamma for delta.delta' to a physiologically relevant range. J Biol Chem 270:29570.
  • R. Onrust, J. Finkelstein, V. Naktinis, J. Turner, L. Fang, and M. O'Donnell. (1995). Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader. J Biol Chem 270:13348.
  • L. B. Overman, and T. M. Lohman. (1994). Linkage of pH, anion and cation effects in protein-nucleic acid equilibria. Escherichia coli SSB protein-single stranded nucleic acid interactions. J Mol Biol 236:165.
  • L. B. Overman, W. Bujalowski, and T. M. Lohman. (1988). Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity. Biochemistry 27:456.
  • V. Pages, R. Janel-Bintz, and R. P. Fuchs. (2005). Pol III proofreading activity prevents lesion bypass as evidenced by its molecular signature within E.coli cells. J Mol Biol 352:501.
  • T. S. Peat, E. G. Frank, J. P. McDonald, A. S. Levine, R. Woodgate, and W. A. Hendrickson. (1996). Structure of the UmuD' protein and its regulation in response to DNA damage. Nature 380:727.
  • P. Pham, S. Rangarajan, R. Woodgate, and M. F. Goodman. (2001). Roles of DNA polymerases V and II in SOS-induced error-prone and error-free repair in Escherichia coli. Proc Natl Acad Sci USA 98:8350.
  • G. J. Phillips, D. C. Prasher, and S. R. Kushner. (1988). Physical and biochemical characterization of cloned sbcB and xonA mutations from Escherichia coli K-12. J Bacteriol 170:2089.
  • M. Podobnik, P. McInerney, M. O'Donnell, and J. Kuriyan. (2000). A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J Mol Biol 300:353.
  • V. A. Ponomarev, K. S. Makarova, L. Aravind, and E. V. Koonin. (2003). Gene duplication with displacement and rearrangement: origin of the bacterial replication protein PriB from the single-stranded DNA-binding protein Ssb. J Mol Microbiol Biotechnol 5:225.
  • A. E. Pritchard, H. G. Dallmann, B. P. Glover, and C. S. McHenry. (2000). A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of deltadelta' with DnaX(4) forms DnaX(3)deltadelta'. EMBO J 19:6536.
  • B. F. Pugh, and M. M. Cox. (1987). RecA protein binding to the heteroduplex product of DNA strand exchange. J Biol Chem 262:1337.
  • K. Purnapatre, P. Handa, J. Venkatesh, and U. Varshney. (1999). Differential effects of single-stranded DNA binding proteins (SSBs) on uracil DNA glycosylases (UDGs) from Escherichia coli and mycobacteria. Nucleic Acids Res 27:3487.
  • Z. Qiu, and M. F. Goodman. (1997). The Escherichia coli polB locus is identical to dinA, the structural gene for DNA polymerase II. Characterization of Pol II purified from a polB mutant. J Biol Chem 272:8611.
  • A. Quinones, and S. Neumann. (1997). The ssb-113 allele suppresses the dnaQ49 mutator and alters DNA supercoiling in Escherichia coli. Mol MicroBiol 25:237.
  • S. Raghunathan, C. S. Ricard, T. M. Lohman, and G. Waksman. (1997). Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. Proc Natl Acad Sci USA 94:6652.
  • S. Raghunathan, A. G. Kozlov, T. M. Lohman, and G. Waksman. (2000). Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat Struct Biol 7:648.
  • S. Rangarajan, G. Gudmundsson, Z. Qiu, P. L. Foster, and M. F. Goodman. (1997). Escherichia coli DNA polymerase II catalyzes chromosomal and episomal DNA synthesis in vivo. Proc Natl Acad Sci USA 94:946.
  • S. Rangarajan, R. Woodgate, and M. F. Goodman. (1999). A phenotype for enigmatic DNA polymerase II: a pivotal role for pol II in replication restart in UV-irradiated Escherichia coli. Proc Natl Acad Sci USA 96:9224.
  • S. Rangarajan, R. Woodgate, and M. F. Goodman. (2002). Replication restart in UV-irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol MicroBiol 43:617.
  • M. S. Reddy, N. Guhan, and K. Muniyappa. (2001). Characterization of single-stranded DNA-binding proteins from Mycobacteria. The carboxyl-terminal of domain of SSB is essential for stable association with its cognate RecA protein. J Biol Chem 276:45959.
  • J. C. RegisterIII, and J. Griffith. (1985). The direction of RecA protein assembly onto single strand DNA is the same as the direction of strand assimilation during strand exchange. J Biol Chem 260:12308.
  • W. M. Rehrauer, I. Bruck, R. Woodgate, M. F. Goodman, and S. C. Kowalczykowski. (1998). Modulation of RecA nucleoprotein function by the mutagenic UmuD'C protein complex. J Biol Chem 273:32384.
  • N. B. Reuven, G. Arad, A. Maor-Shoshani, and Z. Livneh. (1999). The mutagenesis protein UmuC is a DNA polymerase activated by UmuD', RecA, and SSB and is specialized for translesion replication. J Biol Chem 274:31763.
  • J. W. Roberts, C. W. Roberts, and N. L. Craig. (1978). Escherichia coli recA gene product inactivates phage lambda repressor. Proc Natl Acad Sci USA 75:4714.
  • J. W. Roberts, C. W. Roberts, N. L. Craig, and E. M. Phizicky. (1979). Activity of the Escherichia coli recA-gene product. Cold Spring Harb Symp Quant Biol 43:917.
  • M. E. Robu, R. B. Inman, and M. M. Cox. (2004). Situational repair of replication forks: roles of RecG and RecA proteins. J Biol Chem 279:10973.
  • E. P.C. Rocha, E. Cornet, and B. Michel. (2005). Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genetics 1:e15.
  • L. Rowen, and A. Kornberg. (1978). Primase, the dnaG protein of Escherichia coli. An enzyme which starts DNA chains. J Biol Chem 253:758.
  • R. Roy, A. G. Kozlov, T. M. Lohman, and T. Ha. (2007). Dynamic Structural Rearrangements Between DNA Binding Modes of E. coli SSB Protein. J Mol Biol 369:1244.
  • L. Ryder, M. C. Whitby, and R. G. Lloyd. (1994). Mutation of recF, recJ, recO, recQ, or recR improves Hfr recombination in resolvase-deficient ruv recG strains of Escherichia coli. J Bacteriol 176:1570.
  • K. Sakumi, and M. Sekiguchi. (1990). Structures and functions of DNA glycosylases. Mutat Res 236:161.
  • M. Sandigursky, and W. A. Franklin. (1992). DNA deoxyribophosphodiesterase of Escherichia coli is associated with exonuclease I. Nucleic Acids Res 20:4699.
  • M. Sandigursky, I. Lalezari, and W. A. Franklin. (1992). Excision of sugar-phosphate products at apurinic/apyrimidinic sites by DNA deoxyribophosphodiesterase of Escherichia coli. Radiat Res 131:332.
  • M. Sandigursky, F. Mendez, R. E. Bases, T. Matsumoto, and W. A. Franklin. (1996). Protein-protein interactions between the Escherichia coli single-stranded DNA-binding protein and exonuclease I. Radiat Res 145:619.
  • S. J. Sandler. (1996). Overlapping functions for recF priA in cell viability and UV-inducible SOS expression are distinguished by dnaC809 in Escherichia coli K-12. Molec Microbiol 19:871.
  • S. J. Sandler, and A. J. Clark. (1993). Use of high and low level overexpression plasmids to test mutant alleles of the recF gene of Escherichia coli K-12 for partial activity. Genetics 135:643.
  • S. J. Sandler, and A. J. Clark. (1994a). RecOR suppression of recF mutant phenotypes in Escherichia coli K-12. J Bacteriol 176:3661.
  • S. J. Sandler, and A. J. Clark. (1994b). Mutational analysis of sequences in the recF gene of Escherichia coli K-12 that affect expression. J Bacteriol 176:4011.
  • S. J. Sandler, and K. J. Marians. (2000). Role of PriA in replication fork reactivation in Escherichia coli. J Bacteriol 182:9.
  • S. J. Sandler, H. S. Samra, and A. J. Clark. (1996). Differential suppression of priA2::kan phenotypes in Escherichia coli K-12 by mutations in priA, lexA, and dnaC. Genetics 143:5.
  • S. J. Sandler, K. J. Marians, K. H. Zavitz, J. Coutu, M. A. Parent, and A. J. Clark. (1999). dnaC mutations suppress defects in DNA replication- and recombination-associated functions in priB and priC double mutants in Escherichia coli K-12. Mol MicroBiol 34:91.
  • L. Sarov-Blat, and Z. Livneh. (1998). The mutagenesis protein MucB interacts with single strand DNA binding protein and induces a major conformational change in its complex with single-stranded DNA. J Biol Chem 273:5520.
  • R. Savva, K. McAuley-Hecht, T. Brown, and L. Pearl. (1995). The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373:487.
  • S. N. Savvides, S. Raghunathan, K. Futterer, A. G. Kozlov, T. M. Lohman, and G. Waksman. (2004). The C-terminal domain of full-length E. coli SSB is disordered even when bound to DNA. Protein Sci 13:1942.
  • J. A. Sawitzke, and F. W. Stahl. (1992). Phage lambda has an analog of Escherichia coli recO, recR and recF genes. Genetics 130:7.
  • J. A. Sawitzke, and F. W. Stahl. (1994). The phage lambda orf gene encodes a trans-acting factor that suppresses Escherichia coli recO, recR, and recF mutations for recombination of lambda but not of E. coli. J Bacteriol 176:6730.
  • J. R. Sayers. (1994). Computer aided identification of a potential 5′-3′ exonuclease gene encoded by Escherichia coli. J Theor Biol 170:415.
  • K. Schlacher, K. Leslie, C. Wyman, R. Woodgate, M. M. Cox, and M. F. Goodman. (2005). DNA polymerase V and RecA protein, a minimal mutasome. Mol Cell 17:561.
  • K. Schlacher, Q. Jiang, R. Woodgate, and M. F. Goodman. (2006a). Purification and characterization of Escherichia coli DNA polymerase V. Methods Enzymol 408:378.
  • K. Schlacher, M. M. Cox, R. Woodgate, and M. F. Goodman. (2006b). RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature 442:883.
  • M. Schnarr, P. Oertel-Buchheit, M. Kazmaier, and M. Granger-Schnarr. (1991). DNA binding properties of the LexA repressor. Biochimie 73:423.
  • R. J. Schneider, and J. G. Wetmur. (1982). Kinetics of transfer of Escherichia coli single strand deoxyribonucleic acid binding protein between single-stranded deoxyribonucleic acid molecules. Biochemistry 21:608.
  • M. Sedliakova, V. Slezarikova, F. Masek, M. Vizvaryova, and M. Pirsel. (2001). Role of DNA polymerase II in the tolerance of thymine dimers remaining unexcised in UV-irradiated Escherichia coli exposed to pre-UV nutritional stress. J Photochem Photobiol B 65:145.
  • K. M. Shafritz, M. Sandigursky, and W. A. Franklin. (1998). Exonuclease IX of Escherichia coli. Nucleic Acids Res 26:2593.
  • Y. Shamoo, A. M. Friedman, M. R. Parsons, W. H. Konigsberg, and T. A. Steitz. (1995). Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376:362.
  • Q. Shan, J. M. Bork, B. L. Webb, R. B. Inman, and M. M. Cox. (1997). RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J Mol Biol 265:519.
  • G. J. Sharples, S. M. Ingleston, and R. G. Lloyd. (1999). Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J Bacteriol 181:5543.
  • R. D. Shereda, D. A. Bernstein, and J. L. Keck. (2007). A Central Role for SSB in Escherichia coli RecQ DNA Helicase Function. J Biol Chem 282:19247.
  • T. Shibata, R. P. Cunningham, C. Das Gupta, and C. M. Radding. (1979a). Homologous pairing in genetic recombination: complexes of RecA protein and DNA. Proc Natl Acad Sci USA 76:5100.
  • T. Shibata, C. Das Gupta, R. P. Cunningham, and C. M. Radding. (1979b). Purified Escherichia coli RecA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc Natl Acad Sci USA 76:1638.
  • S. Shioi, T. Ose, K. Maenaka, M. Shiroishi, Y. Abe, D. Kohda, T. Katayama, and T. Ueda. (2005). Crystal structure of a biologically functional form of PriB from Escherichia coli reveals a potential single-stranded DNA-binding site. Biochem Biophys Res Commun 326:766.
  • K. Shiraishi, K. Hanada, Y. Iwakura, and H. Ikeda. (2002). Roles of RecJ, RecO, and RecR in RecET-mediated illegitimate recombination in Escherichia coli. J Bacteriol 184:4715.
  • J. Shlomai, and A. Kornberg. (1980). An Escherichia coli replication protein that recognizes a unique sequence within a hairpin region in phi X174 DNA. Proc Natl Acad Sci USA 77:799.
  • N. Sigal, H. Delius, T. Kornberg, M. L. Gefter, and B. Alberts. (1972). A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. Proc Natl Acad Sci USA 69:3537.
  • D. Sikder, S. Unniraman, T. Bhaduri, and V. Nagaraja. (2001). Functional cooperation between topoisomerase I and single strand DNA-binding protein. J Mol Biol 306:669.
  • M. R. Singleton, S. Scaife, and D. B. Wigley. (2001). Structural analysis of DNA replication fork reversal by RecG. Cell 107:79.
  • S. L. Slocum, J. A. Buss, Y. Kimura, and P. R. Bianco. (2007). Characterization of the ATPase activity of the Escherichia coli RecG protein reveals that the preferred cofactor is negatively supercoiled DNA. J Mol Biol 367:647.
  • B. Song, and P. Sung. (2000). Functional interactions among yeast Rad51, recombinase, Rad52 mediator and replication protein A in DNA strand exchange. J Biol Chem 275:15895.
  • D. Suck. (1997). Common fold, common function, common origin?. Nat Struct Biol 4:161.
  • J. Z. Sun, H. Q. Feng, G. X. Lin, W. Zeng, and J. S. Hu. (2005). NMR assignments of the winged-helix domain of human werner syndrome protein. J Biomol NMR 32:261.
  • W. Sun, J. Tormo, T. A. Steitz, and G. N. Godson. (1994). Domains of Escherichia coli primase: functional activity of a 47-kDa N-terminal proteolytic fragment. Proc Natl Acad Sci USA 91:11462.
  • P. Sung. (1997). Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J Biol Chem 272:28194.
  • M. G. Sunshine, and B. Kelly. (1971). Extent of host deletions associated with bacteriophage P2-mediated eduction. J Bacteriol 108:695.
  • C. Suski, and K. J. Marians. Resolution of converging replication forks by RecQ and Topoisomerase III. , , (2008) in press.
  • M. D. Sutton, J. M. Duzen, and R. W. Maul. (2005). Mutant forms of the Escherichia coli beta sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis. Mol MicroBiol 55:1751.
  • T. Tanaka, and H. Masai. (2006). Stabilization of a stalled replication fork by concerted actions of two helicases. J Biol Chem 281:3484.
  • M. Tang, I. Bruck, R. Eritja, J. Turner, E. G. Frank, R. Woodgate, M. O'Donnell, and M. F. Goodman. (1998). Biochemical basis of SOS-induced mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD'2C mutagenic complex and RecA protein. Proc Natl Acad Sci USA 95:9755.
  • M. Tang, X. Shen, E. G. Frank, M. O'Donnell, R. Woodgate, and M. F. Goodman. (1999). UmuD'(2)C is an error-prone DNA polymerase, Escherichia coli pol V. Proc Natl Acad Sci USA 96:8919.
  • M. Tang, P. Pham, X. Shen, J. S. Taylor, M. O'Donnell, R. Woodgate, and M. F. Goodman. (2000). Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404:1014.
  • E. S. Tessman, and P. K. Peterson. (1982). Suppression of the ssb-1 and ssb-113 mutations of Escherichia coli by a wild-type rep gene, NaCl, and glucose. J Bacteriol 152:572.
  • A. Thomas, and R. G. Lloyd. (1983). Control of recA dependent activities in Escherichia coli: a possible role for the recF product. J Gen MicroBiol 129:681.
  • K. R. Thomas, and B. M. Olivera. (1978). Processivity of DNA exonucleases. J Biol Chem 253:424.
  • J. Timmins, I. Leiros, and S. McSweeney. (2007). Crystal structure and mutational study of RecOR provide insight into its mode of DNA binding. Embo Journal 26:3260.
  • K. Tougu, and K. J. Marians. (1996a). The extreme C terminus of primase is required for interaction with DnaB at the replication fork. J Biol Chem 271:21391.
  • K. Tougu, and K. J. Marians. (1996b). The interaction between helicase and primase sets the replication fork clock. J Biol Chem 271:21398.
  • K. Tougu, H. Peng, and K. J. Marians. (1994). Identification of a domain of Escherichia coli primase required for functional interaction with the DnaB helicase at the replication fork. J Biol Chem 269:4675.
  • Y. C. Tseng, J. L. Hung, and T. C. Wang. (1994). Involvement of RecF pathway recombination genes in postreplication repair in UV-irradiated Escherichia coli cells. Mutat Res 315:1.
  • R. M. Tyrrell, S. H. Moss, and D. J. Davies. (1972). The variation in UV sensitivity of four K12 strains of Escherichia coli as a function of their stage of growth. Mutat Res 16:1.
  • K. Umezu, and R. D. Kolodner. (1994). Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem 269:30005.
  • K. Umezu, and H. Nakayama. (1993). RecQ DNA helicase of Escherichia coli. Characterization of the helix-unwinding activity with emphasis on the effect of single-stranded DNA-binding protein. J Mol Biol 230:1145.
  • K. Umezu, N. W. Chi, and R. D. Kolodner. (1993). Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci USA 90:3875.
  • A. van der Ende, T. A. Baker, T. Ogawa, and A. Kornberg. (1985). Initiation of enzymatic replication at the origin of the Escherichia coli chromosome: primase as the sole priming enzyme. Proc Natl Acad Sci USA 82:3954.
  • A. J. Varghese. (1972). Photochemistry of nucleic acids and their constituents. Photophysiology 7:207.
  • X. Veaute, S. Delmas, M. Selva, J. Jeusset, E. Le Cam, I. Matic, F. Fabre, and M. A. Petit. (2005). UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO J 24:180.
  • S. D. Vincent, A. A. Mahdi, and R. G. Lloyd. (1996). The RecG branch migration protein of Escherichia coli dissociates R-loops. J Mol Biol 264:713.
  • M. Viswanathan, and S. T. Lovett. (1998). Single-strand DNA-specific exonucleases in Escherichia coli. Roles in repair and mutation avoidance. Genetics 149:7.
  • M. Viswanathan, V. Burdett, C. Baitinger, P. Modrich, and S. T. Lovett. (2001). Redundant exonuclease involvement in Escherichia coli methyl-directed mismatch repair. J Biol Chem 276:31053.
  • M. R. Volkert, L. J. Margossian, and A. J. Clark. (1984). Two-component suppression of recF143 by recA441 in Escherichia coli K-12. J Bacteriol 160:702.
  • P. H. von Hippel, and E. Delagoutte. (2001). A general model for nucleic acid helicases and their “coupling” within macromolecular machines. Cell 104:177.
  • T. C. Wang, and K. C. Smith. (1982). Effects of the ssb-1 and ssb-113 mutations on survival and DNA repair in UV-irradiated delta uvrB strains of Escherichia coli K-12. J Bacteriol 151:186.
  • T. C. Wang, and K. C. Smith. (1985). Mechanism of sbcB-suppression of the recBC-deficiency in postreplication repair in UV-irradiated Escherichia coli K-12. Mol Gen Genet 201:186.
  • T. C. Wang, and K. C. Smith. (1986). recA (Srf) suppression of recF deficiency in the postreplication repair of UV-irradiated Escherichia coli K-12. J Bacteriol 168:940.
  • T. C. Wang, H. Y. Chang, and J. L. Hung. (1993). Cosuppression of recF, recR and recO mutations by mutant recA alleles in Escherichia coli cells. Mutat Res 294:157.
  • T. C.V. Wang, M. V.V.S. Madiraju, A. Templin, and A. J. Clark. (1991). Cloning and preliminary characterization of srf-2020 srf-801, the recF partial suppressor mutations which map in recA of Escherichia coli K-12. Biochimie 73:335.
  • J. D. Watson, and F. H. Crick. (1953a). Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964.
  • J. D. Watson, and F. H. Crick. (1953b). Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737.
  • B. L. Webb, M. M. Cox, and R. B. Inman. (1995). An interaction between the Escherichia coli RecF and RecR proteins dependent on ATP and double-stranded DNA. J Biol Chem 270:31397.
  • B. L. Webb, M. M. Cox, and R. B. Inman. (1997). Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91:347.
  • B. L. Webb, M. M. Cox, and R. B. Inman. (1999). ATP hydrolysis and DNA binding by the Escherichia coli RecF protein. J Biol Chem 274:15367.
  • T. F. Wei, W. Bujalowski, and T. M. Lohman. (1992). Cooperative binding of polyamines induces the Escherichia coli single-strand binding protein-DNA binding mode transitions. Biochemistry 31:6166.
  • J. H. Weiner, L. L. Bertsch, and A. Kornberg. (1975). The deoxyribonucleic acid unwinding protein of Escherichia coli. Properties and functions in replication. J Biol Chem 250:1972.
  • S. C. West, E. Cassuto, and P. Howard-Flanders. (1981). RecA protein promotes homologous-pairing and strand-exchange reactions between duplex DNA molecules. Proc Natl Acad Sci USA 78:2100.
  • S. C. West, E. Cassuto, and P. Howard-Flanders. (1982). Role of SSB protein in RecA promoted branch migration reactions. Mol Gen Genet 186:333.
  • M. C. Whitby, and R. G. Lloyd. (1995a). Branch migration of three-strand recombination intermediates by RecG, a possible pathway for securing exchanges initiated by 3′-tailed duplex DNA. EMBO J 14:3302.
  • M. C. Whitby, and R. G. Lloyd. (1995b). Altered SOS induction associated with mutations in recF, recO and recR. Mol Gen Genet 246:174.
  • M. C. Whitby, and R. G. Lloyd. (1998). Targeting Holliday junctions by the RecG branch migration protein of Escherichia coli. J Biol Chem 273:19729.
  • M. C. Whitby, L. Ryder, and R. G. Lloyd. (1993). Reverse branch migration of Holliday junctions by RecG protein: a new mechanism for resolution of intermediates in recombination and DNA repair. Cell 75:341.
  • S. Wickner, and J. Hurwitz. (1975). Association of phiX174 DNA-dependent ATPase activity with an Escherichia coli protein, replication factor Y, required for in vitro synthesis of phiX174 DNA. Proc Natl Acad Sci USA 72:3342.
  • K. R. Williams, E. K. Spicer, M. B. LoPresti, R. A. Guggenheimer, and J. W. Chase. (1983). Limited proteolysis studies on the Escherichia coli single-stranded DNA binding protein. Evidence for a functionally homologous domain in both the Escherichia coli and T4 DNA binding proteins. J Biol Chem 258:3346.
  • K. R. Williams, J. B. Murphy, and J. W. Chase. (1984). Characterization of the structural and functional defect in the Escherichia coli single-stranded DNA binding protein encoded by the ssb-1 mutant gene. Expression of the ssb-1 gene under lambda pL regulation. J Biol Chem 259:11804.
  • E. M. Witkin. (1991). RecA protein in the SOS response: milestones and mysteries. Biochimie 73:133.
  • E. M. Witkin, and T. Kogoma. (1984). Involvement of the activated form of RecA protein in SOS mutagenesis and stable DNA replication in Escherichia coli. Proc Natl Acad Sci USA 81:7539.
  • E. M. Witkin, J. O. McCall, M. R. Volkert, and I. E. Wermundsen. (1982). Constitutive expression of SOS functions and modulation of mutagenesis resulting from resolution of genetic instability at or near the recA locus of Escherichia coli. Mol Gen Genet 185:43.
  • G. Witte, C. Urbanke, and U. Curth. (2003). DNA polymerase III chi subunit ties single-stranded DNA binding protein to the bacterial replication machinery. Nucleic Acids Res 31:4434.
  • M. S. Wold. (1997). Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61.
  • C. A. Wu, E. L. Zechner, J. A. Reems, C. S. McHenry, and K. J. Marians. (1992). Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. V. Primase action regulates the cycle of Okazaki fragment synthesis. J Biol Chem 267:4074.
  • L. Xu, and K. J. Marians. (2003). PriA mediates DNA replication pathway choice at recombination intermediates. Mol Cell 11:817.
  • X. Yu, and E. H. Egelman. (1991). Removal of the RecA C-terminus results in a conformational change in the RecA-DNA filament. J Struct Biol 106:243.
  • A. Yuzhakov, Z. Kelman, and M. O'Donnell. (1999). Trading places on DNA – a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96:153.
  • K. H. Zavitz, and K. J. Marians. (1991). Dissecting the functional role of PriA protein-catalysed primosome assembly in Escherichia coli DNA replication. Mol MicroBiol 5:2869.
  • K. H. Zavitz, and K. J. Marians. (1992). ATPase-deficient mutants of the Escherichia coli DNA replication protein PriA are capable of catalyzing the assembly of active primosomes. J Biol Chem 267:6933.
  • E. L. Zechner, C. A. Wu, and K. J. Marians. (1992). Coordinated leading- and lagging-strand synthesis at the Escherichia coli DNA replication fork. III. A polymerase-primase interaction governs primer size. J Biol Chem 267:4054.
  • Y. Zou, Y. Liu, X. Wu, and S. M. Shell. (2006). Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208:267.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.