1,161
Views
29
CrossRef citations to date
0
Altmetric
Review Article

Molecular insight into the regulation and function of MCAK

, , , &
Pages 228-245 | Received 24 Feb 2016, Accepted 12 Apr 2016, Published online: 05 May 2016

References

  • Andrews PD, Ovechkina Y, Morrice N, et al. (2004). Aurora B regulates MCAK at the mitotic centromere. Dev Cell 6:253–68.
  • Armond JW, Vladimirou E, Erent M, et al. (2015). Probing microtubule polymerisation state at single kinetochores during metaphase chromosome motion. Cel Sci 128:1991–2001.
  • Asenjo AB, Chatterjee C, Tan D, et al. (2013). Structural model for tubulin recognition and deformation by kinesin-13 microtubule depolymerases. Cell Rep 3:759–68.
  • Bakhoum SF, Compton DA. (2012). Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 122:1138–43.
  • Bakhoum SF, Thompson SL, Manning AL, et al. (2009). Genome stability is ensured by temporal control of kinetochore-microtubule dynamics. Nat Cell Biol 11:27–35.
  • Barr AR, Gergely F. (2007). Aurora-A: the maker and breaker of spindle poles. J Cell Sci 120:2987–96.
  • Barr FA, Sillje HH, Nigg EA. (2004). Polo-lie kinases and the orchestration of cell division. Nat Rev Mol Cell Biol 5:429–40.
  • Bie L, Zhao G, Wang YP, et al. (2012). Kinesin family member 2C (KIF2C/MCAK) is a novel marker for prognosis in human gliomas. Clin Neurol Neurosurg 114:356–60
  • Bollen M, Gerlich DW, Lesage B. (2009). Mitotic phosphatases: from entry guards to exit guides. Trends Cell Biol 19:531–41.
  • Braun A, Dang K, Buslig F, et al. (2014). Rac1 and Aurora A regulate MCAK to polarize microtubule growth in migrating endothelial cells. J Cell Biol 206:97–112.
  • Burns KM, Sarpe V, Wagenbach M, et al. (2015). HX-MS2 for high performance conformational analysis of complex protein states. Protein Sci 24:1313–24.
  • Burns KM, Wagenbach M, Wordeman L, et al. (2014). Nucleotide exchange in dimeric MCAK induces longitudinal and lateral stress at microtubule ends to support depolymerization. Structure 22:1173–83.
  • Cassimeris L, Morabito J. (2004). TOGp, the human homolog of XMAP215/Dis1, is required for centrosome integrity, spindle pole organization, and bipolar spindle assembly. Mol Biol Cell 15:1580–90.
  • Chu L, Zhu T, Liu X, et al. (2012). SUV39H1 orchestrates temporal dynamics of centromeric methylation essential for faithful chromosome segregation in mitosis. J Mol Cell Biol 4:331–40.
  • Cimini D, Wan X, Hirel CB, et al. (2006). Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr Biol 16:1711–18.
  • Connolly AA, Sugioka K, Chuang CH, et al. (2015). KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly. J Cell Biol 210:917–32.
  • Cooper JR, Wagenbach M, Asbury CL, et al. (2010). Catalysis of the microtubule on-rate is the major parameter regulating the depolymerase activity of MCAK. Nat Struct Mol Biol 17:77–82.
  • Cross RA, Mcainsh A. (2014). Prime movers: the mechanochemistry of mitotic kinesins. Nat. Rev. Mol Cell Biol 15:257–71.
  • De LM, Brunetto L, Asteriti IA, et al. (2008). Aurora-A and ch-TOG act in a common pathway in control of spindle pole integrity. Oncogene 27:6539–49.
  • Delgehyr N, Rangone H, Fu J, et al. (2012). Klp10A, a microtubule-depolymerizing kinesin-13, cooperates with CP110 to control Drosophila centriole length. Curr Biol 22:502–9.
  • Desai A, Verma S, Mitchison TJ, et al. (1999). Kin I kinesins are microtubule-destabilizing enzymes. Cell 96:69–78.
  • Domnitz SB, Wagenbach M, Decarreau J, et al. (2012). MCAK activity at microtubule tips regulates spindle microtubule length to promote robust kinetochore attachment. J Cell Biol 197:231–7.
  • Dumontet C, Jordan MA. (2010). Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9:790–803.
  • Eichenlaub-Ritter U. (2015). Microtubule dynamics and tumour invasion involving MCAK. Cell Cycle 14:3353.
  • Eichenlaub-Ritter U, Staubach N, Trapphoff T. (2010). Chromosomal and cytoplasmic context determines predisposition to maternal age-related aneuploidy: brief overview and update on MCAK in mammalian oocytes. Biochem Soc Trans 38:1681–6.
  • Eisen A, Weber BL. (1998). Recent advances in breast cancer biology. Curr Opin Oncol 10:486–91.
  • Elie-Caille C, Severin F, Helenius J, et al. (2007). Straight GDP-tubulin protofilaments form in the presence of taxol. Curr Biol 17:1765–70.
  • Emanuele MJ, Lan W, Jwa M, et al. (2008). Aurora B kinase and protein phosphatase 1 have opposing roles in modulating kinetochore assembly. J Cell Biol 181:241–54.
  • Ems-Mcclung SC, Hainline SG, Devare J, et al. (2013). Aurora B inhibits MCAK activity through a phosphoconformational switch that reduces microtubule association. Curr Biol 23:2491–9.
  • Ems-Mcclung SC, Walczak CE. (2010). Kinesin-13s in mitosis: Key players in the spatial and temporal organization of spindle microtubules. Semin Cell Dev Biol 21:276–82.
  • Eyers PA, Erikson E, Chen LG, et al. (2003). A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 13:691–7.
  • Friel CT, Howard J. (2011). The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization. Embo J 30:3928–39.
  • Froidevaux-Klipfel L, Targa B, Cantaloube I, et al. (2015). Septin cooperation with tubulin polyglutamylation contributes to cancer cell adaptation to taxanes. Oncotarget 6:36063–80.
  • Gadde S, Heald R. (2004). Mechanisms and molecules of the mitotic spindle. Curr Biol 14:R797–805.
  • Ganem NJ, Compton DA. (2004). The KinI kinesin Kif2a is required for bipolar spindle assembly through a functional relationship with MCAK. J Cell Biol 166:473–8.
  • Ganem NJ, Upton K, Compton DA. (2005). Efficient mitosis in human cells lacking poleward microtubule flux. Curr Biol 15:1827–32.
  • Ganguly A, Bhattacharya R, Cabral F. (2012). Control of MCAK degradation and removal from centromeres. Cytoskeleton (Hoboken) 69:303–11.
  • Ganguly A, Yang H, Cabral F. (2011a). Overexpression of mitotic centromere-associated Kinesin stimulates microtubule detachment and confers resistance to paclitaxel. Mol Cancer Ther 10:929–37.
  • Ganguly A, Yang H, Cabral F. (2013). Detection and quantification of microtubule detachment from centrosomes and spindle poles. Methods Cell Biol 115:49–62.
  • Ganguly A, Yang H, Pedroza M, et al. (2011b). Mitotic Centromere-associated Kinesin (MCAK) Mediates Paclitaxel Resistance. J Biol Chem 286:36378–84.
  • Gardner MK, Zanic M, Gell C, et al. (2011). Depolymerizing kinesins Kip3 and MCAK shape cellular microtubule architecture by differential control of catastrophe. Cell 147:1092–103.
  • Gautier J, Minshull J, Lohka M, et al. (1990). Cyclin is a component of maturation-promoting factor from Xenopus. Cell 60:487–94.
  • Gavet O, Pines J. (2010). Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis. Dev Cell 18:533–43.
  • Gnjatic S, Cao Y, Reichelt U, et al. (2010). NY-CO-58/KIF2C is overexpressed in a variety of solid tumors and induces frequent T cell responses in patients with colorectal cancer. Int J Cancer 127:381–93.
  • Goldenson B, Crispino JD. (2015). The aurora kinases in cell cycle and leukemia. Oncogene 34:537–45.
  • Grallert A, Boke E, Hagting A, et al. (2015). A PP1-PP2A phosphatase relay controls mitotic progression. Nature 517:94–U248.
  • Groen AC, Maresca TJ, Gatlin JC, et al. (2009). Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly. Mol Biol Cell 20:2766–73.
  • Gwon MR, Cho JH, Kim JR. (2012). Mitotic centromere-associated kinase (MCAK/Kif2C) regulates cellular senescence in human primary cells through a p53-dependent pathway. FEBS Lett 586:4148–56.
  • Hauf S, Cole RW, Laterra S, et al. (2003). The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J Cell Biol 161:281–94.
  • Helenius J, Brouhard G, Kalaidzidis Y, et al. (2006). The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441:115–19.
  • Hertzer KM, Ems-Mcclung SC, Kline-Smith SL, et al. (2006). Full-length dimeric MCAK is a more efficient microtubule depolymerase than minimal domain monomeric MCAK. Mol Biol Cell 17:700–10.
  • Holmfeldt P, Stenmark S, Gullberg M. (2004). Differential functional interplay of TOGp/XMAP215 and the KinI kinesin MCAK during interphase and mitosis. Embo J 23:627–37.
  • Honnappa S, Gouveia SM, Weisbrich A, et al. (2009). An EB1-binding motif acts as a microtubule tip localization signal. Cell 138:366–76.
  • Hood EA, Kettenbach AN, Gerber SA, et al. (2012). Plk1 regulates the kinesin-13 protein Kif2b to promote faithful chromosome segregation. Mol Biol Cell 23:2264–74.
  • Huang H, Feng J, Famulski J, et al. (2007). Tripin/hSgo2 recruits MCAK to the inner centromere to correct defective kinetochore attachments. J Cell Biol 177:413–24.
  • Hutterer A, Berdnik D, Wirtz-Peitz F, et al. (2006). Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev Cell 11:147–57.
  • Illingworth C, Pirmadjid N, Serhal P, et al. (2010). MCAK regulates chromosome alignment but is not necessary for preventing aneuploidy in mouse oocyte meiosis I. Development 137:2133–8.
  • Ishikawa K, Kamohara Y, Tanaka F, et al. (2008). Mitotic centromere-associated kinesin is a novel marker for prognosis and lymph node metastasis in colorectal cancer. Br J Cancer 98:1824–9.
  • Jeyaprakash AA, Klein UR, Lindner D, et al. (2007). Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell 131:271–85.
  • Jiang K, Wang J, Liu J, et al. (2009). TIP150 interacts with and targets MCAK at the microtubule plus ends. EMBO Rep 10:857–65.
  • Jun DY, Park HS, Lee JY, et al. (2008). Regulation of the human mitotic centromere-associated kinesin (MCAK) promoter by the transcription factors Sp1 and E2F1. Biochim Biophys Acta 1779:356–61.
  • Kavallaris M. (2010). Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10:194–204.
  • Kelly AE, Funabiki H. (2009). Correcting aberrant kinetochore microtubule attachments: an Aurora B-centric view. Curr Opin Cell Biol 21:51–8.
  • Kim S, Lee K, Choi JH, et al. (2015). Nek2 activation of Kif24 ensures cilium disassembly during the cell cycle. Nat Commun. 6:8087.
  • Kline-Smith SL, Khodjakov A, Hergert P, et al. (2004). Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol Biol Cell 15:1146–59.
  • Knowlton AL, Lan W, Stukenberg PT. (2006). Aurora B is enriched at merotelic attachment sites, where it regulates MCAK. Curr Biol 16:1705–10.
  • Kobayashi T, Tsang WY, Li J, et al. (2011). Centriolar kinesin Kif24 interacts with CP110 to remodel microtubules and regulate ciliogenesis. Cell 145:914–25.
  • Kumar A, Rajendran V, Sethumadhavan R, et al. (2013). Evidence of colorectal cancer-associated mutation in MCAK: a computational report. Cell Biochem Biophys 67:837–51.
  • Kumar R, Gururaj AE, Barnes CJ. (2006). p21-activated kinases in cancer. Nat Rev Cancer 6:459–71.
  • Lan W, Zhang X, Kline-Smith SL, et al. (2004). Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14:273–86.
  • Lawrence CJ, Dawe RK, Christie KR, et al. (2004). A standardized kinesin nomenclature. J Cell Biol 167:19–22.
  • Lee T, Langford KJ, Askham JM, et al. (2008). MCAK associates with EB1. Oncogene 27:2494–500.
  • Lens SM, Voest EE, Medema RH. (2010). Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 10:825–41.
  • Li C, Zhang Y, Yang Q, et al. (2016). NuSAP modulates the dynamics of kinetochore microtubules by attenuating MCAK depolymerisation activity. Sci Rep 6:18773.
  • Li X, Yao R, Yue L, et al. (2014). FOXM1 mediates resistance to docetaxel in gastric cancer via up-regulating Stathmin. J Cell Mol Med 18:811–23.
  • Louwen F, Yuan J. (2013). Battle of the eternal rivals: restoring functional p53 and inhibiting Polo-like kinase 1 as cancer therapy. Oncotarget 4:958–71.
  • Ly DH, Lockhart DJ, Lerner RA, et al. (2000). Mitotic misregulation and human aging. Science 287:2486–92.
  • Maiato H, Afonso O, Matos I. (2015). A chromosome separation checkpoint: a midzone Aurora B gradient mediates a chromosome separation checkpoint that regulates the anaphase-telophase transition. Bioessays 37:257–66.
  • Malumbres M, Barbacid M. (2009). Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–66.
  • Maney T, Hunter AW, Wagenbach M, et al. (1998). Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol 142:787–801.
  • Maney T, Wagenbach M, Wordeman L. (2001). Molecular dissection of the microtubule depolymerizing activity of mitotic centromere-associated kinesin. J Biol Chem 276:34753–8.
  • Manning AL, Ganem NJ, Bakhoum SF, et al. (2007). The kinesin-13 proteins Kif2a, Kif2b, and Kif2c/MCAK have distinct roles during mitosis in human cells. Mol Biol Cell 18:2970–9.
  • Manning CS, Hooper S, Sahai EA. (2015). Intravital imaging of SRF and Notch signalling identifies a key role for EZH2 in invasive melanoma cells. Oncogene 34:4320–32.
  • Martin SK, Kyprianou N. (2015). Exploitation of the androgen receptor to overcome taxane resistance in advanced prostate cancer. Adv Cancer Res 127:123–58.
  • Marumoto T, Zhang D, Saya H. (2005). Aurora-A – a guardian of poles. Nat Rev Cancer 5:42–50.
  • Meppelink A, Kabeche L, Vromans MJM, et al. (2015). Shugoshin-1 balances aurora B kinase activity via PP2A to promote chromosome bi-orientation. Cell Rep 11:508–15.
  • Miki H, Setou M, Kaneshiro K, et al. (2001). All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98:7004–11.
  • Montenegro Gouveia S, Leslie K, Kapitein LC, et al. (2010). In vitro reconstitution of the functional interplay between MCAK and EB3 at microtubule plus ends. Curr Biol. 20:1717–22.
  • Moore AT, Rankin KE, Von DG, et al. (2005). MCAK associates with the tips of polymerizing microtubules. J Cell Biol 169:391–7.
  • Moores CA, Cooper J, Wagenbach M, et al. (2006). The role of the kinesin-13 neck in microtubule depolymerization. Cell Cycle 5:1812–15.
  • Moores CA, Yu M, Guo J, et al. (2002). A mechanism for microtubule depolymerization by KinI kinesins. Mol Cell 9:903–9.
  • Morgan DO. (1997). Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–91.
  • Nakamura Y, Tanaka F, Haraguchi N, et al. (2007). Clinicopathological and biological significance of mitotic centromere-associated kinesin overexpression in human gastric cancer. Br J Cancer 97:543–9.
  • Negrini S, Gorgoulis VG, Halazonetis TD. (2010). Genomic instability-an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–8.
  • Niederstrasser H, Salehi-Had H, Gan EC, et al. (2002). XKCM1 acts on a single protofilament and requires the C terminus of tubulin. J Mol Biol 316:817–28.
  • Nishidate T, Katagiri T, Lin ML, et al. (2004). Genome-wide gene-expression profiles of breast-cancer cells purified with laser microbeam microdissection: identification of genes associated with progression and metastasis. Int J Oncol 25:797–819.
  • Noda Y, Sato-Yoshitake R, Kondo S, et al. (1995). KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or KIF3A/B. J Cell Biol 129:157–67.
  • Ogawa T, Nitta R, Okada Y, et al. (2004). A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116:591–602.
  • Oguchi Y, Uchimura S, Ohki T, et al. (2011). The bidirectional depolymerizer MCAK generates force by disassembling both microtubule ends. Nat Cell Biol 13:846–52.
  • Ohi R, Burbank K, Liu Q, et al. (2007). Nonredundant functions of Kinesin-13s during meiotic spindle assembly. Curr Biol 17:953–9.
  • Ohi R, Coughlin ML, Lane WS, et al. (2003). An inner centromere protein that stimulates the microtubule depolymerizing activity of a KinI kinesin. Dev Cell 5:309–21.
  • Ohi R, Sapra T, Howard J, et al. (2004). Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15:2895–906.
  • Ovechkina Y, Wagenbach M, Wordeman L. (2002). K-loop insertion restores microtubule depolymerizing activity of a “neckless MCAK mutant” MCAK. J Cell Biol 159:557–62.
  • Pakala SB, Nair VS, Reddy SD, et al. (2012). Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization. J Biol Chem 287:40560–9.
  • Parra MT, Gomez R, Viera A, et al. (2006). A perikinetochoric ring defined by MCAK and Aurora-B as a novel centromere domain. PLoS Genetics 2:798–810.
  • Paweletz N. (2001). Walther Flemming: pioneer of mitosis research. Nat Rev Mol Cell Biol 2:72–5.
  • Platani M, Trinkle-Mulcahy L, Porter M, et al. (2015). Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes. J Cell Biol 210:45–62.
  • Posch M, Khoudoli GA, Swift S, et al. (2010). Sds22 regulates aurora B activity and microtubule-kinetochore interactions at mitosis. J Cell Biol 191:61–74.
  • Ritter A, Sanhaji M, Friemel A, et al. (2015a). Functional analysis of phosphorylation of the mitotic centromere-associated kinesin by Aurora B kinase in human tumor cells. Cell Cycle 14:3755–67.
  • Ritter A, Sanhaji M, Steinhauser K, et al. (2015b). The activity regulation of the mitotic centromere-associated kinesin by Polo-like kinase 1. Oncotarget 6:6641–55.
  • Rivera T, Ghenoiu C, Rodriguez-Corsino M, et al. (2012). Xenopus Shugoshin 2 regulates the spindle assembly pathway mediated by the chromosomal passenger complex. Embo J 31:1467–79.
  • Rogers GC, Rogers SL, Schwimmer TA, et al. (2004). Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427:364–70.
  • Rosasco-Nitcher SE, Lan W, Khorasanizadeh S, et al. (2008). Centromeric Aurora-B activation requires TD-60, microtubules, and substrate priming phosphorylation. Science 319:469–72.
  • Ruchaud S, Carmena M, Earnshaw WC. (2007). Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8:798–812.
  • Sanhaji M, Friel CT, Kreis NN, et al. (2010). Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol Cell Biol 30:2594–607.
  • Sanhaji M, Ritter A, Belsham HR, et al. (2014). Polo-like kinase 1 regulates the stability of the mitotic centromere-associated kinesin in mitosis. Oncotarget 5:3130–44.
  • Shao H, Huang Y, Zhang L, et al. (2015). Spatiotemporal dynamics of Aurora B-PLK1-MCAK signaling axis orchestrates kinetochore bi-orientation and faithful chromosome segregation. Sci Rep 5:12204.
  • Shao H, Ma C, Zhang X, et al. (2012). Aurora B regulates spindle bipolarity in meiosis in vertebrate oocytes. Cell Cycle 11:2672–80.
  • Shelanski ML, Taylor EW. (1968). Properties of the protein subunit of central-pair and outer-doublet microtubules of sea urchin flagella. J Cell Biol 38:304–15.
  • Shimo A, Tanikawa C, Nishidate T, et al. (2008). Involvement of kinesin family member 2C/mitotic centromere-associated kinesin overexpression in mammary carcinogenesis. Cancer Sci 99:62–70.
  • Shipley K, Hekmat-Nejad M, Turner J, et al. (2004). Structure of a kinesin microtubule depolymerization machine. Embo J 23:1422–32.
  • Shrestha RL, Draviam VM. (2013). Lateral to end-on conversion of chromosome-microtubule attachment requires kinesins CENP-E and MCAK. Curr Biol 23:1514–26.
  • Sircar K, Huang H, Hu L, et al. (2012). Mitosis phase enrichment with identification of mitotic centromere-associated kinesin as a therapeutic target in castration-resistant prostate cancer. PLoS One 7:e31259.
  • Strebhardt K. (2010). Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov 9:643–60.
  • Strebhardt K, Ullrich A. (2006). Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer 6:321–30.
  • Su AI, Wiltshire T, Batalov S, et al. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–7.
  • Sun SC, Kim NH. (2012). Spindle assembly checkpoint and its regulators in meiosis. Hum Reprod Update 18:60–72.
  • Takeshita M, Koga T, Takayama K, et al. (2013). Aurora-B overexpression is correlated with aneuploidy and poor prognosis in non-small cell lung cancer. Lung Cancer 80:85–90.
  • Talapatra SK, Harker B, Welburn JP. (2015). The C-terminal region of the motor protein MCAK controls its structure and activity through a conformational switch. Elife 4:e06421. doi:10.7554/eLife.06421.
  • Tan D, Asenjo AB, Mennella V, et al. (2006). Kinesin-13s form rings around microtubules. J Cell Biol 175:25–31.
  • Tanaka E, Ho T, Kirschner MW. (1995). The role of microtubule dynamics in growth cone motility and axonal growth. J Cell Biol 128:139–55.
  • Tanenbaum ME, Macurek L, Van D V, et al. (2011a). A complex of Kif18b and MCAK promotes microtubule depolymerization and is negatively regulated by Aurora kinases. Curr Biol 21:1356–65.
  • Tanenbaum ME, Medema RH, Akhmanova A. (2011b). Regulation of localization and activity of the microtubule depolymerase MCAK. Bioarchitecture 1:80–7.
  • Tanno Y, Kitajima TS, Honda T, et al. (2010). Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres. Genes Dev 24:2169–79.
  • Tournebize R, Andersen SSL, Verde F, et al. (1997). Distinct roles of PP1 and PP2A-like phosphatases in control of microtubule dynamics during mitosis. Embo J 16:5537–49.
  • Vale RD, Fletterick RJ. (1997). The design plan of kinesin motors. Annu Rev Cell Dev Biol 13:745–77.
  • Vale RD, Milligan RA. (2000). The way things move: looking under the hood of molecular motor proteins. Science 288:88–95.
  • Vogt E, Sanhaji M, Klein W, et al. (2010). MCAK is present at centromeres, midspindle and chiasmata and involved in silencing of the spindle assembly checkpoint in mammalian oocytes. Mol Hum Reprod 16:665–84.
  • Walczak CE, Gan EC, Desai A, et al. (2002). The microtubule-destabilizing kinesin XKCM1 is required for chromosome positioning during spindle assembly. Curr Biol 12:1885–9.
  • Walczak CE, Mitchison TJ, Desai A. (1996). XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84:37–47.
  • Wang CQ, Xiang FG, Li YJ, et al. (2014). Relation between the expression of mitotic centromere-associated kinesin and the progression of squamous cell carcinoma of the tongue. Oral Surg Oral Med Oral Pathol Oral Radiol 117:353–60.
  • Wang W, Shen T, Guerois R, et al. (2015). New Insights into the coupling between microtubule depolymerization and ATP hydrolysis by kinesin-13 protein Kif2C. J Biol Chem 290:18721–31.
  • Waters JC, Mitchison TJ, Rieder CL, et al. (1996). The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work. Mol Biol Cell 7:1547–58.
  • Welburn JP, Cheeseman IM. (2012). The microtubule-binding protein Cep170 promotes the targeting of the kinesin-13 depolymerase Kif2b to the mitotic spindle. Mol Biol Cell 23:4786–95.
  • Wieczorek M, Bechstedt S, Chaaban S, et al. (2015). Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat. Cell Biol 17:907–16.
  • Wordeman L. (2005). Microtubule-depolymerizing kinesins. Curr Opin Cell Biol 17:82–8.
  • Wordeman L, Mitchison TJ. (1995). Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 128:95–104.
  • Wordeman L, Wagenbach M, Von DG. (2007). MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. J Cell Biol 179:869–79.
  • Wu C, Orozco C, Boyer J, et al. (2009). BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10:R130.
  • Wurzenberger C, Gerlich DW. (2011). Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol 12:469–82.
  • Xia P, Zhou J, Song X, et al. (2014). Aurora A orchestrates entosis by regulating a dynamic MCAK-TIP150 interaction. J Mol Cell Biol 6:240–54.
  • Xu J, Wu X, Zhou WH, et al. (2013). Aurora-A identifies early recurrence and poor prognosis and promises a potential therapeutic target in triple negative breast cancer. PLoS One 8:e56919.
  • Zeng K, Bastos RN, Barr FA, et al. (2010). Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J Cell Biol 191:1315–32.
  • Zhang L, Shao H, Huang Y, et al. (2011). PLK1 phosphorylates MCAK and promotes its depolymerase activity. J Biol Chem 286:3033–46.
  • Zhang X, Ems-Mcclung SC, Walczak CE. (2008). Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol Biol Cell 19:2752–65.
  • Zhang X, Lan W, Ems-Mcclung SC, et al. (2007). Aurora B phosphorylates multiple sites on mitotic centromere-associated kinesin to spatially and temporally regulate its function. Mol Biol Cell 18:3264–76.
  • Zhou J, Giannakakou P. (2005). Targeting microtubules for cancer chemotherapy. Curr Med Chem Anticancer Agents 5:65–71.
  • Zong H, Lamb SK, Moe C, et al. (2016). The far C-terminus of MCAK regulates its conformation and spindle pole focusing. Mol Biol Cell 25 pii: mbc.E15-10-0699. [Epub ahead of print].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.