1,268
Views
76
CrossRef citations to date
0
Altmetric
Review Article

Dynamic structure of plasma fibronectin

, &
Pages 213-227 | Received 10 Mar 2016, Accepted 26 Apr 2016, Published online: 17 May 2016

References

  • Adams JC, Chiquet-Ehrismann R, Tucker RP. (2015). The evolution of tenascins and fibronectin. Cell Adh Migr 9:22–33.
  • Alexander SS Jr., Colonna G, Edelhoch H. (1979). The structure and stability of human plasma cold-insoluble globulin. J Biol Chem 254:1501–5.
  • Altroff H, Schlinkert R, Van Der Walle CF, et al. (2004). Interdomain tilt angle determines integrin-dependent function of the ninth and tenth FIII domains of human fibronectin. J Biol Chem 279:55995–6003.
  • An B, Abbonante V, Yigit S, et al. (2014). Definition of the native and denatured type II collagen binding site for fibronectin using a recombinant collagen system. J Biol Chem 289:4941–51.
  • An SS, Jimenez-Barbero J, Petersen TE, Llinas M. (1992). The two polypeptide chains in fibronectin are joined in antiparallel fashion: NMR structural characterization. Biochemistry 31:9927–33.
  • Aota S, Nomizu M, Yamada KM. (1994). The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269:24756–61.
  • Astrof S, Hynes RO. (2009). Fibronectins in vascular morphogenesis. Angiogenesis 12:165–75.
  • Atkin KE, Brentnall AS, Harris G, et al. (2010). The streptococcal binding site in the gelatin-binding domain of fibronectin is consistent with a non-linear arrangement of modules. J Biol Chem 285:36977–83.
  • Bae E, Sakai T, Mosher DF. (2004). Assembly of exogenous fibronectin by fibronectin-null cells is dependent on the adhesive substrate. J Biol Chem 279:35749–59.
  • Baneyx G, Baugh L, Vogel V. (2001). Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc Natl Acad Sci USA 98:14464–8.
  • Baneyx G, Baugh L, Vogel V. (2002). Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc Natl Acad Sci USA 99:5139–43.
  • Baron M, Norman D, Willis A, Campbell LD. (1990). Structure of the fibronectin type 1 module. Nature 345:642–6.
  • Bingham RJ, Rudino-Pinera E, Meenan NA, et al. (2008). Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains. Proc Natl Acad Sci USA 105:12254–8.
  • Borsi L, Castellani P, Balza E, et al. (1986). Large-scale procedure for the purification of fibronectin domains. Anal Biochem 155:335–45.
  • Briknarova K, Akerman ME, Hoyt DW, et al. (2003). Anastellin, an FN3 fragment with fibronectin polymerization activity, resembles amyloid fibril precursors. J Mol Biol 332:205–15.
  • Brodsky B, Persikov AV. (2005). Molecular structure of the collagen triple helix. Adv Protein Chem 70:301–39.
  • Chabria M, Hertig S, Smith ML, Vogel V. (2010). Stretching fibronectin fibres disrupts binding of bacterial adhesins by physically destroying an epitope. Nat Commun 1:135. [Epub ahead of print]. doi:10.1038/ncomms1135.
  • Chernousov MA, Fogerty FJ, Koteliansky VE, Mosher DF. (1991). Role of the I-9 and III-1 modules of fibronectin in formation of an extracellular fibronectin matrix. J Biol Chem 266:10851–8.
  • Chiang HY, Korshunov VA, Serour A, et al. (2009). Fibronectin is an important regulator of flow-induced vascular remodeling. Arterioscler Thromb Vasc Biol 29:1074–9.
  • Cho J, Mosher DF. (2006a). Characterization of fibronectin assembly by platelets adherent to adsorbed laminin-111. J Thromb Haemost 4:943–51.
  • Cho J, Mosher DF. (2006b). Enhancement of thrombogenesis by plasma fibronectin cross-linked to fibrin and assembled in platelet thrombi. Blood 107:3555–63.
  • Cho J, Mosher DF. (2006c). Role of fibronectin assembly in platelet thrombus formation. J Thromb Haemost 4:1461–9.
  • Copie V, Tomita Y, Akiyama SK, et al. (1998). Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. J Mol Biol 277:663–82.
  • Curnis F, Longhi R, Crippa L, et al. (2006). Spontaneous formation of L-isoaspartate and gain of function in fibronectin. J Biol Chem 281:36466–76.
  • Downing AK, Driscoll PC, Harvey TS, et al. (1992). Solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 1H nuclear magnetic resonance. J Mol Biol 225:821–33.
  • Dziewanowska K, Patti JM, Deobald CF, et al. (1998). Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infect Immun 67:4673–8.
  • Ensenberger MG, Annis DS, Mosher DF. (2004). Actions of the functional upstream domain of protein F1 of Streptococcus pyogenes on the conformation of fibronectin. Biophys Chem 112:201–7.
  • Erat MC, Schwarz-Linek U, Pickford AR, et al. (2010). Implications for collagen binding from the crystallographic structure of fibronectin 6FnI1-2FnII7FnI. J Biol Chem 285:33764–70.
  • Erat MC, Sladek B, Campbell ID, Vakonakis I. (2013). Structural analysis of collagen type I interactions with human fibronectin reveals a cooperative binding mode. J Biol Chem 288:17441–50.
  • Erat MC, Slatter DA, Lowe ED, et al. (2009). Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proc Natl Acad Sci USA 106:4195–200.
  • Erickson HP. (1994). Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin. Proc Natl Acad Sci USA 91:10114–18.
  • Erickson HP, Carrell NA. (1983). Fibronectin in extended and compact conformations. Electron microscopy and sedimentation analysis. J Biol Chem 258:14539–44.
  • Fruh SM, Schoen I, Ries J, Vogel V. (2015). Molecular architecture of native fibronectin fibrils. Nat Commun 6:7275. [Epub ahead of print]. doi:10.1038/ncomms8275.
  • Furcht LT, Smith D, Wendelschafer-Crabb G, et al. (1980). Fibronectin presence in native collagen fibrils of human fibroblasts: immunoperoxidase and immunoferritin localization. J Histochem Cytochem 28:1319–33.
  • Geiger B, Bershadsky A, Pankov R, Yamada KM. (2001). Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805.
  • George EL, Georges-Labouesse EN, Patel-King RS, et al. (1993). Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–91.
  • Graille M, Pagano M, Rose T, et al. (2010). Zinc induces structural reorganization of gelatin binding domain from human fibronectin and affects collagen binding. Structure 18:710–18.
  • Grant RP, Spitzfaden C, Altroff H, et al. (1997). Structural requirements for biological activity of the ninth and tenth FIII domains of human fibronectin. J Biol Chem 272:6159–66.
  • Guan JL, Trevithick JE, Hynes RO. (1990). Retroviral expression of alternatively spliced forms of rat fibronectin. J Cell Biol 110:833–47.
  • Harris G, Ma W, Maurer LM, et al. (2014). Borrelia burgdorferi protein BBK32 binds to soluble fibronectin via the N-terminal 70-kDa region, causing fibronectin to undergo conformational extension. J Biol Chem 289:22490–9.
  • Hayashi M, Yamada KM. (1981). Differences in domain structures between plasma and cellular fibronectins. J Biol Chem 256:11292–300.
  • Henderson B, Nair S, Pallas J, Williams MA. (2011). Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35:147–200.
  • Hoffmann BR, Annis DS, Mosher DF. (2011). Reactivity of the N-terminal region of fibronectin protein to transglutaminase 2 and factor XIIIA. J Biol Chem 286:32220–30.
  • Hynes RO. 1990. Fibronectins. New York: Springer-Verlag, Inc.
  • Johnson KJ, Sage H, Briscoe G, Erickson HP. (1999). The compact conformation of fibronectin is determined by intramolecular ionic interactions. J Biol Chem 274:15473–9.
  • Kadler KE, Hill A, Canty-Laird EG. (2008). Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 20:495–501.
  • Karuri NW, Lin Z, Rye HS, Schwarzbauer JE. (2009). Probing the conformation of the fibronectin III1-2 domain by fluorescence resonance energy transfer. J Biol Chem 284:3445–52.
  • Kim JH, Singvall J, Schwarz-Linek U, et al. (2004). BBK32, a fibronectin binding MSCRAMM from Borrelia burgdorferi, contains a disordered region that undergoes a conformational change on ligand binding. J Biol Chem 279:41706–14.
  • Klotzsch E, Smith ML, Kubow KE, et al. (2009). Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc Natl Acad Sci USA 106:18267–72.
  • Krammer A, Lu H, Isralewitz B, et al. (1999). Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch. Proc Natl Acad Sci USA 96:1351–6.
  • Kubow KE, Vukmirovic R, Zhe L, et al. (2015). Mechanical forces regulate the interactions of fibronectin and collagen I in extracellular matrix. Nat Commun 6:8026. [Epub ahead of print]. doi:10.1038/ncomms9026.
  • Leahy DJ, Aukhil I, Erickson HP. (1996). 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84:155–64.
  • Leikina E, Mertts MV, Kuznetsova N, Leikin S. (2002). Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci USA 99:1314–18.
  • Lemmon CA, Ohashi T, Erickson HP. (2011). Probing the folded state of fibronectin type III domains in stretched fibrils by measuring buried cysteine accessibility. J Biol Chem 286:26375–82.
  • Litvinovich SV, Ingham KD. (1995). Interactions between type III domains in the 110 kDa cell-binding fragment of fibronectin. J Mol Biol 248:611–26.
  • Litvinovich SV, Strickland DK, Medved LV, Ingham KC. (1991). Domain structure and interactions of the type I and type II modules in the gelatin-binding region of fibronectin. All six modules are independently folded. J Mol Biol 217:563–75.
  • Ma W, Ma H, Fogerty FJ, Mosher DF. (2015a). Bivalent ligation of the collagen-binding modules of fibronectin by SFS, a non-anchored bacterial protein of Streptococcus equi. J Biol Chem 290:4866–76.
  • Ma W, Ma H, Mosher DF. (2015b). On-off kinetics of engagement of FNI modules of soluble fibronectin by β-strand addition. PLoS One 10:e0124941. [Epub ahead of print]. doi:10.1371/journal.pone.0124941.
  • Maas C, Schiks B, Strangi RD, et al. (2008). Identification of fibronectin type I domains as amyloid-binding modules on tissue-type plasminogen activator and three homologs. Amyloid 15:166–80.
  • Manabe R, Ohe N, Maeda T, et al. (1997). Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. J Cell Biol 139:295–307.
  • Marjenberg ZR, Ellis IR, Hagan RM, et al. (2011). Cooperative binding and activation of fibronectin by a bacterial surface protein. J Biol Chem 286:1884–94.
  • Maurer LM, Annis DS, Mosher DF. (2012a). IGD motifs, which are required for migration stimulatory activity of fibronectin type I modules, do not mediate binding in matrix assembly. PLoS One 7:e30615. [Epub ahead of print]. doi:10.1371/journal.pone.0030615.
  • Maurer LM, Ma W, Eickstaedt NL, et al. (2012b). Ligation of the fibrin-binding domain by beta-strand addition is sufficient for expansion of soluble fibronectin. J Biol Chem 287:13303–12.
  • Maurer LM, Tomasini-Johansson BR, Ma W, et al. (2010). Extended binding site on fibronectin for the functional upstream domain of protein F1 of Streptococcus pyogenes. J Biol Chem 285:41087–99.
  • Mckeown-Longo PJ, Mosher DF. (1985). Interaction of the 70,000-mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. J Cell Biol 100:364–74.
  • Messina JA, Thaden JT, Sharma-Kuinkel BK, Fowler VG Jr. (2016). Impact of bacterial and human genetic variation on Staphylococcus aureus infections. PLoS Pathogens 12:e1005330. [Epub ahead of print]. doi:10.1371/journal.ppat.1005330.
  • Millard CJ, Ellis IR, Pickford AR, et al. (2007). The role of the fibronectin IGD motif in stimulating fibroblast migration. J Biol Chem 282:35530–5.
  • Moretti FA, Chauhan AK, Iaconcig A, et al. (2007). A major fraction of fibronectin present in the extracellular matrix of tissues is plasma-derived. J Biol Chem 282:28057–62.
  • Moriya K, Bae E, Honda K, et al. (2011). A fibronectin-independent mechanism of collagen fibrillogenesis in adult liver remodeling. Gastroenterology 140:1653–63.
  • Morla A, Ruoslahti E. (1992). A fibronectin self-assembly site involved in fibronectin matrix assembly: reconstruction in a synthetic peptide. J Cell Biol 118:421–9.
  • Morla A, Zhang Z, Ruoslahti E. (1994). Superfibronectin is a functionally distinct form of fibronectin. Nature 367:193–6.
  • Mosher DF, Johnson RB. (1983). In vitro formation of disulfide-bonded fibronectin multimers. J Biol Chem 10:6595–601.
  • Mosher DF, Schad PE, Kleinman HK. (1979). Cross-linking of fibronectin to collagen by blood coagulation factor XIIIa. J Clin Invest 64:781–7.
  • Moussavi-Harami SF, Annis DS, Ma W, et al. (2013). Characterization of molecules binding to the 70K N-terminal region of fibronectin by IFAST purification coupled with mass spectrometry. J Proteome Res 12:3393–404.
  • Muro AF, Moretti FA, Moore BB, et al. (2008). An essential role for fibronectin extra type III domain A in pulmonary fibrosis. Am J Respir Crit Care Med 177:638–45.
  • Norris NC, Bingham RJ, Harris G, et al. (2011). Structural and functional analysis of the tandem β-zipper interaction of a Streptococcal protein with human fibronectin. J Biol Chem 286:38311–20.
  • Novokhatny V, Schwarz F, Atha D, Ingham K. (1992). Domain structure and domain-domain interactions in the carboxy-terminal heparin binding region of fibronectin. J Mol Biol 227:1182–91.
  • Obara M, Kang MS, Yamada KM. (1988). Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell 53:649–57.
  • Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM. (2002). The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319:433–47.
  • Odermatt E, Engel J. 1989. Physical properties of fibronectin. In: Mosher DF, ed. Fibronectin. New York: Academic Press.
  • Oh E, Pierschbacher M, Ruoslahti E. (1981). Deposition of plasma fibronectin in tissues. Proc Natl Acad Sci USA 78:3218–21.
  • Ohashi T, Augustus AM, Erickson HP. (2009). Transient opening of fibronectin type III (FNIII) domains: the interaction of the third FNIII domain of FN with anastellin. Biochemistry 48:4189–97.
  • Ohashi T, Erickson HP. (2011). Fibronectin aggregation and assembly: the unfolding of the second fibronectin type III domain. J Biol Chem 286:39188–99.
  • Ohashi T, Kiehart DP, Erickson HP. (1999). Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein. Proc Natl Acad Sci USA 96:2153–8.
  • Ohashi T, Kiehart DP, Erickson HP. (2002). Dual labeling of the fibronectin matrix and actin cytoskeleton with green fluorescent protein variants. J Cell Sci 115:1221–9.
  • O'leary JM, Hamilton JM, Deane CM, et al. (2004). Solution structure and dynamics of a prototypical chordin-like cysteine-rich repeat (von Willebrand Factor type C module) from collagen IIA. J Biol Chem 279:53857–66.
  • Ozeri V, Rosenshine I, Mosher DF, et al. (1998). Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol Microbiol 30:625–37.
  • Paci E, Karplus M. (1999). Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations. J Mol Biol 288:441–59.
  • Pankov R, Cukierman E, Katz BZ, et al. (2000). Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. J Cell Biol 148:1075–90.
  • Pankov R, Yamada KM. (2002). Fibronectin at a glance. J Cell Sci 115:3861–3.
  • Pearlstein E. (1978). Substrate activation of cell adhesion factor as a prerequisite for cell attachment. Int J Cancer 22:32–5.
  • Petersen TE, Skorstengaard K, Vibe-Pedersen K. 1989. Primary structure of fibronectin. In: Mosher DF, ed. Fibronectin. New York: Academic Press.
  • Pickford AR, Campbell ID. (2004). NMR studies of modular protein structures and their interactions. Chem Rev 104:3557–66.
  • Pickford AR, Potts JR, Bright JR, et al. (1997). Solution structure of a type 2 module from fibronectin: implications for the structure and function of the gelatin-binding domain. Structure 5:359–70.
  • Pickford AR, Smith SP, Staunton D, et al. (2001). The hairpin structure of the (6)F1(1)F2(2)F2 fragment from human fibronectin enhances gelatin binding. EMBO J 20:1519–29.
  • Potts JR, Bright JR, Bolton D, et al. (1999). Solution structure of the N-terminal F1 module pair from human fibronectin. Biochemistry 38:8304–12.
  • Potts JR, Campbell ID. (1996). Structure and function of fibronectin modules. Matrix Biol 15:313–20.
  • Potts JR, Phan I, Williams MJ, Campbell ID. (1995). High-resolution structural studies of the factor XIIIa crosslinking site and the first type 1 module of fibronectin. Nat Struct Biol 2:946–50.
  • Rocco M, Carson M, Hantgan R, et al. (1983). Dependence of the shape of the plasma fibronectin molecule on solvent composition. Ionic strength and glycerol content. J Biol Chem 258:14545–9.
  • Rocco M, Infusini E, Daga MG, et al. (1987). Models of fibronectin. EMBO J 6:2343–9.
  • Rudino-Pinera E, Ravelli RB, Sheldrick GM, et al. (2007). The solution and crystal structures of a module pair from the Staphylococcus aureus-binding site of human fibronectin – a tale with a twist. J Mol Biol 368:833–44.
  • Schor SL, Ellis I, Banyard J, Schor AM. (1999). Motogenic activity of IGD-containing synthetic peptides. J Cell Sci 112:3879–88.
  • Schwarz-Linek U, Hook M, Potts JR. (2006). Fibronectin-binding proteins of gram-positive cocci. Microbes Infect 8:2291–8.
  • Schwarz-Linek U, Pilka ES, Pickford AR, et al. (2004). High affinity streptococcal binding to human fibronectin requires specific recognition of sequential F1 modules. J Biol Chem 279:39017–25.
  • Schwarz-Linek U, Werner JM, Pickford AR, et al. (2003). Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423:177–81.
  • Schwarzbauer JE. (1991). Identification of the fibronectin sequences required for assembly of a fibrillar matrix. J Cell Biol 113:1463–73.
  • Sharma A, Askari JA, Humphries MJ, et al. (1999). Crystal structure of a heparin- and integrin-binding segment of human fibronectin. EMBO J 18:1468–79.
  • Singh P, Carraher C, Schwarzbauer JE. (2010). Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26:397–419.
  • Smith BO, Downing AK, Dudgeon TJ, et al. (1994). Secondary structure of fibronectin type 1 and epidermal growth factor modules from tissue-type plasminogen activator by nuclear magnetic resonance. Biochemistry 33:2422–9.
  • Smith DE, Mosher DF, Johnson RB, Furcht LT. (1982). Immunological identification of two sulfhydryl-containing fragments of human plasma fibronectin. J Biol Chem 257:5831–8.
  • Smith ML, Gourdon D, Little WC, et al. (2007). Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol 5:e268. [Epub ahead of print]. doi:10.1371/journal.pbio.0050268.
  • Smith SP, Hashimoto Y, Pickford AR, et al. (2000). Interface characterization of the type II module pair from fibronectin. Biochemistry 39:8374–81.
  • Sottile J, Hocking DC. (2002). Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 13:3546–59.
  • Sottile J, Schwarzbauer J, Selegue J, Mosher DF. (1991). Five type I modules of fibronectin form a functional unit that binds to fibroblasts and Staphylococcus aureus. J Biol Chem 266:12840–3.
  • Sottile J, Shi F, Rublyevska I, et al. (2007). Fibronectin-dependent collagen I deposition modulates the cell response to fibronectin. Am J Physiol Cell Physiol 293:C1934–46.
  • Spitzfaden C, Grant RP, Mardon HJ, Campbell ID. (1997). Module–module interactions in the cell binding region of fibronectin: stability, flexibility and specificity. J Mol Biol 265:565–79.
  • Sticht H, Pickford AR, Potts JR, Campbell ID. (1998). Solution structure of the glycosylated second type 2 module of fibronectin. J Mol Biol 276:177–87.
  • Stine JM, Sun Y, Armstrong G, et al. (2015). Structure and unfolding of the third type III domain from human fibronectin. Biochemistry 54:6724–33.
  • Stultz CM. (2002). Localized unfolding of collagen explains collagenase cleavage near imino-poor sites. J Mol Biol 319:997–1003.
  • Takagi J, Strokovich K, Springer TA, Walz T. (2003). Structure of integrin alpha5beta1 in complex with fibronectin. EMBO J 22:4607–15.
  • Takahashi S, Leiss M, Moser M, et al. (2007). The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 178:167–78.
  • Tamkun JW, Hynes RO. (1983). Plasma fibronectin is synthesized and secreted by hepatocytes. J Biol Chem 258:4641–7.
  • Tomasini-Johansson B, Mosher DF. (2009). Plasma fibronectin concentration in inbred mouse strains. Thromb Haemost 102:1278–80.
  • Tomasini-Johansson BR, Annis DS, Mosher DF. (2006). The N-terminal 70-kDa fragment of fibronectin binds to cell surface fibronectin assembly sites in the absence of intact fibronectin. Matrix Biol 25:282–93.
  • Tomasini-Johansson BR, Kaufman NR, Ensenberger MG, et al. (2001). A 49-residue peptide from adhesin F1 of Streptococcus pyogenes inhibits fibronectin matrix assembly. J Biol Chem 276:23430–9.
  • Tompa P, Schad E, Tantos A, Kalmar L. (2015). Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol 35:49–59.
  • Tooney NM, Mosesson MW, Amrani DL, et al. (1983). Solution and surface effects on plasma fibronectin structure. J Cell Biol 97:1686–92.
  • Tucker RP, Chiquet-Ehrismann R. (2009). Evidence for the evolution of tenascin and fibronectin early in the chordate lineage. Int J Biochem Cell Biol 41:424–34.
  • Ugarova TP, Zamarron C, Veklich Y, et al. (1995). Conformational transitions in the cell binding domain of fibronectin. Biochemistry 34:4457–66.
  • Vakonakis I, Staunton D, Ellis IR, et al. (2009). Motogenic sites in human fibronectin are masked by long range interactions. J Biol Chem 284:15668–75.
  • Vakonakis I, Staunton D, Rooney LM, Campbell ID. (2007). Interdomain association in fibronectin: insight into cryptic sites and fibrillogenesis. EMBO J 26:2575–83.
  • Velling T, Risteli J, Wennerberg K, et al. (2002). Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. J Biol Chem 277:37377–81.
  • Wang Y, Reheman A, Spring CM, et al. (2014). Plasma fibronectin supports hemostasis and regulates thrombosis. J Clin Invest 124:4281–93.
  • White ES, Baralle FE, Muro AF. (2008). New insights into form and function of fibronectin splice variants. J Pathol 216:1–14.
  • Williams EC, Janmey PA, Ferry JD, Mosher DF. (1982). Conformational states of fibronectin. Effects of pH, ionic strength, and collagen binding. J Biol Chem 257:14973–8.
  • Williams MJ, Phan I, Harvey TS, et al. (1994). Solution structure of a pair of fibronectin type 1 modules with fibrin binding activity. J Mol Biol 235:1302–11.
  • Xu J, Maurer LM, Hoffmann BR, et al. (2010). iso-DGR sequences do not mediate binding of fibronectin N-terminal modules to adherent fibronectin-null fibroblasts. J Biol Chem 285:8563–71.
  • Yi M, Ruoslahti E. (2001). A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci USA 98:620–4.
  • Yi M, Sakai T, Fassler R, Ruoslahti E. (2003). Antiangiogenic proteins require plasma fibronectin or vitronectin for in vivo activity. Proc Natl Acad Sci USA 100:11435–8.
  • Zerlauth G, Wolf G. (1984). Plasma fibronectin as a marker for cancer and other diseases. Am J Med 77:685–9.
  • Zhang Q, Checovich WJ, Peters DM, et al. (1994). Modulation of cell surface fibronectin assembly sites by lysophosphatidic acid. J Cell Biol 127:1447–59.
  • Zhang Q, Mosher DF. (1996). Cross-linking of the NH2-terminal region of fibronectin to molecules of large apparent molecular mass. Characterization of fibronectin assembly sites induced by the treatment of fibroblasts with lysophosphatidic acid. J Biol Chem 271:33284–92.
  • Zhou X, Rowe RG, Hiraoka N, et al. (2008). Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev 22:1231–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.