1,656
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer’s disease

, , , & ORCID Icon
Pages 279-310 | Received 08 Jan 2018, Accepted 23 Mar 2018, Published online: 02 May 2018

References

  • 4S-Group. 1994. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 344:1383–1389.
  • Adams VR, Deremer DL, Stevich B, Mattingly CA, Gallt B, Subramanian T, Troutman JM, Spielmann HP. 2010. Anticancer activity of novel unnatural synthetic isoprenoids. Anticancer Res. 30:2505–2512.
  • Agranoff BW, Eggerer H, Henning U, Lynen F. 1960. Biosynthesis of terpenes. VII. Isopentenyl pyrophosphate isomerase. J Biol Chem. 235:326–332.
  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, et al. 2000. Inflammation and Alzheimer’s disease. Neurobiol Aging. 21:383–421.
  • Alexander M, Gerauer M, Pechlivanis M, Popkirova B, Dvorsky R, Brunsveld L, Waldmann H, Kuhlmann J. 2009. Mapping the isoprenoid binding pocket of PDEdelta by a semisynthetic, photoactivatable N-Ras lipoprotein. ChemBioChem. 10:98–108.
  • Alzheimer’s Association. 2016. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 12:459–509.
  • Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R, Behlke J, von Arnim CA, Breiderhoff T, Jansen P, Wu X, et al. 2005. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc Natl Acad Sci USA. 102:13461–13466.
  • Anderson JL, Frase H, Michaelis S, Hrycyna CA. 2005. Purification, functional reconstitution, and characterization of the Saccharomyces cerevisiae isoprenylcysteine carboxylmethyltransferase Ste14p. J Biol Chem. 280:7336–7345.
  • Andreev VP, Petyuk VA, Brewer HM, Karpievitch YV, Xie F, Clarke J, Camp D, Smith RD, Lieberman AP, Albin RL, et al. 2012. Label-free quantitative LC–MS proteomics of Alzheimer’s disease and normally aged human brains. J Proteome Res. 11:3053–3067.
  • Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, Godowski PJ, Ulevitch RJ, Knaus UG. 2000. Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol. 1:533–540.
  • Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR. 2007. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA. 104:16793–16797.
  • Bergman JA, Hahne K, Hrycyna CA, Gibbs RA. 2011. Lipid and sulfur substituted prenylcysteine analogs as human Icmt inhibitors. Bioorg Med Chem Lett. 21:5616–5619.
  • Bergman JA, Hahne K, Song J, Hrycyna CA, Gibbs RA. 2012. S-Farnesyl-thiopropionic acid (FTPA) triazoles as potent inhibitors of isoprenylcysteine carboxyl methyltransferase. ACS Med Chem Lett. 3:15–19.
  • Bergo MO, Leung GK, Ambroziak P, Otto JC, Casey PJ, Gomes AQ, Seabra MC, Young SG. 2001. Isoprenylcysteine carboxyl methyltransferase deficiency in mice. J Biol Chem. 276:5841–5845.
  • Bergo MO, Leung GK, Ambroziak P, Otto JC, Casey PJ, Young SG. 2000. Targeted inactivation of the isoprenylcysteine carboxyl methyltransferase gene causes mislocalization of K-Ras in mammalian cells. J Biol Chem. 275:17605–17610.
  • Berndt N, Hamilton AD, Sebti SM. 2011. Targeting protein prenylation for cancer therapy. Nat Rev Cancer. 11:775–791.
  • Beytia E, Qureshi AA, Porter JW. 1973. Squalene synthetase. 3. Mechanism of the reaction. J Biol Chem. 248:1856–1867.
  • Bikhtiyarov YE, Omer CA, Allen CM. 1995. Photoreactive analogues of prenyl diphosphates as inhibitors and probes of human protein farnesyltransferase and geranylgeranyltransferase Type I. J Biol Chem. 270:19035–19040.
  • Bishop P, Rubin P, Thomson AR, Rocca D, Henley JM. 2014. The ubiquitin C-terminal hydrolase L1 (UCH-L1) C terminus plays a key role in protein stability, but its farnesylation is not required for membrane association in primary neurons. J Biol Chem. 289:36140–36149.
  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW. 2004. Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci. 101:2173–2178.
  • Blanden MJ, Suazo KF, Hildebrandt ER, Hardgrove DS, Patel M, Saunders WP, Distefano MD, Schmidt WK, Hougland JL. 2018. Efficient farnesylation of an extended C-terminal C(x)3X sequence motif expands the scope of the prenylated proteome. J Biol Chem. 293:2770–2785.
  • Bloch K. 1965. The biological synthesis of cholesterol. Science. 150:19–28.
  • Boimel M, Grigoriadis N, Lourbopoulos A, Touloumi O, Rosenmann D, Abramsky O, Rosenmann H. 2009. Statins reduce the neurofibrillary tangle burden in a mouse model of tauopathy. J Neuropathol Exp Neurol. 68:314–325.
  • Bond PD, Dolence JM, Poulter CD. 1995. A continuous fluorescence assay for protein:prenyl transferases. Meth Enzymol. 250:30–43.
  • Boros BD, Greathouse KM, Gentry EG, Curtis KA, Birchall EL, Gearing M, Herskowitz JH. 2017. Dendritic spines provide cognitive resilience against Alzheimer’s disease. Ann Neurol. 82:602–614.
  • Boyartchuk VL, Ashby MN, Rine J. 1997. Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science (New York, NY). 275:1796–1800.
  • Brambilla R, Gnesutta N, Minichiello L, Klein R, Sturani E, White G, Chapman PF, Roylance AJ, Herron CE, Grant SGN, et al. 1997. A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature. 390:281–286.
  • Brinkmalm A, Portelius E, Öhrfelt A, Brinkmalm G, Andreasson U, Gobom J, Blennow K, Zetterberg H. 2015. Explorative and targeted neuroproteomics in Alzheimer’s disease. Biochim Biophys Acta. 1854:769–778.
  • Briz V, Zhu G, Wang Y, Liu Y, Avetisyan M, Bi X, Baudry M. 2015. Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity. J Neurosci. 35:2269–2282.
  • Brown MS, Goldstein JL. 1980. Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res. 21:505–517.
  • Brown MS, Goldstein JL. 1986. A receptor-mediated pathway for cholesterol homeostasis. Science. 232:34–47.
  • Brown MS, Goldstein JL. 1997. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 89:331–340.
  • Brown MS, Goldstein JL. 2012. Scientific side trips: six excursions from the beaten path. J Biol Chem. 287:22418–22435.
  • Brown MS, Radhakrishnan A, Goldstein JL. 2017. Retrospective on cholesterol homeostasis: the central role of scap. Annu Rev Biochem. DOI:10.1146/annurev-biochem-062917-011852
  • Bucher NL, Overath P, Lynen F. 1960. beta-Hydroxy-beta-methyl-glutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim Biophys Acta. 40:491–501.
  • Capell BC, Olive M, Erdos MR, Cao K, Faddah DA, Tavarez UL, Conneely KN, Qu X, San H, Ganesh SK, et al. 2008. A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model. Proc Natl Acad Sci USA. 105:15902–15907.
  • Casey PJ, Solski PA, Der CJ, Buss JE. 1989. p21ras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA. 86:8323–8327.
  • Casey PJ, Thissen JA, Moomaw JF. 1991. Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proc Natl Acad Sci USA. 88:8631–8635.
  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. 2002. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med. 33:562–571.
  • Cavallini A, Brewerton S, Bell A, Sargent S, Glover S, Hardy C, Moore R, Calley J, Ramachandran D, Poidinger M, et al. 2013. An unbiased approach to identifying tau kinases that phosphorylate tau at sites associated with Alzheimer disease. J Biol Chem. 288:23331–23347.
  • Cenedella RJ. 1998. Prenylation of proteins by the intact lens. Invest Ophthalmol Vis Sci. 39:1276–1280.
  • Chan LN, Hart C, Guo L, Nyberg T, Davies BSJ, Fong LG, Young SG, Agnew BJ, Tamanoi F. 2009. A novel approach to tag and identify geranylgeranylated proteins. Electrophoresis. 30:3598–3606.
  • Chaput D, Kirouac LH, Bell-Temin H, Stevens SM, Padmanabhan J. 2012. SILAC-based proteomic analysis to investigate the impact of amyloid precursor protein expression in neuronal-like B103 cells. Electrophoresis. 33:3728–3737.
  • Charron G, Li MM, MacDonald MR, Hang HC. 2013. Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform. Proc Natl Acad Sci USA. 110:11085–11090.
  • Chen X, Makarewicz JM, Knauf JA, Johnson LK, Fagin JA. 2014. Transformation by Hras(G12V) is consistently associated with mutant allele copy gains and is reversed by farnesyl transferase inhibition. Oncogene. 33:5442–5449.
  • Chen Y, Ma Y-t, Rando RR. 1996. Solubilization, partial purification, and affinity labeling of the membrane-bound isoprenylated protein endoprotease. Biochemistry. 35:3227–3237.
  • Chen YX, Koch S, Uhlenbrock K, Weise K, Das D, Gremer L, Brunsveld L, Wittinghofer A, Winter R, Triola G, et al. 2010. Synthesis of the Rheb and K-Ras4B GTPases. Angew Chem (Int Ed Engl). 49:6090–6095.
  • Cheng S, Cao D, Hottman DA, Yuan L, Bergo MO, Li L. 2013. Farnesyltransferase haplodeficiency reduces neuropathology and rescues cognitive function in a mouse model of Alzheimer disease. J Biol Chem. 288:35952–35960.
  • Cherfils J, Zeghouf M. 2013. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 93:269–309.
  • Choi J, Levey AI, Weintraub ST, Rees HD, Gearing M, Chin L-S, Li L. 2004. Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. J Biol Chem. 279:13256–13264.
  • Cole SL, Grudzien A, Manhart IO, Kelly BL, Oakley H, Vassar R. 2005. Statins cause intracellular accumulation of amyloid precursor protein, beta-secretase-cleaved fragments, and amyloid beta-peptide via an isoprenoid-dependent mechanism. J Biol Chem. 280:18755–18770.
  • Colicelli J. 2004. Human RAS superfamily proteins and related GTPases. Sci STKE. 2004:RE13.
  • Colonna M, Wang Y. 2016. TREM2 variants: new keys to decipher Alzheimer disease pathogenesis. Nat Rev Neurosci. 17:201–207.
  • Cordle A, Landreth G. 2005. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors attenuate beta-amyloid-induced microglial inflammatory responses. J Neurosci. 25:299–307.
  • Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ. 2002. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature. 415:526–530.
  • Coxon FP, Helfrich MH, Larijani B, Muzylak M, Dunford JE, Marshall D, McKinnon AD, Nesbitt SA, Horton MA, Seabra MC, et al. 2001. Identification of a novel phosphonocarboxylate inhibitor of Rab geranylgeranyl transferase that specifically prevents Rab prenylation in osteoclasts and macrophages. J Biol Chem. 276:48213–48222.
  • Coxon FP, Helfrich MH, Van't Hof R, Sebti S, Ralston SH, Hamilton A, Rogers MJ. 2000. Protein geranylgeranylation is required for osteoclast formation, function, and survival: inhibition by bisphosphonates and GGTI-298. J Bone Miner Res. 15:1467–1476.
  • De Angelis DA, Braun PE. 1996. Binding of 2′,3′-cyclic nucleotide 3′-phosphodiesterase to myelin: an in vitro study. J Neurochem. 66:2523–2531.
  • De Schutter JW, Park J, Leung CY, Gormley P, Lin YS, Hu Z, Berghuis AM, Poirier J, Tsantrizos YS. 2014. Multistage screening reveals chameleon ligands of the human farnesyl pyrophosphate synthase: implications to drug discovery for neurodegenerative diseases. J Med Chem. 57:5764–5776.
  • Dechat T, Shimi T, Adam SA, Rusinol AE, Andres DA, Spielmann HP, Sinensky MS, Goldman RD. 2007. Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc Natl Acad Sci USA. 104:4955–4960.
  • DeGraw AJ, Palsuledesai C, Ochocki JD, Dozier JK, Lenevich S, Rashidian M, Distefano MD. 2010. Evaluation of alkyne-modified isoprenoids as chemical reporters of protein prenylation. Chem Biol Drug Des. 76:460–471.
  • Diaz-Rodriguez V, Hsu ET, Ganusova E, Werst ER, Becker JM, Hrycyna CA, Distefano MD. 2018. a-Factor analogues containing alkyne- and azide-functionalized isoprenoids are efficiently enzymatically processed and retain wild-type bioactivity. Bioconjug Chem. 29:316–323.
  • Dolence JM, Steward LE, Dolence EK, Wong DH, Poulter CD. 2000. Studies with recombinant saccharomyces cerevisiae CaaX Prenyl Protease Rce1p. Biochemistry. 39:4096–4104.
  • Donelson JL, Hodges HB, Macdougall DD, Henriksen BS, Hrycyna CA, Gibbs RA. 2006. Amide-substituted farnesylcysteine analogs as inhibitors of human isoprenylcysteine carboxyl methyltransferase. Bioorg Med Chem Lett. 16:4420–4423.
  • Dozier JK, Khatwani SL, Wollack JW, Wang Y-C, Schmidt-Dannert C, Distefano MD. 2014. Engineering protein farnesyltransferase for enzymatic protein labeling applications. Bioconjug Chem. 25:1203–1212.
  • Eckert GP, Hooff GP, Strandjord DM, Igbavboa U, Volmer DA, Muller WE, Wood WG. 2009. Regulation of the brain isoprenoids farnesyl- and geranylgeranylpyrophosphate is altered in male Alzheimer patients. Neurobiol Dis. 35:251–257.
  • Edelstein RL, Distefano MD. 1997. Photoaffinity labeling of yeast farnesyl protein transferase and enzymic synthesis of a Ras protein incorporating a photoactive isoprenoid. Biochem Biophys Res Commun. 235:377–382.
  • Ehlers MD. 2000. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron. 28:511–525.
  • Endo A, Kuroda M, Tanzawa K. 1976. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 72:323–326.
  • Endo A. 1992. The discovery and development of Hmg-Coa reductase inhibitors. J Lipid Res. 33:1569–1582.
  • Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, et al. 2001. Simvastatin strongly reduces levels of Alzheimer’s disease-amyloid peptides A 42 and A 40 in vitro and in vivo. Proc Natl Acad Sci. 98:5856–5861.
  • Faust JR, Brown MS, Goldstein JL. 1980. Synthesis of delta 2-isopentenyl tRNA from mevalonate in cultured human fibroblasts. J Biol Chem. 255:6546–6548.
  • Ferguson JJ, Durr IF, Rudney H. 1959. The biosynthesis of mevalonic acid. Proc Natl Acad Sci USA. 45:499–504.
  • Fisher JE, Rogers MJ, Halasy JM, Luckman SP, Hughes DE, Masarachia PJ, Wesolowski G, Russell RG, Rodan GA, Reszka AA. 1999. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA. 96:133–138.
  • Fleisch H, Russell RG, Francis MD. 1969. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science. 165:1262–1264.
  • Fleisch H, Russell RG, Simpson B, Muhlbauer RC. 1969. Prevention by a diphosphonate of immobilization “osteoporosis” in rats. Nature. 223:211–212.
  • Fleisch H, Russell RG, Straumann F. 1966. Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature. 212:901–903.
  • Frost B. 2016. Alzheimer’s disease: an acquired neurodegenerative laminopathy. Nucleus. 7:275–283.
  • Fujimura-Kamada K, Nouvet FJ, Michaelis S. 1997. A novel membrane-associated metalloprotease, Ste24p, is required for the first step of NH2-terminal processing of the yeast a-factor precursor. J Cell Biol. 136:271–285.
  • Gao S, Yu R, Zhou X. 2016. The role of geranylgeranyltransferase I-mediated protein prenylation in the brain. Mol Neurobiol. 53:6925–6937.
  • Gaon I, Turek TC, Distefano MD. 1996. Farnesyl and geranylgeranyl pyrophosphate analogs incorporating benzoylbenzyl ethers: synthesis and inhibition of yeast protein farnesyltransferase. Tetrahedron Lett. 37:8833–8836.
  • Gaon I, Turek TC, Weller VA, Edelstein RL, Singh SK, Distefano MD. 1996. Photoactive analogs of farnesyl pyrophosphate containing benzoylbenzoate esters: synthesis and application to photoaffinity labeling of yeast farnesyltransferase. J Org Chem. 61:7738–7745.
  • Gärtner U, Holzer M, Arendt T. 1999. Elevated expression of p21ras is an early event in Alzheimer’s disease and precedes neurofibrillary degeneration. Neuroscience. 91:1–5.
  • Gartner U, Holzer M, Heumann R, Arendt T. 1995. Induction of p21ras in Alzheimer pathology. Neuroreport. 6:1441–1444.
  • Gelb MH, Brunsveld L, Hrycyna CA, Michaelis S, Tamanoi F, Van Voorhis WC, Waldmann H. 2006. Therapeutic intervention based on protein prenylation and associated modifications. Nat Chem Biol. 2:518–528.
  • Gelb MH, Van Voorhis WC, Buckner FS, Yokoyama K, Eastman R, Carpenter EP, Panethymitaki C, Brown KA, Smith DF. 2003. Protein farnesyl and N-myristoyl transferases: piggy-back medicinal chemistry targets for the development of antitrypanosomatid and antimalarial therapeutics. Mol Biochem Parasitol. 126:155–163.
  • Gentry EG, Henderson BW, Arrant AE, Gearing M, Feng Y, Riddle NC, Herskowitz JH. 2016. Rho kinase inhibition as a therapeutic for progressive supranuclear palsy and corticobasal degeneration. J Neurosci. 36:1316–1323.
  • Gibbs BS, Zahn TJ, Mu YQ, Sebolt-Leopold JS, Gibbs RA. 1999. Novel farnesol and geranylgeraniol analogues: a potential new class of anticancer agents directed against protein prenylation. J Med Chem. 42:3800–3808.
  • Gibbs RA. 2000. Farnesyltransferase inhibitors: novel anticancer mechanisms and new therapeutic applications. Curr Opin Drug Discov Dev. 3:585–596.
  • Ginsberg SD, Mufson EJ, Alldred MJ, Counts SE, Wuu J, Nixon RA, Che S. 2011. Upregulation of select rab GTPases in cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease. J Chem Neuroanat. 42:102–110.
  • Ginsberg SD. 2011. Regional selectivity of rab5 and rab7 protein up regulation in mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis. 22:631–639.
  • Gisselberg JE, Zhang L, Elias JE, Yeh E. 2017. The prenylated proteome of plasmodium falciparum reveals pathogen-specific prenylation activity and drug mechanism-of-action. Mol Cell Proteomics. 16:S54–S64.
  • Goldstein JL, Brown MS. 1990. Regulation of the mevalonate pathway. Nature. 343:425–430.
  • Goldstein JL, Brown MS. 2015. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 161:161–172.
  • Gordon LB, Kleinman ME, Massaro J, D'Agostino RB Sr., Shappell H, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland RH, Nazarian A, et al. 2016. Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson–Gilford Progeria Syndrome. Circulation. 134:114–125.
  • Gordon LB, Kleinman ME, Miller DT, Neuberg DS, Giobbie-Hurder A, Gerhard-Herman M, Smoot LB, Gordon CM, Cleveland R, Snyder BD, et al. 2012. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci USA. 109:16666–16671.
  • Gordon LB, Massaro J, D'Agostino RB Sr., Campbell SE, Brazier J, Brown WT, Kleinman ME, Kieran MW, Progeria Clinical Trials C. 2014. Impact of farnesylation inhibitors on survival in Hutchinson–Gilford progeria syndrome. Circulation. 130:27–34.
  • Griffin JM, Kho D, Graham ES, Nicholson LFB, O'Carroll SJ. 2016. Statins inhibit fibrillary β-amyloid induced inflammation in a model of the human blood brain barrier. PLoS One. 11:e0157483.
  • Gritzalis D, Park J, Chiu W, Cho H, Lin YS, De Schutter JW, Lacbay CM, Zielinski M, Berghuis AM, Tsantrizos YS. 2015. Probing the molecular and structural elements of ligands binding to the active site versus an allosteric pocket of the human farnesyl pyrophosphate synthase. Bioorg Med Chem Lett. 25:1117–1123.
  • Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E, Cruchaga C, Sassi C, Kauwe JS, Younkin S, et al. 2013. TREM2 variants in Alzheimer’s disease. N Engl J Med. 368:117–127.
  • Guo Z, Wu YW, Das D, Delon C, Cramer J, Yu S, Thuns S, Lupilova N, Waldmann H, Brunsveld L, et al. 2008. Structures of RabGGTase-substrate/product complexes provide insights into the evolution of protein prenylation. EMBO J. 27:2444–2456.
  • Haag MDM, Hofman A, Koudstaal PJ, Stricker BHC, Breteler MMB. 2009. Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J Neurol Neurosurg Psychiatry. 80:13–17.
  • Haditsch U, Leone DP, Farinelli M, Chrostek-Grashoff A, Brakebusch C, Mansuy IM, McConnell SK, Palmer TD. 2009. A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci. 41:409–419.
  • Hahne K, Vervacke JS, Shrestha L, Donelson JL, Gibbs RA, Distefano MD, Hrycyna CA. 2012. Evaluation of substrate and inhibitor binding to yeast and human isoprenylcysteine carboxyl methyltransferases (Icmts) using biotinylated benzophenone-containing photoaffinity probes. Biochem Biophys Res Commun. 423:98–103.
  • Hall RH. 1971. The modified nucleotides in nucleic acids. New York: Columbia University Press.
  • Hamano T, Yen SH, Gendron T, Ko L, Kuriyama M. 2012. Pitavastatin decreases tau levels via the inactivation of Rho/ROCK. Neurobiol Aging. 33:2306–2320.
  • Hancock JF, Magee AI, Childs JE, Marshall CJ. 1989. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell. 57:1167–1177.
  • Hancock JF. 2003. Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol. 4:373–384.
  • Hast MA, Nichols CB, Armstrong SM, Kelly SM, Hellinga HW, Alspaugh JA, Beese LS. 2011. Structures of Cryptococcus neoformans protein farnesyltransferase reveal strategies for developing inhibitors that target fungal pathogens. J Biol Chem. 286:35149–35162.
  • Henderson BW, Gentry EG, Rush T, Troncoso JC, Thambisetty M, Montine TJ, Herskowitz JH. 2016. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer’s disease and ROCK1 depletion reduces amyloid-beta levels in brain. J Neurochem. 138:525–531.
  • Heneka MT, Carson MJ, Khoury JE, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, et al. 2015. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14:388–405.
  • Hennessy E, Adams C, Reen FJ, O'Gara F. 2016. Is there potential for repurposing statins as novel antimicrobials? Antimicrob Agents Chemother. 60:5111–5121.
  • Herskowitz JH, Feng Y, Mattheyses AL, Hales CM, Higginbotham LA, Duong DM, Montine TJ, Troncoso JC, Thambisetty M, Seyfried NT, et al. 2013. Pharmacologic inhibition of ROCK2 suppresses amyloid- production in an Alzheimer’s disease mouse model. J Neurosci. 33:19086–19098.
  • Herskowitz JH, Seyfried NT, Gearing M, Kahn RA, Peng J, Levey AI, Lah JJ. 2011. Rho kinase II phosphorylation of the lipoprotein receptor LR11/SORLA alters amyloid-beta production. J Biol Chem. 286:6117–6127.
  • Hildebrandt ER, Cheng M, Zhao P, Kim JH, Wells L, Schmidt WK. 2016. A shunt pathway limits the CaaX processing of Hsp40 Ydj1p and regulates Ydj1p-dependent phenotypes. eLife. 5:e15899.
  • Hollander I, Frommer E, Mallon R. 2000. Human ras-converting enzyme (hRCE1) endoproteolytic activity on K-ras-derived peptides. Anal Biochem. 286:129–137.
  • Holstein SA, Hohl RJ. 2004. Isoprenoids: remarkable diversity of form and function. Lipids. 39:293–309.
  • Hooff GP, Peters I, Wood WG, Müller WE, Eckert GP. 2010. Modulation of cholesterol, farnesylpyrophosphate, and geranylgeranylpyrophosphate in neuroblastoma SH-SY5Y-APP695 cells: impact on amyloid beta-protein production. Mol Neurobiol. 41:341–350.
  • Hooff GP, Volmer DA, Wood WG, Muller WE, Eckert GP. 2008. Isoprenoid quantitation in human brain tissue: a validated HPLC-fluorescence detection method for endogenous farnesyl-(FPP) and geranylgeranylpyrophosphate (GGPP). Anal Bioanal Chem. 392:673–680.
  • Hooper C, Killick R, Lovestone S. 2008. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem. 104:1433–1439.
  • Hosaka A, Araki W, Oda A, Tomidokoro Y, Tamaoka A. 2013. Statins reduce amyloid β-peptide production by modulating amyloid precursor protein maturation and phosphorylation through a cholesterol-independent mechanism in cultured neurons. Neurochem Res. 38:589–600.
  • Hosokawa A, Wollack JW, Zhang Z, Chen L, Barany G, Distefano MD. 2007. Evaluation of an alkyne-containing analogue of farnesyl diphosphate as a dual substrate for protein-prenyltransferases. Int J Peptide Res. 13:345–354.
  • Hottman D, Cheng S, Gram A, LeBlanc K, Yuan LL, Li L. 2018. Systemic or forebrain neuron-specific deficiency of geranylgeranyltransferase-1 impairs synaptic plasticity and reduces dendritic spine density. Neuroscience. 373:207–217.
  • Hottman DA, Li L. 2014. Protein prenylation and synaptic plasticity: implications for Alzheimer’s disease. Mol Neurobiol. 50:177–185.
  • Hougland JL, Hicks KA, Hartman HL, Kelly RA, Watt TJ, Fierke CA. 2010. Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities. J Mol Biol. 395:176–190.
  • Hrycyna CA, Clarke S. 1992. Maturation of isoprenylated proteins in Saccharomyces cerevisiae. Multiple activities catalyze the cleavage of the three carboxyl-terminal amino acids from farnesylated substrates in vitro. J Biol Chem. 267:10457–10464.
  • Hrycyna CA, Sapperstein SK, Clarke S, Michaelis S. 1991. The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins. EMBO J. 10:1699–1709.
  • Iannelli F, Lombardi R, Milone MR, Pucci B,D, Rienzo S, Budillon A, Bruzzese F. 2017. Targeting mevalonate pathway in cancer treatment: repurposing of statins. Recent Patents Anti-Cancer Drug Discov. DOI:10.2174/1574892812666171129141211
  • Istvan ES, Deisenhofer J. 2001. Structural mechanism for statin inhibition of HMG-CoA reductase. Science. 292:1160–1164.
  • Jahnke W, Rondeau JM, Cotesta S, Marzinzik A, Pelle X, Geiser M, Strauss A, Gotte M, Bitsch F, Hemmig R, et al. 2010. Allosteric non-bisphosphonate FPPS inhibitors identified by fragment-based discovery. Nat Chem Biol. 6:660–666.
  • Jay TR, von Saucken VE, Landreth GE. 2017. TREM2 in neurodegenerative diseases. Mol Neurodegener. 12:56.
  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. 2000. Statins and the risk of dementia. Lancet. 356:1627–1631.
  • Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, et al. 2013. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med. 368:107–116.
  • Kale TA, Distefano MD. 2003. Diazotrifluoropropionamido-containing prenylcysteines: syntheses and applications for studying isoprenoid–protein interactions. Org Lett. 5:609–612.
  • Kale TA, Raab C, Yu N, Dean DC, Distefano MD. 2001. A photoactivatable prenylated cysteine designed to study isoprenoid recognition. J Am Chem Soc. 123:4373–4381.
  • Kamiya Y, Sakurai A, Tamura S, Takahashi N, Tsuchiya E, Abe K, Fukui S. 1979. Structure of rhodotorucine A, a peptidyl factor, inducing mating tube formation in Rhodospotidium toruloides. Agric Biol Chem. 43:363–369.
  • Kandutsch AA, Russell AE. 1960. Preputial gland tumor sterols. 3. A metabolic pathway from lanosterol to cholesterol. J Biol Chem. 235:2256–2261.
  • Kazi A, Carie A, Blaskovich MA, Bucher C, Thai V, Moulder S, Peng H, Carrico D, Pusateri E, Pledger WJ, et al. 2009. Blockade of protein geranylgeranylation inhibits Cdk2-dependent p27Kip1 phosphorylation on Thr187 and accumulates p27Kip1 in the nucleus: implications for breast cancer therapy. Mol Cell Biol. 29:2254–2263.
  • Kho Y, Kim SC, Jiang C, Barma D, Kwon SW, Cheng J, Jaunbergs J, Weinbaum C, Tamanoi F, Falck J, et al. 2004. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc Natl Acad Sci USA. 101:12479–12484.
  • Kinsella BT, Maltese WA. 1992. rab GTP-binding proteins with three different carboxyl-terminal cysteine motifs are modified in vivo by 20-carbon isoprenoids. J Biol Chem. 267:3940–3945.
  • Kirouac L, Rajic AJ, Cribbs DH, Padmanabhan J. 2017. Activation of Ras-ERK signaling and GSK-3 by amyloid precursor protein and amyloid beta facilitates neurodegeneration in Alzheimer’s disease. eNeuro. 4(2). DOI:10.1523/ENEURO.0149-16.2017
  • Kohl NE, Omer CA, Conner MW, Anthony NJ, Davide JP, deSolms SJ, Giuliani EA, Gomez RP, Graham SL, Hamilton K, et al. 1995. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med. 1:792–797.
  • Korolainen MA, Nyman TA, Aittokallio T, Pirttilä T. 2010. An update on clinical proteomics in Alzheimer’s research. J Neurochem. 112:1386–1414.
  • Krzysiak AJ, Aditya AV, Hougland JL, Fierke CA, Gibbs RA. 2010. Synthesis and screening of a CaaL peptide library versus FTase reveals a surprising number of substrates. Bioorg Med Chem Lett. 20:767–770.
  • Krzysiak AJ, Scott SA, Hicks KA, Fierke CA, Gibbs RA. 2007. Evaluation of protein farnesyltransferase substrate specificity using synthetic peptide libraries. Bioorg Med Chem Lett. 17:5548–5551.
  • Kuang H, Brown ML, Davies RR, Young EC, Distefano MD. 1996. Enantioselective reductive amination of a-keto acids to a-amino acids by a pyridoxamine cofactor in a protein cavity. J Am Chem Soc. 118:10702–10706.
  • Kukar T, Murphy MP, Eriksen JL, Sagi SA, Weggen S, Smith TE, Ladd T, Khan MA, Kache R, Beard J, et al. 2005. Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Abeta42 production. Nat Med. 11:545–550.
  • Kurata T, Miyazaki K, Kozuki M, Morimoto N, Ohta Y, Ikeda Y, Abe K. 2012. Atorvastatin and pitavastatin reduce senile plaques and inflammatory responses in a mouse model of Alzheimer’s disease. Neurol Res. 34:601–610.
  • Laezza C, Wolff J, Bifulco M. 1997. Identification of a 48-kDa prenylated protein that associates with microtubules as 2′,3′-cyclic nucleotide 3′-phosphodiesterase in FRTL-5 cells. FEBS Lett. 413:260–264.
  • Lambert J-C. 2013. Meta-Analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 45:1452–1458.
  • Landreth GE, Reed-Geaghan EG. 2009. Toll-like receptors in Alzheimer’s disease. Curr Top Microbiol Immunol. 336:137–153.
  • Lane KT, Beese LS. 2006. Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res. 47:681–699.
  • Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, Neve R, Ahlijanian MK, Tsai LH. 2003. APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol. 163:83–95.
  • Leonard DM. 1997. Ras farnesyltransferase: a new therapeutic target. J Med Chem. 40:2971–2990.
  • Lerner EC, Qian Y, Blaskovich MA, Fossum RD, Vogt A, Sun J, Cox AD, Der CJ, Hamilton AD, Sebti SM. 1995. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes. J Biol Chem. 270:26802–26806.
  • Leuchtenberger S, Kummer MP, Kukar T, Czirr E, Teusch N, Sagi SA, Berdeaux R, Pietrzik CU, Ladd TB, Golde TE, et al. 2006. Inhibitors of Rho-kinase modulate amyloid-beta (Abeta) secretion but lack selectivity for Abeta42. J Neurochem. 96:355–365.
  • Leung KF, Baron R, Ali BR, Magee AI, Seabra MC. 2007. Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem. 282:1487–1497.
  • Li H, Kuwajima T, Oakley D, Nikulina E, Hou J, Yang WS, Lowry ER, Lamas NJ, Amoroso MW, Croft GF, et al. 2016. Protein prenylation constitutes an endogenous brake on axonal growth. Cell Rep. 16:545–558.
  • Li L, Cao D, Kim H, Lester R, Fukuchi K. 2006. Simvastatin enhances learning and memory independent of amyloid load in mice. Ann Neurol. 60:729–739.
  • Li L, Zhang W, Cheng S, Cao D, Parent M. 2012. Isoprenoids and related pharmacological interventions: potential application in Alzheimer’s disease. Mol Neurobiol. 46:64–77.
  • Liao JK, Laufs U. 2009. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 45:89–118.
  • Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rube CE, Walter J, Heneka MT, Hartmann T, et al. 2012. TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol. 188:1098–1107.
  • Liu Z, Meray RK, Grammatopoulos TN, Fredenburg RA, Cookson MR, Liu Y, Logan T, Lansbury PT. 2009. Membrane-associated farnesylated UCH-L1 promotes alpha-synuclein neurotoxicity and is a therapeutic target for Parkinson’s disease. Proc Natl Acad Sci USA. 106:4635–4640.
  • Lobell RB, Liu D, Buser CA, Davide JP, DePuy E, Hamilton K, Koblan KS, Lee Y, Mosser S, Motzel SL, et al. 2002. Preclinical and clinical pharmacodynamic assessment of L-778,123, a dual inhibitor of farnesyl:protein transferase and geranylgeranyl:protein transferase type-I. Mol Cancer Ther. 1:747–758.
  • London N, Lamphear CL, Hougland JL, Fierke CA, Schueler-Furman O. 2011. Identification of a novel class of farnesylation targets by structure-based modeling of binding specificity. PLoS Comput Biol. 7:e1002170.
  • Luckman SP, Coxon FP, Ebetino FH, Russell RG, Rogers MJ. 1998. Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure–activity relationships in J774 macrophages. J Bone Miner Res. 13:1668–1678.
  • Lynen F. 1964. The pathway from “activated acetic acid” to the terpenes and fatty acids. Nobel Lecture, Nobelprize.org. https://www.nobelprize.org/nobel_prizes/medicine/laureates/1964/lynen-lecture.html
  • Manne V, Yan N, Carboni JM, Tuomai AV, Ricca CS, Brown JG, Andahazy ML, Schmidt RJ, Patel D, Zahler R, et al. 1995. Bisubstrate inhibitors of farnesyltransferase: a novel class of specific inhibitors of ras transformed cells. Oncogene. 10:1763–1779.
  • Mans RA, Chowdhury N, Cao D, McMahon LL, Li L. 2010. Simvastatin enhances hippocampal long-term potentiation in C57BL/6 mice. Neuroscience. 166:435–444.
  • Mans RA, McMahon LL, Li L. 2012. Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. Neuroscience. 202:1–9.
  • Maraka S, Kennel KA. 2015. Bisphosphonates for the prevention and treatment of osteoporosis. BMJ. 351:h3783.
  • Marzinzik AL, Amstutz R, Bold G, Bourgier E, Cotesta S, Glickman JF, Gotte M, Henry C, Lehmann S, Hartwieg JC, et al. 2015. Discovery of novel allosteric non-bisphosphonate inhibitors of farnesyl pyrophosphate synthase by integrated lead finding. ChemMedChem. 10:1884–1891.
  • Maurer-Stroh S, Koranda M, Benetka W, Schneider G, Sirota FL, Eisenhaber F. 2007. Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput Biol. 3:e66.
  • McTaggart SJ. 2006. Isoprenylated proteins. Cell Mol Life Sci. 63:255–267.
  • Meske V, Albert F, Richter D, Schwarze J, Ohm TG. 2003. Blockade of HMG-CoA reductase activity causes changes in microtubule-stabilizing protein tau via suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer’s disease. Eur J Neurosci. 17:93–102.
  • Métais C, Brennan K, Mably AJ, Scott M, Walsh DM, Herron CE. 2014. Simvastatin treatment preserves synaptic plasticity in AβPPswe/PS1dE9 mice. J Alzheimers Dis. 39:315–329.
  • Michaelson D, Ali W, Chiu VK, Bergo M, Silletti J, Wright L, Young SG, Philips M. 2005. Postprenylation CAAX processing is required for proper localization of Ras but not Rho GTPases. Mol Biol Cell. 16:1606–1616.
  • Misra J, Mohanty ST, Madan S, Fernandes JA, Hal Ebetino F, Russell RG, Bellantuono I. 2016. Zoledronate attenuates accumulation of DNA damage in mesenchymal stem cells and protects their function. Stem Cells. 34:756–767.
  • Mohammed I, Hampton SE, Ashall L, Hildebrandt ER, Kutlik RA, Manandhar SP, Floyd BJ, Smith HE, Dozier JK, Distefano MD, et al. 2016. 8-Hydroxyquinoline-based inhibitors of the Rce1 protease disrupt Ras membrane localization in human cells. Bioorg Med Chem. 24:160–178.
  • Monkkonen H, Auriola S, Lehenkari P, Kellinsalmi M, Hassinen IE, Vepsalainen J, Monkkonen J. 2006. A new endogenous ATP analog (ApppI) inhibits the mitochondrial adenine nucleotide translocase (ANT) and is responsible for the apoptosis induced by nitrogen-containing bisphosphonates. Br J Pharmacol. 147:437–445.
  • Morgillo F, Lee HY. 2006. Lonafarnib in cancer therapy. Expert Opin Investig Drugs. 15:709–719.
  • Moutinho M, Nunes MJ, Rodrigues E. 2017. The mevalonate pathway in neurons: it’s not just about cholesterol. Exp Cell Res. 360:55–60.
  • Moya-Alvarado G, Gershoni-Emek N, Perlson E, Bronfman FC. 2016. Neurodegeneration and Alzheimer’s disease (AD). What can proteomics tell us about the Alzheimer’s brain? Mol Cell Proteomics. 15:409–425.
  • Musunuri S, Wetterhall M, Ingelsson M, Lannfelt L, Artemenko K, Bergquist J, Kultima K, Shevchenko G. 2014. Quantification of the brain proteome in Alzheimer’s disease using multiplexed mass spectrometry. J Proteome Res. 13:2056–2068.
  • Nguyen UTT, Cramer J, Gomis J, Reents R, Gutierrez-Rodriguez M, Goody RS, Alexandrov K, Waldmann H. 2007. Exploiting the substrate tolerance of farnesyltransferase for site-selective protein derivatization. ChemBioChem. 8:408–423.
  • Nguyen UTT, Guo Z, Delon C, Wu Y, Deraeve C, Fraenzel B, Bon RS, Blankenfeldt W, Goody RS, Waldmann H, et al. 2009. Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat Chem Biol. 5:227–235.
  • Nhan HS, Chiang K, Koo EH. 2015. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: friends and foes. Acta Neuropathol. 129:1–19.
  • Nishimura A, Linder ME. 2013. Identification of a novel prenyl and palmitoyl modification at the CaaX motif of Cdc42 that regulates RhoGDI binding. Mol Cell Biol. 33:1417–1429.
  • Nishimura S, Mishra-Gorur K, Park J, Surovtseva YV, Sebti SM, Levchenko A, Louvi A, Gunel M. 2017. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci USA. 114:5503–5508.
  • Nussinov R, Tsai CJ, Jang H. 2018. Oncogenic Ras isoforms signaling specificity at the membrane. Cancer Res. 78:593–602.
  • Ochocki JD, Distefano MD. 2013. Prenyltransferase inhibitors: treating human ailments from cancer to parasitic infections. Med Chem Commun. 4:476–492.
  • Ochocki JD, Wattenberg EV, Distefano MD. 2010. Enlarging the scope of cell-penetrating prenylated peptides to include farnesylated ‘CAAX’ box sequences and diverse cell types. Chem Biol Drug Des. 76:107–115.
  • Oesterle A, Laufs U, Liao JK. 2017. Pleiotropic effects of statins on the cardiovascular system. Circ Res. 120:229–243.
  • Offe K, Dodson SE, Shoemaker JT, Fritz JJ, Gearing M, Levey AI, Lah JJ. 2006. The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. J Neurosci. 26:1596–1603.
  • Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K. 2000. Rho-associated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop. J Biol Chem. 275:3577–3582.
  • Onono FO, Morgan MA, Spielmann HP, Andres DA, Subramanian T, Ganser A, Reuter CWM. 2010. A tagging-via-substrate approach to detect the farnesylated proteome using two-dimensional electrophoresis coupled with Western blotting. Mol Cell Proteomics. 9:742–751.
  • Ostrowski SM, Johnson K, Siefert M, Shank S, Sironi L, Wolozin B, Landreth GE, Ziady AG. 2016. Simvastatin inhibits protein isoprenylation in the brain. Neuroscience. 329:264–274.
  • Ostrowski SM, Wilkinson BL, Golde TE, Landreth G. 2007. Statins reduce amyloid-beta production through inhibition of protein isoprenylation. J Biol Chem. 282:26832–26844.
  • Palsuledesai CC, Ochocki JD, Kuhns MM, Wang Y-C, Warmka JK, Chernick DS, Wattenberg EV, Li L, Arriaga EA, Distefano MD. 2016. Metabolic labeling with an alkyne-modified isoprenoid analog facilitates imaging and quantification of the prenylome in cells. ACS Chem Biol. 11:2820–2828.
  • Palsuledesai CC, Ochocki JD, Markowski TW, Distefano MD. 2014. A combination of metabolic labeling and 2D-DIGE analysis in response to a farnesyltransferase inhibitor facilitates the discovery of new prenylated proteins. Mol Biosyst. 10:1094–1103.
  • Park J, Zielinski M, Magder A, Tsantrizos YS, Berghuis AM. 2017. Human farnesyl pyrophosphate synthase is allosterically inhibited by its own product. Nat Commun. 8:14132.
  • Parsons RB, Price GC, Farrant JK, Subramaniam D, Adeagbo-Sheikh J, Austen BM. 2006. Statins inhibit the dimerization of beta-secretase via both isoprenoid- and cholesterol-mediated mechanisms. Biochem J. 399:205–214.
  • Patel DV, Young MG, Robinson SP, Hunihan L, Dean BJ, Gordon EM. 1996. Hydroxamic acid-based bisubstrate analog inhibitors of ras farnesyl protein transferase. J Med Chem. 39:4197–4210.
  • Pedrini S, Carter TL, Prendergast G, Petanceska S, Ehrlich ME, Gandy S. 2005. Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. PLoS Med. 2:0069–0078.
  • Pelleieux S, Picard C, Lamarre-Theroux L, Dea D, Leduc V, Tsantrizos YS, Poirier J. 2018. Isoprenoids and tau pathology in sporadic Alzheimer’s disease. Neurobiol Aging. 65:132–139.
  • Pereira-Leal JB, Seabra MC. 2000. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. J Mol Biol. 301:1077–1087.
  • Petanceska SS, Derosa S, Olm V, Diaz N, Sharma A, Thomas-bryant T, Duff K, Pappolla M, Refolo LM. 2002. Statin therapy for Alzheimer’s disease. J Mol Neurosci. 19:155–161.
  • Pompliano DL, Gomez RP, Anthony NJ. 1992. Intramolecular fluorescence enhancement: a continuous assay of ras farnesyl:protein transferase. J Am Chem Soc. 114:7945–7946.
  • Pompliano DL, Rands E, Schaber MD, Mosser SD, Anthony NJ, Gibbs JB. 1992. Steady-state kinetic mechanism of ras farnesyl:protein transferase. Biochemistry. 31:3800–3807.
  • Porter SB, Hildebrandt ER, Breevoort SR, Mokry DZ, Dore TM, Schmidt WK. 2007. Inhibition of the CaaX proteases Rce1p and Ste24p by peptidyl (acyloxy)methyl ketones. Biochim Biophys Acta. 1773:853–862.
  • Poulter CD, Rilling HC. 1978. Prenyl transfer-reaction – enzymatic and mechanistic studies of 1'–4 coupling reaction in terpene biosynthetic-pathway. Acc Chem Res. 11:307–313.
  • Poulter CD, Satterwhite DM. 1977. Mechanism of prenyl-transfer reaction – studies with (E)-3-trifluoromethyl-2-buten-1-Yl and (Z)-3-trifluoromethyl-2-buten-1-Yl pyrophosphate. Biochemistry. 16:5470–5478.
  • Prior IA, Hancock JF. 2012. Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol. 23:145–153.
  • Quigley A, Dong YY, Pike AC, Dong L, Shrestha L, Berridge G, Stansfeld PJ, Sansom MS, Edwards AM, Bountra C, et al. 2013. The structural basis of ZMPSTE24-dependent laminopathies. Science (New York, NY). 339:1604–1607.
  • Reddy S, Comai L. 2012. Lamin A, farnesylation and aging. Exp Cell Res. 318:1–7.
  • Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE. 2009. CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci. 29:11982–11992.
  • Reid TS, Terry KL, Casey PJ, Beese LS. 2004. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J Mol Biol. 343:417–433.
  • Reiss Y, Stradley SJ, Gierasch LM, Brown MS, Goldstein JL. 1991. Sequence requirement for peptide recognition by the rat brain p21ras protein farnesyltransferase. Proc Natl Acad Sci USA. 88:732–736.
  • Richardson K, Schoen M, French B, Umscheid CA, Mitchell MD, Arnold SE, Heidenreich PA, Rader DJ, deGoma EM. 2013. Statins and cognitive function: a systematic review. Ann Intern Med. 159:688–697.
  • Ridge PG, Karch CM, Hsu S, Arano I, Teerlink CC, Ebbert MTW, Gonzalez Murcia JD, Farnham JM, Damato AR, Allen M, et al. 2017. Linkage, whole genome sequence, and biological data implicate variants in RAB10 in Alzheimer’s disease resilience. Genome Med. 9:100–100.
  • Roelofs AJ, Thompson K, Ebetino FH, Rogers MJ, Coxon FP. 2010. Bisphosphonates: molecular mechanisms of action and effects on bone cells, monocytes and macrophages. Curr Pharm Des. 16:2950–2960.
  • Rogers MJ, Crockett JC, Coxon FP, Monkkonen J. 2011. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 49:34–41.
  • Rose MW, Rose ND, Boggs J, Lenevich S, Xu J, Barany G, Distefano MD. 2005. Evaluation of geranylazide and farnesylazide diphosphate for incorporation of prenylazides into a CAAX box-containing peptide using protein farnesyltransferase. J Peptide Res. 65:529–537.
  • Rose WC, Lee FYF, Fairchild CR, Lynch M, Monticello T, Kramer RA, Manne V. 2001. Preclinical antitumor activity of BMS-214662, a highly apoptotic and novel farnesyltransferase inhibitor. Cancer Res. 61:7507.
  • Rosenthal SL, Kamboh MI. 2014. Late-onset Alzheimer’s disease genes and the potentially implicated pathways. Curr Genet Med Rep. 2:85–101.
  • Ruse M, Knaus UG. 2006. New players in TLR-mediated innate immunity: PI3K and small Rho GTPases. IR. 34:33–48.
  • Russell RG. 2011. Bisphosphonates: the first 40 years. Bone. 49:2–19.
  • Sacchettini JC, Poulter CD. 1997. Creating isoprenoid diversity. Science. 277:1788–1789.
  • Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, et al. 1996. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial Investigators. N Engl J Med. 335:1001–1009.
  • Sagami H, Ishi K, Ogura K. 1981. Occurrence and unusual properties of geranylgeranyl pyrophosphate synthetase of pig-liver. Biochem Int. 3:669–675.
  • Scaffidi P, Misteli T. 2006. Lamin A-dependent nuclear defects in human aging. Science. 312:1059–1063.
  • Scherzer CR, Offe K, Gearing M, Rees HD, Fang G, Heilman CJ, Schaller C, Bujo H, Levey AI, Lah JJ. 2004. Loss of apolipoprotein E receptor LR11 in Alzheimer disease. Arch Neurol. 61:1200–1205.
  • Schlitzer M, Sattler I. 1999. Design, synthesis, and evaluation of novel modular bisubstrate analogue inhibitors of farnesyltransferase. Angew Chem Int Ed. 38:2032–2034.
  • Schmidt RA, Schneider CJ, Glomset JA. 1984. Evidence for post-translational incorporation of a product of mevalonic acid into Swiss 3T3 cell proteins. J Biol Chem. 259:10175–10180.
  • Schmidt WK, Tam A, Fujimura-Kamada K, Michaelis S. 1998. Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc Natl Acad Sci USA. 95:11175–11180.
  • Seabra MC, Goldstein JL, Sudhof TC, Brown MS. 1992. Rab geranylgeranyl transferase. A multisubunit enzyme that prenylates GTP-binding proteins terminating in Cys-X-Cys or Cys-Cys. J Biol Chem. 267:14497–14503.
  • Selkoe D, Mandelkow E, Holtzman D. 2012. Deciphering Alzheimer disease. Cold Spring Harb Perspect Med. 2:a011460.
  • Seyfried NT, Dammer EB, Swarup V, Nandakumar D, Duong DM, Yin L, Deng Q, Nguyen T, Hales CM, Wingo T, et al. 2017. A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst. 4:60–72.e4.
  • Shao Y, Eummer JT, Gibbs RA. 1999. Stereospecific synthesis and biological evaluation of farnesyl diphosphate isomers. Org Lett. 1:627–630.
  • Shepardson NE, Shankar GM, Selkoe DJ. 2011. Cholesterol level and statin use in Alzheimer disease: II. Review of human trials and recommendations. Arch Neurol. 68:1385–1392.
  • Simanshu DK, Nissley DV, McCormick F. 2017. RAS proteins and their regulators in human disease. Cell. 170:17–33.
  • Simons M, Schwärzler F, Lütjohann D, Von Bergmann K, Beyreuther K, Dichgans J, Wormstall H, Hartmann T, Schulz JB. 2002. Treatment with simvastatin in normocholesterolemic patients with Alzheimer’s disease: a 26-week randomized, placebo-controlled, double-blind trial. Ann Neurol. 52:346–350.
  • Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, Kunkle BW, Boland A, Raybould R, Bis JC, et al. 2017. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. 49:1373–1384.
  • Sirtori CR. 2014. The pharmacology of statins. Pharmacol Res. 88:3–11.
  • Smith JA, Das A, Ray SK, Banik NL. 2012. Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull. 87:10–20.
  • Speers AE, Cravatt BF. 2004. Profiling enzyme activities in vivo using click chemistry methods. Chem Biol. 11:535–546.
  • Spindler SR, Li R, Dhahbi JM, Yamakawa A, Mote P, Bodmer R, Ocorr K, Williams RT, Wang Y, Ablao KP. 2012. Statin treatment increases lifespan and improves cardiac health in Drosophila by decreasing specific protein prenylation. PLoS One. 7:e39581.
  • Stephen AG, Esposito D, Bagni RK, McCormick F. 2014. Dragging ras back in the ring. Cancer Cell. 25:272–281.
  • Stornetta RL, Zhu JJ. 2010. Ras and Rap signaling in synaptic plasticity and mental disorders. Neuroscientist. 17:54–78.
  • Strickland CL, Windsor WT, Syto R, Wang L, Bond R, Wu Z, Schwartz J, Le HV, Beese LS, Weber PC. 1998. Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue. Biochemistry. 37:16601–16611.
  • Su F, Bai F, Zhou H, Zhang Z. 2016. Microglial toll-like receptors and Alzheimer’s disease. Brain Behav Immun. 52:187–198.
  • Suazo KF, Schaber C, Palsuledesai CC, Odom John AR, Distefano MD. 2016. Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Sci Rep. 6:38615.
  • Swanger SA, Mattheyses AL, Gentry EG, Herskowitz JH. 2015. ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons. Cell Logist. 5:e1133266.
  • Tada M, Lynen F. 1961. On the biosynthesis of terpenes. XIV. On the determination of phosphomevalonic acid kinase and pyrophosphomevalonic acid decarboxylase in cell extracts. J Biochem. 49:758–764.
  • Tate EW, Kalesh KA, Lanyon-Hogg T, Storck EM, Thinon E. 2015. Global profiling of protein lipidation using chemical proteomic technologies. Curr Opin Chem Biol. 24:48–57.
  • Taylor JS, Reid TS, Terry KL, Casey PJ, Beese LS. 2003. Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J. 22:5963–5974.
  • Tchen TT. 1958. Mevalonic kinase: purification and properties. J Biol Chem. 233:1100–1103.
  • Thinakaran G, Koo EH. 2008. Amyloid precursor protein trafficking, processing, and function. J Biol Chem. 283:29615–29619.
  • Tolias KF, Duman JG, Um K. 2011. Control of synapse development and plasticity by RhoGTPase regulatory proteins. Prog Neurobiol. 94:133–148.
  • Tong H, Wiemer AJ, Neighbors JD, Hohl RJ. 2008. Quantitative determination of farnesyl and geranylgeranyl diphosphate levels in mammalian tissue. Anal Biochem. 378:138–143.
  • Turek TC, Gaon I, Distefano MD, Strickland CL. 2001. Synthesis of farnesyl diphosphate analogues containing ether-linked photoactive benzophenones and their application in studies of protein prenyltransferases. J Org Chem. 66:3253–3264.
  • Turek TC, Gaon I, Distefano MD. 1996. Analogs of farnesyl pyrophosphate incorporating internal benzoylbenzoate esters: synthesis, inhibition kinetics and photoinactivation of yeast protein farnesyltransferase. Tetrahedron Lett. 37:4845–4848.
  • Turek-Etienne TC, Strickland CL, Distefano MD. 2003. Biochemical and structural studies with prenyl diphosphate analogues provide insights into isoprenoid recognition by protein farnesyl transferase. Biochemistry. 42:3716–3724.
  • Udayar V, Buggia-Prevot V, Guerreiro RL, Siegel G, Rambabu N, Soohoo AL, Ponnusamy M, Siegenthaler B, Bali J, Simons M, et al. 2013. A paired RNAi and RabGAP overexpression screen identifies Rab11 as a regulator of β-amyloid production. Cell Rep. 5:1536–1551.
  • Ulrich JD, Ulland TK, Colonna M, Holtzman DM. 2017. Elucidating the role of TREM2 in Alzheimer’s disease. Neuron. 94:237–248.
  • Varela I, Pereira S, Ugalde AP, Navarro CL, Suarez MF, Cau P, Cadinanos J, Osorio FG, Foray N, Cobo J, et al. 2008. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med. 14:767–772.
  • Venet M, End D, Angibaud P. 2003. Farnesyl protein transferase inhibitor ZARNESTRA R115777 – history of a discovery. Curr Top Med Chem. 3:1095–1102.
  • Vlkolinský R, Cairns N, Fountoulakis M, Lubec G. 2001. Decreased brain levels of 2′,3′-cyclic nucleotide-3′-phosphodiesterase in Down syndrome and Alzheimer’s disease. Neurobiol Aging. 22:547–553.
  • Walton GM, Stockley JA, Griffiths D, Sadhra CS, Purvis T, Sapey E. 2016. Repurposing treatments to enhance innate immunity. Can statins improve neutrophil functions and clinical outcomes in COPD? J Clin Med. 5:89.
  • Wang J, Yao X, Huang J. 2017. New tricks for human farnesyltransferase inhibitor: cancer and beyond. MedChemComm. 8:841–854.
  • Wang M, Casey PJ. 2016. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol. 17:110–122.
  • Wang M, Tan W, Zhou J, Leow J, Go M, Lee HS, Casey PJ. 2008. A small molecule inhibitor of isoprenylcysteine carboxymethyltransferase induces autophagic cell death in PC3 prostate cancer cells. J Biol Chem. 283:18678–18684.
  • Wang Y-C, Distefano MD. 2012. Solid-phase synthesis of C-terminal peptide libraries for studying the specificity of enzymatic protein prenylation. Chem Commun. 48:8228–8230.
  • Wang YC, Dozier JK, Beese LS, Distefano MD. 2014. Rapid analysis of protein farnesyltransferase substrate specificity using peptide libraries and isoprenoid diphosphate analogues. ACS Chem Biol. 9:1726–1735.
  • Wennerberg K, Rossman KL, Der CJ. 2005. The Ras superfamily at a glance. J Cell Sci. 118:843–846.
  • Winter-Vann AM, Casey PJ. 2005. Post-prenylation-processing enzymes as new targets in oncogenesis. Nat Rev Cancer. 5:405–412.
  • Wollack JW, Zeliadt NA, Mullen DG, Amundson G, Geier S, Falkum S, Wattenberg EV, Barany G, Distefano MD. 2009. Multifunctional prenylated peptides for in vivo analysis. J Am Chem Soc. 131:7293–7303.
  • Wollack JW, Zeliadt NA, Mullen DG, Wattenberg EV, Barany G, Distefano MD. 2010. Investigation of a minimal sequence for cell-penetrating prenylated peptides. Bioorg Med Chem Lett. 20:161–163.
  • Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G. 2000. Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol. 57:1439–1443.
  • Wood WG, Eckert GP, Igbavboa U, Muller WE. 2010. Statins and neuroprotection: a prescription to move the field forward. Ann N Y Acad Sci. 1199:69–76.
  • Wood WG, Mupsilonller WE, Eckert GP. 2014. Statins and neuroprotection: basic pharmacology needed. Mol Neurobiol. 50:214–220.
  • Wyss-Coray T, Rogers J. 2012. Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harbor Perspect Med. 2:a006346.
  • Yalovsky S, Loraine AE, Gruissem W. 1996. Specific prenylation of tomato Rab proteins by geranylgeranyl type-II transferase requires a conserved cysteine-cysteine motif. Plant physiol. 110:1349–1359.
  • Yang J, Kulkarni K, Manolaridis I, Zhang Z, Dodd Roger B, Mas-Droux C, Barford D. 2011. Mechanism of isoprenylcysteine carboxyl methylation from the crystal structure of the integral membrane methyltransferase ICMT. Mol Cell. 44:997–1004.
  • Yang WS, Yeo SG, Yang S, Kim KH, Yoo BC, Cho JY. 2017. Isoprenyl carboxyl methyltransferase inhibitors: a brief review including recent patents. Amino Acids. 49:1469–1485.
  • Ye X, Carew TJ. 2010. Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron. 68:340–361.
  • Yeh FL, Hansen DV, Sheng M. 2017. TREM2, microglia, and neurodegenerative diseases. Trends Mol Med. 23:512–533.
  • Yokoyama K, Goodwin GW, Ghomashchi F, Glomset JA, Gelb MH. 1991. A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci USA. 88:5302–5306.
  • Yokoyama K, McGeady P, Gelb MH. 1995. Mammalian protein geranylgeranyltransferase-I: substrate specificity, kinetic mechanism, metal requirements, and affinity labeling. Biochemistry. 34:1344–1354.
  • Young SG, Meta M, Yang SH, Fong LG. 2006. Prelamin A farnesylation and progeroid syndromes. J Biol Chem. 281:39741–39745.
  • Yurdaydin C, Keskin O, Kalkan C, Karakaya F, Caliskan A, Karatayli E, Karatayli S, Bozdayi AM, Koh C, Heller T, et al. 2018. Optimizing lonafarnib treatment for the management of chronic delta hepatitis: the LOWR HDV-1 study. Hepatology. 67:1224–1236.
  • Zhang FL, Casey PJ. 1996. Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem. 65:241–269.
  • Zhang S-Y, Sperlich B, Li F-Y, Al-Ayoubi S, Chen H-X, Zhao Y-F, Li Y-M, Weise K, Winter R, Chen Y-X. 2017. Phosphorylation weakens but does not inhibit membrane binding and clustering of K-Ras4B. ACS Chem Biol. 12:1703–1710.
  • Zhao L, Chen T, Wang C, Li G, Zhi W, Yin J, Wan Q, Chen L. 2016. Atorvastatin in improvement of cognitive impairments caused by amyloid β in mice: involvement of inflammatory reaction. BMC Neurol. 16:18.
  • Zhao L, Ma QL, Calon F, Harris-White ME, Yang F, Lim GP, Morihara T, Ubeda OJ, Ambegaokar S, Hansen JE, et al. 2006. Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci. 9:234–242.
  • Zhou XP, Wu KY, Liang B, Fu XQ, Luo ZG. 2008. TrkB-mediated activation of geranylgeranyltransferase I promotes dendritic morphogenesis. Proc Natl Acad Sci USA. 105:17181–17186.
  • Zhou Y, Prakash P, Liang H, Cho KJ, Gorfe AA, Hancock JF. 2017. Lipid-Sorting specificity encoded in K-Ras membrane anchor regulates signal output. Cell. 168:239–251 e16.
  • Zhou Y, Suram A, Venugopal C, Prakasam A, Lin S, Su Y, Li B, Paul SM, Sambamurti K. 2008. Geranylgeranyl pyrophosphate stimulates gamma-secretase to increase the generation of Abeta and APP-CTFgamma. FASEB J. 22:47–54.
  • Zhu X, Raina AK, Boux H, Simmons ZL, Takeda A, Smith MA. 2000. Activation of oncogenic pathways in degenerating neurons in Alzheimer disease. Int J Dev Neurosci. 18:433–437.
  • Zissimopoulos JM, Barthold D, Brinton RD, Joyce G. 2017. Sex and race differences in the association between statin use and the incidence of Alzheimer disease. JAMA Neurol. 74:225–225.
  • Zolezzi JM, Inestrosa NC. 2017. Wnt/TLR dialog in neuroinflammation, relevance in Alzheimer’s disease. Front Immunol. 8:187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.