2,445
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology

&
Pages 311-334 | Received 30 Jan 2018, Accepted 23 Mar 2018, Published online: 11 Apr 2018

References

  • Ahuja N, Schwer B, Carobbio S, Waltregny D, North BJ, Castronovo V, Maechler P, Verdin E. 2007. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem. 282:33583–33592.
  • Alvarez-Lario B, Macarron-Vicente J. 2010. Uric acid and evolution. Rheumatology (Oxford). 49:2010–2015.
  • Anderson KA, Huynh FK, Fisher-Wellman K, Stuart JD, Peterson BS, Douros JD, Wagner GR, Thompson JW, Madsen AS, Green MF, et al. 2017. SIRT4 Is a lysine deacylase that controls leucine metabolism and insulin secretion. Cell Metab. 25:838–855 e815.
  • Audagnotto M, Dal Peraro M. 2017. Protein post-translational modifications: in silicoprediction tools and molecular modeling. Comput Struct Biotechnol J. 15:307–319.
  • Balendiran GK, Dabur R, Fraser D. 2004. The role of glutathione in cancer. Cell Biochem Funct. 22:343–352.
  • Bao X, Wang Y, Li X, Li XM, Liu Z, Yang T, Wong CF, Zhang J, Hao Q, Li XD. 2014. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. Elife. 3:e02999.
  • Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, et al. 2012. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 487:114–118.
  • Bartosch C, Monteiro-Reis S, Almeida-Rios D, Vieira R, Castro A, Moutinho M, Rodrigues M, Graca I, Lopes JM, Jeronimo C. 2016. Assessing sirtuin expression in endometrial carcinoma and non-neoplastic endometrium. Oncotarget. 7:1144–1154.
  • Beitz JM. 2014. Parkinson’s disease: a review. Front Biosci (Schol Ed). 6:65–74.
  • Ben-Ari Y, Cossart R. 2000. Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci. 23:580–587.
  • Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. 2015. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol. 88:73–81.
  • Bringman-Rodenbarger LR, Guo AH, Lyssiotis CA, Lombard DB. 2017. Emerging roles for SIRT5 in metabolism and cancer. Antioxid Redox Signal. 28:677–690.
  • Buler M, Aatsinki SM, Izzi V, Uusimaa J, Hakkola J. 2014. SIRT5 is under the control of PGC-1α and AMPK and is involved in regulation of mitochondrial energy metabolism. FASEB J. 28:3225–3237.
  • Cancer Genome Atlas Research N. 2011. Integrated genomic analyses of ovarian carcinoma. Nature. 474:609–615.
  • Chalkiadaki A, Guarente L. 2015. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer. 15:608–624.
  • Chang L, Xi L, Liu Y, Liu R, Wu Z, Jian Z. 2018. SIRT5 promotes cell proliferation and invasion in hepatocellular carcinoma by targeting E2F1. Mol Med Rep. 17:342–349.
  • Chen S, Blank MF, Iyer A, Huang B, Wang L, Grummt I, Voit R. 2016. SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat Commun. 7:10734.
  • Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R. 2013. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol Cell. 52:303–313.
  • Chen XF, Tian MX, Sun RQ, Zhang ML, Zhou LS, Jin L, Chen LL, Zhou WJ, Duan KL, Chen YJ, et al. 2018. SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Rep. https://doi.org/10.15252/embr.201745124.
  • Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, et al. 2014. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 515:431–435.
  • Chypre M, Zaidi N, Smans K. 2012. ATP-citrate lyase: a mini-review. Biochem Biophys Res Commun. 422:1–4.
  • Circu ML, Aw TY. 2010. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 48:749–762.
  • Clark O, Yen K, Mellinghoff IK. 2016. Molecular pathways: isocitrate dehydrogenase mutations in cancer. Clin Cancer Res. 22:1837–1842.
  • Cluntun AA, Lukey MJ, Cerione RA, Locasale JW. 2017. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer. 3:169–180.
  • Colak G, Pougovkina O, Dai L, Tan M, Te Brinke H, Huang H, Cheng Z, Park J, Wan X, Liu X, et al. 2015. Proteomic and biochemical studies of lysine malonylation suggest its malonic aciduria-associated regulatory role in mitochondrial function and fatty acid oxidation. Mol Cell Proteomics. 14:3056–3071.
  • Cooper HM, Spelbrink JN. 2008. The human SIRT3 protein deacetylase is exclusively mitochondrial. Biochem J. 411:279–285.
  • Coordinators NR. 2018. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 46(D1):D8–D13.
  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al. 2009. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 462:739–744.
  • Dave KR, Anthony Defazio R, Raval AP, Dashkin O, Saul I, Iceman KE, Perez-Pinzon MA, Drew KL. 2009. Protein kinase C epsilon activation delays neuronal depolarization during cardiac arrest in the euthermic arctic ground squirrel. J Neurochem. 110:1170–1179.
  • Dave KR, DeFazio RA, Raval AP, Torraco A, Saul I, Barrientos A, Perez-Pinzon MA. 2008. Ischemic preconditioning targets the respiration of synaptic mitochondria via protein kinase C epsilon. J Neurosci. 28:4172–4182.
  • Della-Morte D, Raval AP, Dave KR, Lin HW, Perez-Pinzon MA. 2011. Post-ischemic activation of protein kinase C ε protects the hippocampus from cerebral ischemic injury via alterations in cerebral blood flow. Neurosci Lett. 487:158–162.
  • Donlon TA, Morris BJ, Chen R, Masaki KH, Allsopp RC, Willcox DC, Tiirikainen M, Willcox BJ. 2017. Analysis of polymorphisms in 58 potential candidate genes for association with human longevity. J Gerontol A Biol Sci Med Sci. https://doi.org/10.1093/gerona/glx247.
  • Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. 2003. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 23:3173–3185.
  • Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, et al. 2011. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 334:806–809.
  • Du Z, Liu X, Chen T, Gao W, Wu Z, Hu Z, Wei D, Gao C, Li Q. 2018. Targeting a Sirt5-positive subpopulation overcomes multidrug resistance in wild-type kras colorectal carcinomas. Cell Rep. 22:2677–2689.
  • Ducker GS, Rabinowitz JD. 2017. One-carbon metabolism in health and disease. Cell Metab. 25:27–42.
  • Fatkins DG, Monnot AD, Zheng W. 2006. Nepsilon-thioacetyl-lysine: a multi-facet functional probe for enzymatic protein lysine Nepsilon-deacetylation. Bioorg Med Chem Lett. 16:3651–3656.
  • Feldman JL, Baeza J, Denu JM. 2013. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem. 288:31350–31356.
  • Fischer F, Gertz M, Suenkel B, Lakshminarasimhan M, Schutkowski M, Steegborn C. 2012. Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition. PLoS One. 7:e45098.
  • Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. 2006. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20:1075–1080.
  • Fould B, Garlatti V, Neumann E, Fenel D, Gaboriaud C, Arlaud GJ. 2010. Structural and functional characterization of the recombinant human mitochondrial trifunctional protein. Biochemistry. 49:8608–8617.
  • Frye RA. 2000. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 273:793–798.
  • Fujii T, Khawaja MR, DiNardo CD, Atkins JT, Janku F. 2016. Targeting isocitrate dehydrogenase (IDH) in cancer. Discov Med. 21:373–380.
  • Gao J, Wang L, Liu J, Xie F, Su B, Wang X. 2017. Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants (Basel). 6:E25.
  • Gao X, Wang H, Yang JJ, Liu X, Liu ZR. 2012. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase. Mol Cell. 45:598–609.
  • Geng YQ, Li TT, Liu XY, Li ZH, Fu YC. 2011. SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction. J Cell Biochem. 112:3755–3761.
  • Gertz M, Nguyen GT, Fischer F, Suenkel B, Schlicker C, Franzel B, Tomaschewski J, Aladini F, Becker C, Wolters D, et al. 2012. A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One. 7:e49761.
  • Gertz M, Steegborn C. 2016. Using mitochondrial sirtuins as drug targets: disease implications and available compounds. Cell Mol Life Sci. 73:2871–2896.
  • Glorioso C, Oh S, Douillard GG, Sibille E. 2011. Brain molecular aging, promotion of neurological disease and modulation by sirtuin 5 longevity gene polymorphism. Neurobiol Dis. 41:279–290.
  • Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL. 2001. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem. 276:38837–38843.
  • Guan D, Lim JH, Peng L, Liu Y, Lam M, Seto E, Kao HY. 2014. Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death. Cell Death Dis. 5:e1340.
  • Guedouari H, Daigle T, Scorrano L, Hebert-Chatelain E. 2017. Sirtuin 5 protects mitochondria from fragmentation and degradation during starvation. Biochim Biophys Acta. 1864:169–176.
  • Guetschow ED, Kumar S, Lombard DB, Kennedy RT. 2016. Identification of sirtuin 5 inhibitors by ultrafast microchip electrophoresis using nanoliter volume samples. Anal Bioanal Chem. 408:721–731.
  • Hagner N, Joerger M. 2010. Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res. 2:293–301.
  • Haigis MC, Mostoslavsky R, Haigis KM, Fahie K, Christodoulou DC, Murphy AJ, Valenzuela DM, Yancopoulos GD, Karow M, Blander G, et al. 2006. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 126:941–954.
  • Haussinger D. 1990. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem J. 267:281–290.
  • Hawse WF, Hoff KG, Fatkins DG, Daines A, Zubkova OV, Schramm VL, Zheng W, Wolberger C. 2008. Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure. 16:1368–1377.
  • He B, Du J, Lin H. 2012. Thiosuccinyl peptides as Sirt5-specific inhibitors. J Am Chem Soc. 134:1922–1925.
  • Heltweg B, Gatbonton T, Schuler AD, Posakony J, Li H, Goehle S, Kollipara R, Depinho RA, Gu Y, Simon JA, et al. 2006. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66:4368–4377.
  • Hershberger KA, Abraham DM, Martin AS, Mao L, Liu J, Gu H, Locasale JW, Hirschey MD. 2017. Sirtuin 5 is required for mouse survival in response to cardiac pressure overload. J Biol Chem. 292:19767–19781.
  • Hershberger KA, Martin AS, Hirschey MD. 2017. Role of NAD + and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol. 13:213–225.
  • Hirschey MD, Zhao Y. 2015. Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol Cell Proteomics. 14:2308–2315.
  • Holmstrom KM, Finkel T. 2014. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol. 15:411–421.
  • Houten SM, Wanders RJ. 2010. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis. 33:469–477.
  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, et al. 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 425:191–196.
  • Igci M, Kalender ME, Borazan E, Bozgeyik I, Bayraktar R, Bozgeyik E, Camci C, Arslan A. 2016. High-throughput screening of Sirtuin family of genes in breast cancer. Gene. 586:123–128.
  • Imai S, Guarente L. 2010. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci. 31:212–220.
  • Imai SI, Guarente L. 2016. It takes two to tango: NAD +  and sirtuins in aging/longevity control. NPJ Aging Mech Dis. 2:16017.
  • Jaiswal AK. 2004. Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med. 36:1199–1207.
  • Jiang Y, Li X, Yang W, Hawke DH, Zheng Y, Xia Y, Aldape K, Wei C, Guo F, Chen Y, et al. 2014. PKM2 regulates chromosome segregation and mitosis progression of tumor cells. Mol Cell. 53:75–87.
  • Jiang Y, Liu J, Chen D, Yan L, Zheng W. 2017. Sirtuin inhibition: strategies, inhibitors, and therapeutic potential. Trends Pharmacol Sci. 38:459–472.
  • Kaidi A, Weinert BT, Choudhary C, Jackson SP. 2010. Human SIRT6 promotes DNA end resection through CtIP deacetylation. Science. 329:1348–1353.
  • Kalbas D, Liebscher S, Nowak T, Meleshin M, Pannek M, Popp C, Alhalabi Z, Bordusa F, Sippl W, Steegborn C, et al. 2018. Potent and selective inhibitors of human Sirtuin 5. J Med Chem. 61:2460–2471.
  • Kashfi K, Mynatt RL, Park EA, Cook GA. 2011. Membrane microenvironment regulation of carnitine palmitoyltranferases I and II. Biochem Soc Trans. 39:833–837.
  • Koronowski KB, Khoury N, Morris-Blanco KC, Stradecki-Cohan HM, Garrett TJ, Perez-Pinzon MA. 2018. Metabolomics based identification of SIRT5 and protein kinase C epsilon regulated pathways in brain. Front Neurosci. 12:32.
  • Kuciel R, Mazurkiewicz A. 2004. Formation and detoxification of reactive oxygen species. Biochem Mol Biol Educ. 32:183–186.
  • Kumar S, Lombard DB. 2015. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal. 22:1060–1077.
  • Kumar S, Lombard DB. 2017a. Cycling around lysine modifications. Trends Biochem Sci. 42:501–503.
  • Kumar S, Lombard DB. 2017b. For certain, SIRT4 activities!. Trends Biochem Sci. 42:499–501.
  • Kurmi K, Hitosugi S, Wiese EK, Boakye-Agyeman F, Gonsalves WI, Lou Z, Karnitz LM, Goetz MP, Hitosugi T. 2018. Carnitine palmitoyltransferase 1A has a lysine succinyltransferase activity. Cell Rep. 22:1365–1373.
  • Lai CC, Lin PM, Lin SF, Hsu CH, Lin HC, Hu ML, Hsu CM, Yang MY. 2013. Altered expression of SIRT gene family in head and neck squamous cell carcinoma. Tumour Biol. 34:1847–1854.
  • Lakshminarasimhan M, Rauh D, Schutkowski M, Steegborn C. 2013. Sirt1 activation by resveratrol is substrate sequence-selective. Aging (Albany NY). 5:151–154.
  • Li F, He X, Ye D, Lin Y, Yu H, Yao C, Huang L, Zhang J, Wang F, Xu S, et al. 2015. NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol Cell. 60:661–675.
  • Li F, Liu L. 2016. SIRT5 deficiency enhances susceptibility to kainate-induced seizures and exacerbates hippocampal neurodegeneration not through mitochondrial antioxidant enzyme SOD2. Front Cell Neurosci. 10:171.
  • Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, He L, Li W, Yi X, Sun L, et al. 2016. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 7:12235.
  • Li Y, Huang W, You L, Xie T, He B. 2015. A FRET-based assay for screening SIRT5 specific modulators. Bioorg Med Chem Lett. 25:1671–1674.
  • Liang F, Wang X, Ow SH, Chen W, Ong WC. 2017. Sirtuin 5 is anti-apoptotic and anti-oxidative in cultured SH-EP neuroblastoma cells. Neurotox Res. 31:63–76.
  • Liberti MV, Locasale JW. 2016. The warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 41:211–218.
  • Lin HW, Thompson JW, Morris KC, Perez-Pinzon MA. 2011. Signal transducers and activators of transcription: STATs-mediated mitochondrial neuroprotection. Antioxid Redox Signal. 14:1853–1861.
  • Lin ZF, Xu HB, Wang JY, Lin Q, Ruan Z, Liu FB, Jin W, Huang HH, Chen X. 2013. SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem Biophys Res Commun. 441:191–195.
  • Liszt G, Ford E, Kurtev M, Guarente L. 2005. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem. 280:21313–21320.
  • Liu B, Che W, Zheng C, Liu W, Wen J, Fu H, Tang K, Zhang J, Xu Y. 2013. SIRT5: a safeguard against oxidative stress-induced apoptosis in cardiomyocytes. Cell Physiol Biochem. 32:1050–1059.
  • Liu J, Huang Y, Zheng W. 2016. A selective cyclic peptidic human SIRT5 inhibitor. Molecules. 21: E1217.
  • Liu L, Peritore C, Ginsberg J, Shih J, Arun S, Donmez G. 2015. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease. Behav Brain Res. 281:215–221.
  • Liu S, Ji S, Yu ZJ, Wang HL, Cheng X, Li WJ, Jing L, Yu Y, Chen Q, Yang LL, et al. 2017. Structure-based discovery of new selective small-molecule sirtuin 5 inhibitors. Chem Biol Drug Des. 91:257–268.
  • Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, et al. 2007. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol. 27:8807–8814.
  • Lombard DB, Dash BP, Kumar S. 2015. Acetyl-ed question in mitochondrial biology? EMBO J. 34:2597–2600.
  • Lu W, Zuo Y, Feng Y, Zhang M. 2014. SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol. 35:10699–10705.
  • Lv XB, Liu L, Cheng C, Yu B, Xiong L, Hu K, Tang J, Zeng L, Sang Y. 2015. SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci Rep. 5:17940.
  • Madsen AS, Andersen C, Daoud M, Anderson KA, Laursen JS, Chakladar S, Huynh FK, Colaco AR, Backos DS, Fristrup P, et al. 2016. Investigating the sensitivity of NAD+-dependent sirtuin deacylation activities to NADH. J Biol Chem. 291:7128–7141.
  • Mahlknecht U, Ho AD, Letzel S, Voelter-Mahlknecht S. 2006. Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization. Cytogenet Genome Res. 112:208–212.
  • Mai A, Massa S, Lavu S, Pezzi R, Simeoni S, Ragno R, Mariotti FR, Chiani F, Camilloni G, Sinclair DA. 2005. Design, synthesis, and biological evaluation of sirtinol analogues as class III histone/protein deacetylase (Sirtuin) inhibitors. J Med Chem. 48:7789–7795.
  • Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V. 2011. SIRT6 promotes DNA repair under stress by activating PARP1. Science. 332:1443–1446.
  • Marcon E, Jain H, Bhattacharya A, Guo H, Phanse S, Pu S, Byram G, Collins BC, Dowdell E, Fenner M, et al. 2015. Assessment of a method to characterize antibody selectivity and specificity for use in immunoprecipitation. Nat Methods. 12:725–731.
  • Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, Kang Y, Shenk T, Cristea IM. 2014. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell. 159:1615–1625.
  • Matsushita N, Yonashiro R, Ogata Y, Sugiura A, Nagashima S, Fukuda T, Inatome R, Yanagi S. 2011. Distinct regulation of mitochondrial localization and stability of two human Sirt5 isoforms. Genes Cells. 16:190–202.
  • Maurer B, Rumpf T, Scharfe M, Stolfa DA, Schmitt ML, He W, Verdin E, Sippl W, Jung M. 2012. Inhibitors of the NAD(+)-dependent protein desuccinylase and demalonylase Sirt5. ACS Med Chem Lett. 3:1050–1053.
  • Meijer AJ, Lamers WH, Chamuleau RA. 1990. Nitrogen metabolism and ornithine cycle function. Physiol Rev. 70:701–748.
  • Meyer JN, Leuthner TC, Luz AL. 2017. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology. 391:42–53.
  • Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, et al. 2008. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 452:492–496.
  • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. 2005. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell. 16:4623–4635.
  • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, et al. 2007. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 450:712–716.
  • Morris-Blanco KC, Cohan CH, Neumann JT, Sick TJ, Perez-Pinzon MA. 2014. Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex. J Cereb Blood Flow Metab. 34:1024–1032.
  • Morris-Blanco KC, Dave KR, Saul I, Koronowski KB, Stradecki HM, Perez-Pinzon MA. 2016. Protein kinase C epsilon promotes cerebral ischemic tolerance via modulation of mitochondrial Sirt5. Sci Rep. 6:29790.
  • Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, et al. 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 124:315–329.
  • Nakagawa T, Lomb DJ, Haigis MC, Guarente L. 2009. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 137:560–570.
  • Nakamura Y, Ogura M, Ogura K, Tanaka D, Inagaki N. 2012. SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice. FEBS Lett. 586:4076–4081.
  • Nishida Y, Rardin MJ, Carrico C, He W, Sahu AK, Gut P, Najjar R, Fitch M, Hellerstein M, Gibson BW, et al. 2015. SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol Cell. 59:321–332.
  • North BJ, Verdin E. 2004. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 5:224.
  • Ogura M, Nakamura Y, Tanaka D, Zhuang X, Fujita Y, Obara A, Hamasaki A, Hosokawa M, Inagaki N. 2010. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1. Biochem Biophys Res Commun. 393:73–78.
  • Onyango P, Celic I, McCaffery JM, Boeke JD, Feinberg AP. 2002. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc Natl Acad Sci USA. 99:13653–13658.
  • Pacella-Ince L, Zander-Fox DL, Lane M. 2014. Mitochondrial SIRT5 is present in follicular cells and is altered by reduced ovarian reserve and advanced maternal age. Reprod Fertil Dev. 26:1072–1083.
  • Paine PL, Moore LC, Horowitz SB. 1975. Nuclear envelope permeability. Nature. 254:109–114.
  • Pannek M, Simic Z, Fuszard M, Meleshin M, Rotili D, Mai A, Schutkowski M, Steegborn C. 2017. Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Nat Commun. 8:1513.
  • Park J, Chen Y, Tishkoff DX, Peng C, Tan M, Dai L, Xie Z, Zhang Y, Zwaans BM, Skinner ME, et al. 2013. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol Cell. 50:919–930.
  • Pavlova NN, Thompson CB. 2016. The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47.
  • Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, et al. 2011. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics. 10:M111 012658.
  • Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G. 2015. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21:805–821.
  • Pitkanen A, Lukasiuk K. 2011. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 10:173–186.
  • Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, Steegborn C, Nowak T, Schutkowski M, Pellegrini L, et al. 2015. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 11:253–270.
  • Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M. 2001. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem. 76:1265–1274.
  • Rajabi N, Auth M, Troelsen KR, Pannek M, Bhatt DP, Fontenas M, Hirschey MD, Steegborn C, Madsen AS, Olsen CA. 2017. Mechanism-based inhibitors of the human Sirtuin 5 deacylase: structure-activity relationship, biostructural, and kinetic insight. Angew Chem Int Ed Engl. 56:14836–14841.
  • Rardin MJ, He W, Nishida Y, Newman JC, Carrico C, Danielson SR, Guo A, Gut P, Sahu AK, Li B, et al. 2013. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 18:920–933.
  • Rauh D, Fischer F, Gertz M, Lakshminarasimhan M, Bergbrede T, Aladini F, Kambach C, Becker CF, Zerweck J, Schutkowski M, et al. 2013. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nat Commun. 4:2327.
  • Raval AP, Dave KR, DeFazio RA, Perez-Pinzon MA. 2007. epsilonPKC phosphorylates the mitochondrial K(+) (ATP) channel during induction of ischemic preconditioning in the rat hippocampus. Brain Res. 1184:345–353.
  • Roessler C, Nowak T, Pannek M, Gertz M, Nguyen GT, Scharfe M, Born I, Sippl W, Steegborn C, Schutkowski M. 2014. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors. Angew Chem Int Ed Engl. 53:10728–10732.
  • Roessler C, Tuting C, Meleshin M, Steegborn C, Schutkowski M. 2015. A novel continuous assay for the deacylase Sirtuin 5 and other deacetylases. J Med Chem. 58:7217–7223.
  • Ryu D, Jo YS, Lo Sasso G, Stein S, Zhang H, Perino A, Lee JU, Zeviani M, Romand R, Hottiger MO, et al. 2014. A SIRT7-dependent acetylation switch of GABPβ1 controls mitochondrial function. Cell Metab. 20:856–869.
  • Sabari BR, Zhang D, Allis CD, Zhao Y. 2017. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 18:90–101.
  • Sadhukhan S, Liu X, Ryu D, Nelson OD, Stupinski JA, Li Z, Chen W, Zhang S, Weiss RS, Locasale JW, et al. 2016. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci USA. 113:4320–4325.
  • Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker CF, Steegborn C. 2008. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol. 382:790–801.
  • Schuetz A, Min J, Antoshenko T, Wang CL, Allali-Hassani A, Dong A, Loppnau P, Vedadi M, Bochkarev A, Sternglanz R, et al. 2007. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure. 15:377–389.
  • Schwer B, North BJ, Frye RA, Ott M, Verdin E. 2002. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol. 158:647–657.
  • Smith BC, Denu JM. 2007. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry. 46:14478–14486.
  • Sohal RS, Weindruch R. 1996. Oxidative stress, caloric restriction, and aging. Science. 273:59–63.
  • Stacpoole PW. 2017. Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J Natl Cancer Inst. 109:djx071. https://doi.org/10.1093/jnci/djx071.
  • Suenkel B, Fischer F, Steegborn C. 2013. Inhibition of the human deacylase Sirtuin 5 by the indole GW5074. Bioorg Med Chem Lett. 23:143–146.
  • Sun JY, Xu L, Tseng H, Ciccarelli B, Fulciniti M, Hunter ZR, Maghsoudi K, Hatjiharissi E, Zhou Y, Yang G, et al. 2011. Histone deacetylase inhibitors demonstrate significant preclinical activity as single agents, and in combination with bortezomib in Waldenström’s macroglobulinemia. Clin Lymphoma Myeloma Leuk. 11:152–156.
  • Sundaresan NR, Bindu S, Pillai VB, Samant S, Pan Y, Huang JY, Gupta M, Nagalingam RS, Wolfgeher D, Verdin E, et al. 2015. SIRT3 Blocks aging-associated tissue fibrosis in mice by deacetylating and activating glycogen synthase kinase 3β. Mol Cell Biol. 36:678–692.
  • Takeshita A, Naito K, Shinjo K, Sahara N, Matsui H, Ohnishi K, Beppu H, Ohtsubo K, Horii T, Maekawa M, et al. 2004. Deletion 6p23 and add(11)(p15) leading to NUP98 translocation in a case of therapy-related atypical chronic myelocytic leukemia transforming to acute myelocytic leukemia. Cancer Genet Cytogenet. 152:56–60.
  • Tan M, Peng C, Anderson KA, Chhoy P, Xie Z, Dai L, Park J, Chen Y, Huang H, Zhang Y, et al. 2014. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab.19:605–617.
  • Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y. 2007. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem. 282:6823–6832.
  • Tasselli L, Zheng W, Chua KF. 2017. SIRT6: novel mechanisms and links to aging and disease. Trends Endocrinol Metab. 28:168–185.
  • Teng YB, Jing H, Aramsangtienchai P, He B, Khan S, Hu J, Lin H, Hao Q. 2015. Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Sci Rep. 5:8529.
  • TenNapel MJ, Lynch CF, Burns TL, Wallace R, Smith BJ, Button A, Domann FE. 2014. SIRT6 minor allele genotype is associated with >5-year decrease in lifespan in an aged cohort. PLoS One. 9:e115616.
  • Tong Z, Wang M, Wang Y, Kim DD, Grenier JK, Cao J, Sadhukhan S, Hao Q, Lin H. 2017. SIRT7 is an RNA-activated protein lysine deacylase. ACS Chem Biol. 12:300–310.
  • Trapp J, Jochum A, Meier R, Saunders L, Marshall B, Kunick C, Verdin E, Goekjian P, Sippl W, Jung M. 2006. Adenosine mimetics as inhibitors of NAD+-dependent histone deacetylases, from kinase to sirtuin inhibition. J Med Chem. 49:7307–7316.
  • Trapp J, Meier R, Hongwiset D, Kassack MU, Sippl W, Jung M. 2007. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). ChemMedChem. 2:1419–1431.
  • Van Meter M, Kashyap M, Rezazadeh S, Geneva AJ, Morello TD, Seluanov A, Gorbunova V. 2014. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun. 5:5011.
  • Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D. 2006. SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20:1256–1261.
  • Voelter-Mahlknecht S, Mahlknecht U. 2013. Cloning, chromosomal characterization and FISH mapping of the NAD(+)-dependent histone deacetylase gene sirtuin 5 in the mouse. Int J Oncol. 43:237–245.
  • Wagner GR, Bhatt DP, O’Connell TM, Thompson JW, Dubois LG, Backos DS, Yang H, Mitchell GA, Ilkayeva OR, Stevens RD, et al. 2017. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 25:823–837.e8.
  • Wagner GR, Hirschey MD. 2014. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell. 54:5–16.
  • Wang F, Wang K, Xu W, Zhao S, Ye D, Wang Y, Xu Y, Zhou L, Chu Y, Zhang C, et al. 2017. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1beta production and to prevent DSS-induced colitis in mice. Cell Rep. 19:2331–2344.
  • Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY. 2012. Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy. 8:77–87.
  • Wang Q, Yu S, Simonyi A, Sun GY, Sun AY. 2005. Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol. 31:3–16.
  • Wang WW, Zeng Y, Wu B, Deiters A, Liu WR. 2016. A chemical biology approach to reveal Sirt6-targeted histone H3 sites in nucleosomes. ACS Chem Biol. 11:1973–1981.
  • Wang Y, Guo YR, Liu K, Yin Z, Liu R, Xia Y, Tan L, Yang P, Lee JH, Li XJ, et al. 2017. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase . Nature. 552:273–277.
  • Wang Y, Zhu Y, Xing S, Ma P, Lin D. 2015. SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3. Cell Stress Chaperones. 20:805–810.
  • Wang YQ, Wang HL, Xu J, Tan J, Fu LN, Wang JL, Zou TH, Sun DF, Gao QY, Chen YX, et al. 2018. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat Commun. 9:545.
  • Weinert BT, Moustafa T, Iesmantavicius V, Zechner R, Choudhary C. 2015. Analysis of acetylation stoichiometry suggests that SIRT3 repairs nonenzymatic acetylation lesions. EMBO J. 34:2620–2632.
  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. 2009. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 324:1076–1080.
  • White CJ, Yudin AK. 2011. Contemporary strategies for peptide macrocyclization. Nat Chem. 3:509–524.
  • Williams AC, Ramsden DB. 2005. Autotoxicity, methylation and a road to the prevention of Parkinson’s disease. J Clin Neurosci. 12:6–11.
  • Xiangyun Y, Xiaomin N, Linping G, Yunhua X, Ziming L, Yongfeng Y, Zhiwei C, Shun L. 2017. Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget. 8:6984–6993.
  • Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, et al. 2011. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 19:17–30.
  • Xu YS, Liang JJ, Wang Y, Zhao XJ, Xu L, Xu YY, Zou QC, Zhang JM, Tu CE, Cui YG, et al. 2016. STAT3 undergoes acetylation-dependent mitochondrial translocation to regulate pyruvate metabolism. Sci Rep. 6:39517.
  • Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, Aldape K, Hunter T, Alfred Yung WK, Lu Z. 2012. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 150:685–696.
  • Yang X, Wang Z, Li X, Liu B, Liu M, Liu L, Chen S, Ren M, Wang Y, Yu M, et al. 2017. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res. 78:372–386.
  • Yu J, Sadhukhan S, Noriega LG, Moullan N, He B, Weiss RS, Lin H, Schoonjans K, Auwerx J. 2013. Metabolic characterization of a Sirt5 deficient mouse model. Sci Rep. 3:2806.
  • Zang W, Hao Y, Wang Z, Zheng W. 2015. Novel thiourea-based sirtuin inhibitory warheads. Bioorg Med Chem Lett. 25:3319–3324.
  • Zeng J, Li D. 2004. Expression and purification of his-tagged rat peroxisomal acyl-CoA oxidase I wild-type and E421 mutant proteins. Protein Expr Purif. 38:153–160.
  • Zhan L, Huang C, Meng XM, Song Y, Wu XQ, Miu CG, Zhan XS, Li J. 2014. Promising roles of mammalian E2Fs in hepatocellular carcinoma. Cell Signal. 26:1075–1081.
  • Zhang W, Xie Y, Wang T, Bi J, Li H, Zhang LQ, Ye SQ, Ding S. 2010. Neuronal protective role of PBEF in a mouse model of cerebral ischemia. J Cereb Blood Flow Metab. 30:1962–1971.
  • Zhang Y, Bharathi SS, Rardin MJ, Lu J, Maringer KV, Sims-Lucas S, Prochownik EV, Gibson BW, Goetzman ES. 2017. Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain. J Biol Chem. 292:10239–10249.
  • Zhang Y, Bharathi SS, Rardin MJ, Uppala R, Verdin E, Gibson BW, Goetzman ES. 2015. SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase. PLoS One. 10:e0122297.
  • Zhao T, Mu X, You Q. 2017. Succinate: an initiator in tumorigenesis and progression. Oncotarget. 8:53819–53828.
  • Zhou L, Wang F, Sun R, Chen X, Zhang M, Xu Q, Wang Y, Wang S, Xiong Y, Guan KL, et al. 2016. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep. 17:811–822.
  • Zhu WZ, Wu XF, Zhang Y, Zhou ZN. 2012. Proteomic analysis of mitochondrial proteins in cardiomyocytes from rats subjected to intermittent hypoxia. Eur J Appl Physiol. 112:1037–1046.
  • Zorov DB, Juhaszova M, Sollott SJ. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.