2,061
Views
7
CrossRef citations to date
0
Altmetric
Review Articles

Mitochondrial acute oxygen sensing and signaling

&
Pages 205-225 | Received 29 Jun 2021, Accepted 07 Nov 2021, Published online: 01 Dec 2021

References

  • Aisenberg WH, Huang J, Zhu W, Rajkumar P, Cruz R, Santhanam L, Natarajan N, Yong HM, De Santiago B, Oh JJ, et al. 2016. Defining an olfactory receptor function in airway smooth muscle cells. Sci Rep. 6:38231.
  • Alcayaga J, Barrios M, Bustos F, Miranda G, Molina MJ, Iturriaga R. 1999. Modulatory effect of nitric oxide on acetylcholine-induced activation of cat petrosal ganglion neurons in vitro. Brain Res. 825 (1–2):194–198.
  • Allen LA, Zhao XJ, Caughey W, Poyton RO. 1995. Isoforms of yeast cytochrome c oxidase subunit V affect the binuclear reaction center and alter the kinetics of interaction with the isoforms of yeast cytochrome c. J Biol Chem. 270(1):110–118.
  • Aras S, Pak O, Sommer N, Finley R, Jr., Huttemann M, Weissmann N, Grossman LI. 2013. Oxygen-dependent expression of cytochrome c oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Res. 41(4):2255–2266.
  • Archer SL, Huang J, Henry T, Peterson D, Weir EK. 1993. A redox-based O2 sensor in rat pulmonary vasculature. Circ Res. 73(6):1100–1112.
  • Archer SL, Souil E, Dinh-Xuan AT, Schremmer B, Mercier JC, El Yaagoubi A, Nguyen-Huu L, Reeve HL, Hampl V. 1998. Molecular identification of the role of voltage-gated K + channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest. 101(11):2319–2330.
  • Arias-Mayenco I, Gonzalez-Rodriguez P, Torres-Torrelo H, Gao L, Fernandez-Aguera MC, Bonilla-Henao V, Ortega-Saenz P, Lopez-Barneo J. 2018. Acute O2 Sensing: role of Coenzyme QH2/Q Ratio and Mitochondrial ROS Compartmentalization. Cell Metab. 28(1):145–158 e144.
  • Arnold S, Kadenbach B. 1999. The intramitochondrial ATP/ADP-ratio controls cytochrome c oxidase activity allosterically. FEBS Lett. 443(2):105–108.
  • Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. 2013. Crystal structure of the entire respiratory complex I. Nature. 494(7438):443–448.
  • Benot AR, Lopez-Barneo J. 1990. Feedback Inhibition of Ca2+ currents by dopamine in glomus cells of the carotid body. Eur J Neurosci. 2(9):809–812.
  • Brand MD. 2020. Riding the tiger – physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol. 55(6):592–661.
  • Buckler KJ. 1997. A novel oxygen-sensitive potassium current in rat carotid body type I cells. J Physiol. 498 (3):649–662.
  • Buckler KJ. 2012. Effects of exogenous hydrogen sulphide on calcium signaling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells. Pflugers Arch – Eur J Physiol. 463(5):743–754.
  • Buckler KJ, Turner PJ. 2013. Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells. J Physiol. 591(14):3549–3563.
  • Buckler KJ, Vaughan-Jones RD. 1994. Effects of hypoxia on membrane potential and intracellular calcium in rat neonatal carotid body type I cells. J Physiol. 476(3):423–428.
  • Buckler KJ, Williams BA, Honore E. 2000. An oxygen-, acid- and anaesthetic-sensitive TASK-like background potassium channel in rat arterial chemoreceptor cells. J Physiol. 525 Pt 1:135–142.
  • Buerk DG, Iturriaga R, Lahiri S. 1994. Testing the metabolic hypothesis of O2 chemoreception in the cat carotid body in vitro. J Appl Physiol. 76(3):1317–1323.
  • Buescher PC, Pearse DB, Pillai RP, Litt MC, Mitchell MC, Sylvester JT. 1991. Energy state and vasomotor tone in hypoxic pig lungs. J Appl Physiol. 70(4):1874–1881.
  • Buniel MC, Schilling WP, Kunze DL. 2003. Distribution of transient receptor potential channels in the rat carotid chemosensory pathway. J Comp Neurol. 464(3):404–413.
  • Bychkov R, Pieper K, Ried C, Milosheva M, Bychkov E, Luft FC, Haller H. 1999. Hydrogen peroxide, potassium currents, and membrane potential in human endothelial cells. Circulation. 99(13):1719–1725.
  • Caballero-Eraso C, Shin MK, Pho H, Kim LJ, Pichard LE, Wu ZJ, Gu C, Berger S, Pham L, Yeung HB, et al. 2019. Leptin acts in the carotid bodies to increase minute ventilation during wakefulness and sleep and augment the hypoxic ventilatory response. J Physiol. 597(1):151–172.
  • Carabelli V, Marcantoni A, Comunanza V, de Luca A, Diaz J, Borges R, Carbone E. 2007. Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol. 584(Pt 1):149–165.
  • Chandel NS, Budinger GR, Choe SH, Schumacker PT. 1997. Cellular respiration during hypoxia. Role of cytochrome oxidase as the oxygen sensor in hepatocytes. J Biol Chem. 272(30):18808–18816.
  • Chang AJ, Ortega FE, Riegler J, Madison DV, Krasnow MA. 2015. Oxygen regulation of breathing through an olfactory receptor activated by lactate. Nature. 527(7577):240–244.
  • Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord EN, Smith AC, et al. 2014. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 515(7527):431–435.
  • Colgan SP, Furuta GT, Taylor CT. 2020. Hypoxia and Innate Immunity: keeping Up with the HIFsters. Annu Rev Immunol. 38:341–363.
  • Costa KM, Accorsi-Mendonca D, Moraes DJ, Machado BH. 2014. Evolution and physiology of neural oxygen sensing. Front Physiol. 5:302.
  • Cowburn AS, Crosby A, Macias D, Branco C, Colaco RD, Southwood M, Toshner M, Crotty Alexander LE, Morrell NW, Chilvers ER, et al. 2016. HIF2α-arginase axis is essential for the development of pulmonary hypertension. Proc Natl Acad Sci USA. 113(31):8801–8806.
  • Del Toro R, Levitsky KL, Lopez-Barneo J, Chiara MD. 2003. Induction of T-type calcium channel gene expression by chronic hypoxia. J Biol Chem. 278(25):22316–22324.
  • Delpiano MA, Hescheler J. 1989. Evidence for a PO2-sensitive K + channel in the type-I cell of the rabbit carotid body. FEBS Lett. 249(2):195–198.
  • Diaz-Castro B, Pintado CO, García-Flores P, López-Barneo J, Piruat JI. 2012. Differential impairment of catecholaminergic cell maturation and survival by genetic mitochondrial complex II dysfunction. Mol Cell Biol. 32(16):3347–3357.
  • Dibley MG, Ryan MT, Stroud DA. 2017. A novel isoform of the human mitochondrial complex I subunit NDUFV3. FEBS Lett. 591(1):109–117.
  • Duchen MR, Biscoe TJ. 1992a. Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol. 450:13–31.
  • Duchen MR, Biscoe TJ. 1992b. Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J Physiol. 450:33–61.
  • Duchen MR, Caddy KW, Kirby GC, Patterson DL, Ponte J, Biscoe TJ. 1988. Biophysical studies of the cellular elements of the rabbit carotid body. Neuroscience. 26(1):291–311.
  • Dunham-Snary KJ, Wu D, Potus F, Sykes EA, Mewburn JD, Charles RL, Eaton P, Sultanian RA, Archer SL. 2019. Ndufs2, a Core subunit of mitochondrial cComplex I, is essential for acute oxygen-sensing and hypoxic pulmonary vasoconstriction. Circ Res. 124(12):1727–1746.
  • Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y. 1997. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A. 94(9):4273–4278.
  • Fernández-Agüera MC, Gao L, González-Rodríguez P, Pintado CO, Arias-Mayenco I, García-Flores P, García-Pergañeda A, Pascual A, Ortega-Sáenz P, López-Barneo J. 2015. Oxygen sensing by arterial chemoreceptors depends on mitochondrial complex I signaling. Cell Metab. 22(5):825–837.
  • Fornasiero EF, Mandad S, Wildhagen H, Alevra M, Rammner B, Keihani S, Opazo F, Urban I, Ischebeck T, Sakib MS, et al. 2018. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat Commun. 9(1):4230.
  • Franco-Obregon A, Urena J, Lopez-Barneo J. 1995. Oxygen-sensitive calcium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation. Proc Natl Acad Sci U S A. 92(10):4715–4719.
  • Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. 2007. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 129(1):111–122.
  • Fung ML, Ye JS, Fung PC. 2001. Acute hypoxia elevates nitric oxide generation in rat carotid body in vitro. Pflugers Arch. 442(6):903–909.
  • Ganfornina MD, Lopez-Barneo J. 1992. Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen. J Gen Physiol. 100(3):401–426.
  • Gao L, Arias-Mayenco I, Ortega-Saenz P, Lopez-Barneo J. 2021. Using redox-sensitive fluorescent probes to record real-time reactive oxygen species production in cells from mouse carotid body slices. STAR Protoc. 2(2):100535.
  • Gao L, Bonilla-Henao V, Garcia-Flores P, Arias-Mayenco I, Ortega-Saenz P, Lopez-Barneo J. 2017. Gene expression analyses reveal metabolic specifications in acute O2 -sensing chemoreceptor cells. J Physiol. 595(18):6091–6120.
  • Garcia-Fernandez M, Ortega-Saenz P, Castellano A, Lopez-Barneo J. 2007a. Mechanisms of low-glucose sensitivity in carotid body glomus cells. Diabetes. 56(12):2893–2900.
  • Garcia-Fernandez M, Mejias R, Lopez-Barneo J. 2007b. Developmental changes of chromaffin cell secretory response to hypoxia studied in thin adrenal slices. Pflugers Arch. 454(1):93–100.
  • Gnaiger E, Steinlechner-Maran R, Mendez G, Eberl T, Margreiter R. 1995. Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr. 27(6):583–596.
  • Grgic L, Zwicker K, Kashani-Poor N, Kerscher S, Brandt U. 2004. Functional significance of conserved histidines and arginines in the 49-kDa subunit of mitochondrial complex I. J Biol Chem. 279(20):21193–21199.
  • Gruber M, Hu CJ, Johnson RS, Brown EJ, Keith B, Simon MC. 2007. Acute postnatal ablation of Hif-2alpha results in anemia. Proc Natl Acad Sci USA. 104(7):2301–2306.
  • Guaras A, Perales-Clemente E, Calvo E, Acin-Perez R, Loureiro-Lopez M, Pujol C, Martinez-Carrascoso I, Nunez E, Garcia-Marques F, Rodriguez-Hernandez MA, et al. 2016. The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Rep. 15(1):197–209.
  • Hammarlund EU, Flashman E, Mohlin S, Licausi F. 2020. Oxygen-sensing mechanisms across eukaryotic kingdoms and their roles in complex multicellularity. Science. 370(6515):aba3512.
  • He L, Chen J, Dinger B, Sanders K, Sundar K, Hoidal J, Fidone S. 2002. Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice. Am J Physiol Cell Physiol. 282(1):C27–33.
  • Hernansanz-Agustin P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Pina T, Moreno L, Izquierdo-Alvarez A, Cabrera-Garcia JD, Cortes A, et al. 2020. Na + controls hypoxic signalling by the mitochondrial respiratory chain. Nature. 586(7828):287–291.
  • Hodson EJ, Nicholls LG, Turner PJ, Llyr R, Fielding JW, Douglas G, Ratnayaka I, Robbins PA, Pugh CW, Buckler KJ, et al. 2016. Regulation of ventilatory sensitivity and carotid body proliferation in hypoxia by the PHD2/HIF-2 pathway. J Physiol. 594(5):1179–1195.
  • Huttemann M, Kadenbach B, Grossman LI. 2001. Mammalian subunit IV isoforms of cytochrome c oxidase. Gene. 267(1):111–123.
  • Inoue M, Fujishiro N, Imanaga I, Sakamoto Y. 2002. Role of ATP decrease in secretion induced by mitochondrial dysfunction in guinea-pig adrenal chromaffin cells. J Physiol. 539(Pt 1):145–155.
  • Iturriaga R, Alcayaga J, Chapleau MW, Somers VK. 2021. Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev. 101(3):1177–1235.
  • Jendzjowsky NG, Roy A, Iftinca M, Barioni NO, Kelly MM, Herrington BA, Visser F, Altier C, Wilson RJA. 2021. PKCε stimulation of TRPV1 orchestrates carotid body responses to asthmakines. J Physiol. 599(4):1335–1354.
  • Justo R, Oliver J, Gianotti M. 2005. Brown adipose tissue mitochondrial subpopulations show different morphological and thermogenic characteristics. Mitochondrion. 5(1):45–53.
  • Kadenbach B, Huttemann M. 2015. The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion. 24:64–76.
  • Kang D, Wang J, Hogan JO, Vennekens R, Freichel M, White C, Kim D. 2014. Increase in cytosolic Ca2+ produced by hypoxia and other depolarizing stimuli activates a non-selective cation channel in chemoreceptor cells of rat carotid body. J Physiol. 592(9):1975–1992.
  • Kashani-Poor N, Zwicker K, Kerscher S, Brandt U. 2001. A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J Biol Chem. 276(26):24082–24087.
  • Kemp PJ, Peers C. 2007. Oxygen sensing by ion channels. Essays Biochem. 43:77–90.
  • Kilfoil PJ, Chapalamadugu KC, Hu X, Zhang D, Raucci FJ, Jr., Tur J, Brittian KR, Jones SP, Bhatnagar A, Tipparaju SM, et al. 2019. Metabolic regulation of Kv channels and cardiac repolarization by Kvβ2 subunits. J Mol Cell Cardiol. 137:93–106.
  • Kilfoil PJ, Tipparaju SM, Barski OA, Bhatnagar A. 2013. Regulation of ion channels by pyridine nucleotides. Circ Res. 112(4):721–741.
  • Kim D, Cavanaugh EJ, Kim I, Carroll JL. 2009. Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K + channel in rat carotid body glomus cells. J Physiol. 587(Pt 12):2963–2975.
  • Kim D, Kim I, Wang J, White C, Carroll JL. 2015. Hydrogen sulfide and hypoxia-induced changes in TASK (K2P3/9) activity and intracellular Ca(2+) concentration in rat carotid body glomus cells. Respir Physiol Neurobiol. 215:30–38.
  • Kuznetsov AV, Troppmair J, Sucher R, Hermann M, Saks V, Margreiter R. 2006. Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: possible physiological role? Biochim Biophys Acta. 1757(5–6):686–691.
  • Le Douarin NM. 1986. Cell line segregation during peripheral nervous system ontogeny. Science. 231(4745):1515–1522.
  • Leach RM, Sheehan DW, Chacko VP, Sylvester JT. 2000. Energy state, pH, and vasomotor tone during hypoxia in precontracted pulmonary and femoral arteries. Am J Physiol Lung Cell Mol Physiol. 278(2):L294–304.
  • Levitsky KL, Lopez-Barneo J. 2009. Developmental change of T-type Ca2+ channel expression and its role in rat chromaffin cell responsiveness to acute hypoxia. J Physiol. 587(Pt 9):1917–1929.
  • Lewis A, Peers C, Ashford ML, Kemp PJ. 2002. Hypoxia inhibits human recombinant large conductance, Ca(2+)-activated K(+) (maxi-K) channels by a mechanism which is membrane delimited and Ca(2+) sensitive. J Physiol. 540(Pt 3):771–780.
  • Liu SQ, Jin H, Zacarias A, Srivastava S, Bhatnagar A. 2001. Binding of pyridine nucleotide coenzymes to the beta-subunit of the voltage-sensitive K + channel. J Biol Chem. 276(15):11812–11820.
  • Lopez-Barneo J. 1994. Oxygen-sensitive ion channels: how ubiquitous are they? Trends Neurosci. 17(4):133–135.
  • Lopez-Barneo J. 1996. Oxygen-sensing by ion channels and the regulation of cellular functions. Trends Neurosci. 19(10):435–440.
  • Lopez-Barneo J. 2003. Oxygen and glucose sensing by carotid body glomus cells. Curr Opin Neurobiol. 13(4):493–499.
  • Lopez-Barneo J, Benot A, Ureña J. 1993. Oxygen sensing and the electrophysiology of arterial chemoreceptor cells. NIPS. 8(5):191–195.
  • Lopez-Barneo J, Gonzalez-Rodriguez P, Gao L, Fernandez-Aguera MC, Pardal R, Ortega-Saenz P. 2016. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol. 310(8):C629–642.
  • Lopez-Barneo J, Lopez-Lopez JR, Urena J, Gonzalez C. 1988. Chemotransduction in the carotid body: K + current modulated by PO2 in type I chemoreceptor cells. Science. 241(4865):580–582.
  • Lopez-Barneo J, Pardal R, Montoro RJ, Smani T, Garcia-Hirschfeld J, Urena J. 1999. K + and Ca2+ channel activity and cytosolic [Ca2+] in oxygen-sensing tissues. Respir Physiol. 115(2):215–227.
  • Lopez-Barneo J, Pardal R, Ortega-Saenz P. 2001. Cellular mechanism of oxygen sensing. Annu Rev Physiol. 63:259–287.
  • Lopez-Barneo J, Simon MC. 2020. Cellular adaptation to oxygen deficiency beyond the Nobel award. Nat Commun. 11(1):607.
  • Lopez-Lopez J, Gonzalez C, Urena J, Lopez-Barneo J. 1989. Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body. J Gen Physiol. 93(5):1001–1015.
  • Lucarelli G, Rutigliano M, Sallustio F, Ribatti D, Giglio A, Lepore Signorile M, Grossi V, Sanese P, Napoli A, Maiorano E, et al. 2018. Integrated multi-omics characterization reveals a distinctive metabolic signature and the role of NDUFA4L2 in promoting angiogenesis, chemoresistance, and mitochondrial dysfunction in clear cell renal cell carcinoma. Aging. 10(12):3957–3985.
  • Macias D, Cowburn AS, Torres-Torrelo H, Ortega-Saenz P, Lopez-Barneo J, Johnson RS. 2018. HIF-2alpha is essential for carotid body development and function. Elife. 7:e34681.
  • Macias D, Fernandez-Aguera MC, Bonilla-Henao V, Lopez-Barneo J. 2014. Deletion of the von Hippel-Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia. EMBO Mol Med. 6(12):1577–1592.
  • Mahmoud AD, Lewis S, Juricic L, Udoh UA, Hartmann S, Jansen MA, Ogunbayo OA, Puggioni P, Holmes AP, Kumar P, et al. 2016. AMP-activated protein kinase deficiency blocks the hypoxic ventilatory response and thus precipitates hypoventilation and apnea. Am J Respir Crit Care Med. 193(9):1032–1043.
  • McCormack T, McCormack K. 1994. Shaker K + channel beta subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell. 79(7):1133–1135.
  • Michelakis ED, Thebaud B, Weir EK, Archer SL. 2004. Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K + channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol. 37(6):1119–1136.
  • Mills E, Jobsis FF. 1972. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol. 35(4):405–428.
  • Mkrtchian S, Kahlin J, Ebberyd A, Gonzalez C, Sanchez D, Balbir A, Kostuk EW, Shirahata M, Fagerlund MJ, Eriksson LI. 2012. The human carotid body transcriptome with focus on oxygen sensing and inflammation-a comparative analysis. J Physiol. 590(16):3807–3819.
  • Mochizuki-Oda N, Takeuchi Y, Matsumura K, Oosawa Y, Watanabe Y. 1997. Hypoxia-induced catecholamine release and intracellular Ca2+ increase via suppression of K + channels in cultured rat adrenal chromaffin cells. J Neurochem. 69(1):377–387.
  • Montoro RJ, Urena J, Fernandez-Chacon R, Alvarez de Toledo G, Lopez-Barneo J. 1996. Oxygen sensing by ion channels and chemotransduction in single glomus cells. J Gen Physiol. 107(1):133–143.
  • Moral-Sanz J, Mahmoud AD, Ross FA, Eldstrom J, Fedida D, Hardie DG, Evans AM. 2016. AMP-activated protein kinase inhibits Kv 1.5 channel currents of pulmonary arterial myocytes in response to hypoxia and inhibition of mitochondrial oxidative phosphorylation. J Physiol. 594(17):4901–4915.
  • Moreno-Dominguez A, Ortega-Saenz P, Gao L, Colinas O, Garcia-Flores P, Bonilla-Henao V, Aragones J, Huttemann M, Grossman LI, Weissmann N, et al. 2020. Acute O2 sensing through HIF2alpha-dependent expression of atypical cytochrome oxidase subunits in arterial chemoreceptors. Sci Signal. 13(615):eaay9452.
  • Mori Y, Takahashi N, Polat OK, Kurokawa T, Takeda N, Inoue M. 2016. Redox-sensitive transient receptor potential channels in oxygen sensing and adaptation. Pflugers Arch. 468(1):85–97.
  • Mulligan E, Lahiri S. 1981. Dependence of carotid chemoreceptor stimulation by metabolic agents on PaO2 and PaCO2. J Appl Physiol Respir Environ Exerc Physiol. 50(4):884–891.
  • Murphy MP. 2009. How mitochondria produce reactive oxygen species. Biochem J. 417(1):1–13.
  • Napiwotzki J, Kadenbach B. 1998. Extramitochondrial ATP/ADP-ratios regulate cytochrome c oxidase activity via binding to the cytosolic domain of subunit IV. Biol Chem. 379(3):335–339.
  • Napiwotzki J, Shinzawa-Itoh K, Yoshikawa S, Kadenbach B. 1997. ATP and ADP bind to cytochrome c oxidase and regulate its activity. Biol Chem. 378(9):1013–1021.
  • Nurse CA. 2014. Synaptic and paracrine mechanisms at carotid body arterial chemoreceptors. J Physiol. 592(16):3419–3426.
  • Nurse CA, Buttigieg J, Brown S, Holloway AC. 2009. Regulation of oxygen sensitivity in adrenal chromaffin cells. Ann NY Acad Sci. 1177:132–139.
  • Obeso A, Almaraz L, Gonzalez C. 1989. Effects of cyanide and uncouplers on chemoreceptor activity and ATP content of the cat carotid body. Brain Res. 481(2):250–257.
  • Onukwufor JO, Berry BJ, Wojtovich AP. 2019. Physiologic implications of reactive oxygen species production by mitochondrial complex I reverse electron transport. Antioxidants. 8(8):285.
  • Ortega-Saenz P, Caballero C, Gao L, Lopez-Barneo J. 2018. Testing acute oxygen sensing in genetically modified mice: plethysmography and amperometry. Methods Mol Biol. 1742:139–153.
  • Ortega-Saenz P, Garcia-Fernandez M, Pardal R, Alvarez E, Lopez-Barneo J. 2003a. Studies on glomus cell sensitivity to hypoxia in carotid body slices. Adv Exp Med Biol. 536:65–73.
  • Ortega-Saenz P, Pardal R, Garcia-Fernandez M, Lopez-Barneo J. 2003b. Rotenone selectively occludes sensitivity to hypoxia in rat carotid body glomus cells. J Physiol. 548(Pt 3):789–800.
  • Ortega-Saenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, Lopez-Barneo J. 2010. Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol. 135(4):379–392.
  • Ortega-Saenz P, Lopez-Barneo J. 2020. Physiology of the carotid body: from molecules to disease. Annu Rev Physiol. 82:127–149.
  • Ortega-Saenz P, Macias D, Levitsky KL, Rodriguez-Gomez JA, Gonzalez-Rodriguez P, Bonilla-Henao V, Arias-Mayenco I, Lopez-Barneo J. 2016. Selective accumulation of biotin in arterial chemoreceptors: requirement for carotid body exocytotic dopamine secretion. J Physiol. 594(24):7229–7248.
  • Ortega-Saenz P, Pardal R, Levitsky K, Villadiego J, Munoz-Manchado AB, Duran R, Bonilla-Henao V, Arias-Mayenco I, Sobrino V, Ordonez A, et al. 2013. Cellular properties and chemosensory responses of the human carotid body. J Physiol. 591(24):6157–6173.
  • Ortega-Saenz P, Pascual A, Gomez-Diaz R, Lopez-Barneo J. 2006. Acute oxygen sensing in heme oxygenase-2 null mice. J Gen Physiol. 128(4):405–411.
  • Owen OE, Kalhan SC, Hanson RW. 2002. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 277(34):30409–30412.
  • Pajuelo Reguera D, Čunátová K, Vrbacký M, Pecinová A, Houštěk J, Mráček T, Pecina P. 2020. Cytochrome c oxidase subunit 4 isoform exchange results in modulation of oxygen affinity. Cells. 9(2):443.
  • Papreck JR, Martin EA, Lazzarini P, Kang D, Kim D. 2012. Modulation of K2P3.1 (TASK-1), K2P9.1 (TASK-3), and TASK-1/3 heteromer by reactive oxygen species. Pflugers Arch. 464(5):471–480.
  • Pardal R, Ortega-Saenz P, Duran R, Lopez-Barneo J. 2007. Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell. 131(2):364–377.
  • Peers C. 1990. Hypoxic suppression of K + currents in type I carotid body cells: selective effect on the Ca2(+)-activated K + current. Neurosci Lett. 119(2):253–256.
  • Peng YJ, Gridina A, Wang B, Nanduri J, Fox AP, Prabhakar NR. 2020. Olfactory receptor 78 participates in carotid body response to a wide range of low O2 levels but not severe hypoxia. J Neurophysiol. 123(5):1886–1895.
  • Perez-Garcia MT, Colinas O, Miguel-Velado E, Moreno-Dominguez A, Lopez-Lopez JR. 2004. Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing. J Physiol. 557(Pt 2):457–471.
  • Perez-Garcia MT, Lopez-Lopez JR, Gonzalez C. 1999. Kvbeta1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to kv4.2 but not to Shaker channels. J Gen Physiol. 113(6):897–907.
  • Pierron D, Wildman DE, Huttemann M, Markondapatnaikuni GC, Aras S, Grossman LI. 2012. Cytochrome c oxidase: evolution of control via nuclear subunit addition. Biochim Biophys Acta. 1817(4):590–597.
  • Piruat J, Pintado CO, Ortega-Sáenz P, Roche M, López-Barneo J. 2004. The mitochondrial SDHD gene is required for early embryogenesis, and its partial deficiency results in persistent carotid body glomus cell activation with full responsiveness to hypoxia. Mol Cell Biol. 24(24):10933–10940.
  • Piruat JI, Lopez-Barneo J. 2005. Oxygen tension regulates mitochondrial DNA-encoded complex I gene expression. J Biol Chem. 280(52):42676–42684.
  • Post JM, Hume JR, Archer SL, Weir EK. 1992. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol. 262(4 Pt 1):C882–890.
  • Prabhakar NR, Dinerman JL, Agani FH, Snyder SH. 1995. Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci U S A. 92(6):1994–1997.
  • Pryde KR, Hirst J. 2011. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J Biol Chem. 286(20):18056–18065.
  • Rakoczy RJ, Wyatt CN. 2018. Acute oxygen sensing by the carotid body: a rattlebag of molecular mechanisms. J Physiol. 596(15):2969–2976.
  • Ratcliffe PJ. 2013. Oxygen sensing and hypoxia signalling pathways in animals: the implications of physiology for cancer. J Physiol. 591(8):2027–2042.
  • Reeve HL, Weir EK, Nelson DP, Peterson DA, Archer SL. 1995. Opposing effects of oxidants and antioxidants on K + channel activity and tone in rat vascular tissue. Exp Physiol. 80(5):825–834.
  • Ribeiro MJ, Sacramento JF, Gonzalez C, Guarino MP, Monteiro EC, Conde SV. 2013. Carotid body denervation prevents the development of insulin resistance and hypertension induced by hypercaloric diets. Diabetes. 62(8):2905–2916.
  • Rieger B, Shalaeva DN, Sohnel AC, Kohl W, Duwe P, Mulkidjanian AY, Busch KB. 2017. Lifetime imaging of GFP at CoxVIIIa reports respiratory supercomplex assembly in live cells. Sci Rep. 7:46055.
  • Romero-Ruiz A, Bautista L, Navarro V, Heras-Garvín A, March-Díaz R, Castellano A, Gómez-Díaz R, Castro MJ, Berra E, López-Barneo J, et al. 2012. Prolyl hydroxylase-dependent modulation of eukaryotic elongation factor 2 activity and protein translation under acute hypoxia. J Biol Chem. 287(12):9651–9658.
  • Roosild TP, Miller S, Booth IR, Choe S. 2002. A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. Cell. 109(6):781–791.
  • Roy A, Rozanov C, Mokashi A, Daudu P, Al-Mehdi AB, Shams H, Lahiri S. 2000. Mice lacking in gp91 phox subunit of NAD(P)H oxidase showed glomus cell [Ca(2+)](i) and respiratory responses to hypoxia. Brain Res. 872(1–2):188–193.
  • Rumsey WL, Iturriaga R, Spergel D, Lahiri S, Wilson DF. 1991. Optical measurements of the dependence of chemoreception on oxygen pressure in the cat carotid body. Am J Physiol. 261(4 Pt 1):C614–C622.
  • Rumsey WL, Schlosser C, Nuutinen EM, Robiolio M, Wilson DF. 1990. Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat. J Biol Chem. 265(26):15392–15402.
  • Sahoo N, Hoshi T, Heinemann SH. 2014. Oxidative modulation of voltage-gated potassium channels. Antioxid Redox Signal. 21(6):933–952.
  • Scialo F, Fernandez-Ayala DJ, Sanz A. 2017. Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol. 8:428.
  • Semenza GL. 2014. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 9:47–71.
  • Shimoda LA, Polak J. 2011. Hypoxia. 4. Hypoxia and ion channel function. Am J Physiol Cell Physiol. 300(5):C951–967.
  • Sinkler CA, Kalpage H, Shay J, Lee I, Malek MH, Grossman LI, Huttemann M. 2017. Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: from function to human disease. Oxid Med Cell Longev. 2017:1534056.
  • Sommer N, Huttemann M, Pak O, Scheibe S, Knoepp F, Sinkler C, Malczyk M, Gierhardt M, Esfandiary A, Kraut S, et al. 2017. Mitochondrial complex IV subunit 4 isoform 2 is essential for acute pulmonary oxygen sensing. Circ Res. 121(4):424–438.
  • Sommer N, Pak O, Schorner S, Derfuss T, Krug A, Gnaiger E, Ghofrani HA, Schermuly RT, Huckstorf C, Seeger W, et al. 2010. Mitochondrial cytochrome redox states and respiration in acute pulmonary oxygen sensing. Eur Respir J. 36(5):1056–1066.
  • Starkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF. 2004. Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci. 24(36):7779–7788.
  • Stea A, Nurse CA. 1991. Whole-cell and perforated-patch recordings from O2-sensitive rat carotid body cells grown in short- and long-term culture. Pflugers Arch. 418(1–2):93–101.
  • Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. 2015. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell. 162(3):552–563.
  • Swiderska A, Coney AM, Alzahrani AA, Aldossary HS, Batis N, Ray CJ, Kumar P, Holmes AP. 2021. Mitochondrial succinate metabolism and reactive oxygen species are important but not essential for eliciting carotid body and ventilatory responses to hypoxia. Antioxidants. 10(6):840.
  • Taylor CT, McElwain JC. 2010. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology. 25(5):272–279.
  • Taylor SC, Shaw SM, Peers C. 2000. Mitochondrial inhibitors evoke catecholamine release from pheochromocytoma cells. Biochem Biophys Res Commun. 273(1):17–21.
  • Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordóñez Á, Corral-Escariz M, Soro I, López-Bernardo E, Perales-Clemente E, et al. 2011. Induction of the mitochondrial NDUFA4L2 protein by HIF-1α decreases oxygen consumption by inhibiting Complex I activity. Cell Metab. 14(6):768–779.
  • Teppema LJ, Dahan A. 2010. The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev. 90(2):675–754.
  • Thompson RJ, Buttigieg J, Zhang M, Nurse CA. 2007. A rotenone-sensitive site and H2O2 are key components of hypoxia-sensing in neonatal rat adrenomedullary chromaffin cells. Neuroscience. 145(1):130–141.
  • Thompson RJ, Jackson A, Nurse CA. 1997. Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells. J Physiol. 498(2):503–510.
  • Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL. 1998. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 12(21):3320–3324.
  • Timmers HJ, Wieling W, Karemaker JM, Lenders JW. 2003. Denervation of carotid baro- and chemoreceptors in humans. J Physiol. 553(Pt 1):3–11.
  • Tipparaju SM, Saxena N, Liu SQ, Kumar R, Bhatnagar A. 2005. Differential regulation of voltage-gated K + channels by oxidized and reduced pyridine nucleotide coenzymes. Am J Physiol Cell Physiol. 288(2):C366–376.
  • Torres-Torrelo H, Ortega-Sáenz P, Gao L, Lopez-Barneo J. 2021. Lactate sensing mechanisms in arterial chemoreceptor cells. Nat Commun. 12(1):4166.
  • Torres-Torrelo H, Ortega-Saenz P, Macias D, Omura M, Zhou T, Matsunami H, Johnson RS, Mombaerts P, Lopez-Barneo J. 2018. The role of Olfr78 in the breathing circuit of mice. Nature. 561(7724):E33–E40.
  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S. 1996. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 272(5265):1136–1144.
  • Urena J, Fernandez-Chacon R, Benot AR, Alvarez de Toledo GA, Lopez-Barneo J. 1994. Hypoxia induces voltage-dependent Ca2+ entry and quantal dopamine secretion in carotid body glomus cells. Proc Natl Acad Sci USA. 91(21):10208–10211.
  • Varas R, Wyatt CN, Buckler KJ. 2007. Modulation of TASK-like background potassium channels in rat arterial chemoreceptor cells by intracellular ATP and other nucleotides. J Physiol. 583(Pt 2):521–536.
  • Wang J, Hogan JO, Wang R, White C, Kim D. 2017. Role of cystathionine-γ-lyase in hypoxia-induced changes in TASK activity, intracellular [Ca2+] and ventilation in mice. Respir Physiol Neurobiol. 246:98–106.
  • Wang Y, Li Z, Zhang X, Xiang X, Li Y, Mulholland MW, Zhang W. 2016. Nesfatin-1 promotes brown adipocyte phenotype. Sci Rep. 6:34747.
  • Waypa GB, Chandel NS, Schumacker PT. 2001. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res. 88(12):1259–1266.
  • Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT. 2010. Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res. 106(3):526–535.
  • Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, Ball MK, Schumacker PT. 2013. Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med. 187(4):424–432.
  • Waypa GB, Schumacker PT. 2010. Hypoxia-induced changes in pulmonary and systemic vascular resistance: where is the O2 sensor? Respir Physiol Neurobiol. 174(3):201–211.
  • Weir EK, Eaton JW, Chesler E. 1985. Redox status and pulmonary vascular reactivity. Chest. 88(4 Suppl):249S–252S.
  • Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL. 2005. Acute oxygen-sensing mechanisms. N Engl J Med. 353(19):2042–2055.
  • Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ, Jr, Viveros OH. 1991. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci USA. 88(23):10754–10758.
  • Williams SE, Wootton P, Mason HS, Bould J, Iles DE, Riccardi D, Peers C, Kemp PJ. 2004. Hemoxygenase-2 is an oxygen sensor for a calcium-sensitive potassium channel [Research Support, Non-U.S. Gov’t]. Science. 306(5704):2093–2097.
  • Wilson DF, Erecińska M, Drown C, Silver IA. 1979. The oxygen dependence of cellular energy metabolism. Arch Biochem Biophys. 195(2):485–493.
  • Wilson DF, Mokashi A, Chugh D, Vinogradov S, Osanai S, Lahiri S. 1994. The primary oxygen sensor of the cat carotid body is cytochrome a3 of the mitochondrial respiratory chain. FEBS Lett. 351(3):370–374.
  • Wu M, Gu J, Guo R, Huang Y, Yang M. 2016. Structure of Mammalian Respiratory Supercomplex I1III2IV1. Cell. 167(6):1598–1609 e1510.
  • Wyatt CN, Buckler KJ. 2004. The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells. J Physiol. 556(Pt 1):175–191.
  • Yin Z, Burger N, Kula-Alwar D, Aksentijević D, Bridges HR, Prag HA, Grba DN, Viscomi C, James AM, Mottahedin A, et al. 2021. Structural basis for a complex I mutation that blocks pathological ROS production. Nat Commun. 12(1):707.
  • Yoo HY, Kim SJ. 2021. Oxygen-dependent regulation of ion channels: acute responses, post-translational modification, and response to chronic hypoxia. Pflugers Arch. 473(10):1589–1602.
  • Youngson C, Nurse C, Yeger H, Cutz E. 1993. Oxygen sensing in airway chemoreceptors. Nature. 365(6442):153–155.
  • Yuan G, Vasavda C, Peng YJ, Makarenko VV, Raghuraman G, Nanduri J, Gadalla MM, Semenza GL, Kumar GK, Snyder SH, et al. 2015. Protein kinase G-regulated production of H2S governs oxygen sensing. Sci Signal. 8(373):ra37.
  • Yuan XJ, Goldman WF, Tod ML, Rubin LJ, Blaustein MP. 1993. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am J Physiol. 264(2):L116–123.
  • Zhang F, Carson RC, Zhang H, Gibson G, Thomas HM. 3rd. 1997. Pulmonary artery smooth muscle cell [Ca2+]i and contraction: responses to diphenyleneiodonium and hypoxia. Am J Physiol. 273(3 Pt 1):L603–611.
  • Zhang M, Vollmer C, Nurse CA. 2018. Adenosine and dopamine oppositely modulate a hyperpolarization-activated current Ih in chemosensory neurons of the rat carotid body in co-culture. J Physiol. 596(15):3101–3117.
  • Zhou T, Chien MS, Kaleem S, Matsunami H. 2016. Single cell transcriptome analysis of mouse carotid body glomus cells. J Physiol. 594(15):4225–4251.
  • Zhu WH, Conforti L, Czyzyk-Krzeska MF, Millhorn DE. 1996. Membrane depolarization in PC-12 cells during hypoxia is regulated by an O2-sensitive K + current. Am J Physiol. 271(2 Pt 1):C658–665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.