1,358
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Cohesin in DNA damage response and double-strand break repair

, , , , , & ORCID Icon show all
Pages 333-350 | Received 05 Aug 2021, Accepted 06 Jan 2022, Published online: 03 Feb 2022

References

  • Al-Jomah N, Mukololo L, Anjum A, Al Madadha M, Patel R. 2020. Pds5A and Pds5B display non-redundant functions in mitosis and their loss triggers Chk1 activation. Front Cell Dev Biol. 8:531.
  • Alexandru G, Uhlmann F, Mechtler K, Poupart MA, Nasmyth K. 2001. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell. 105(4):459–472.
  • Almedawar S, Colomina N, Bermudez-Lopez M, Pocino-Merino I, Torres-Rosell J. 2012. A SUMO-dependent step during establishment of sister chromatid cohesion. Curr Biol. 22(17):1576–1581.
  • Ammazzalorso F, Pirzio LM, Bignami M, Franchitto A, Pichierri P. 2010. ATR and ATM differently regulate WRN to prevent DSBs at stalled replication forks and promote replication fork recovery. EMBO J. 29(18):3156–3169.
  • Anderson DE, Losada A, Erickson HP, Hirano T. 2002. Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol. 156(3):419–424.
  • Arnould C, Rocher V, Finoux AL, Clouaire T, Li K, Zhou F, Caron P, Mangeot PE, Ricci EP, Mourad R, et al. 2021. Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature. 590(7847):660–665.
  • Bailey ML, O'Neil NJ, van Pel DM, Solomon DA, Waldman T, Hieter P. 2014. Glioblastoma cells containing mutations in the cohesin component STAG2 are sensitive to PARP inhibition. Mol Cancer Ther. 13(3):724–732.
  • Barber TD, McManus K, Yuen KW, Reis M, Parmigiani G, Shen D, Barrett I, Nouhi Y, Spencer F, Markowitz S, et al. 2008. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc Natl Acad Sci USA. 105(9):3443–3448.
  • Bauerschmidt C, Arrichiello C, Burdak-Rothkamm S, Woodcock M, Hill MA, Stevens DL, Rothkamm K. 2010. Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Res. 38(2):477–487.
  • Bertoli C, Klier S, McGowan C, Wittenberg C, de Bruin RA. 2013. Chk1 inhibits E2F6 repressor function in response to replication stress to maintain cell-cycle transcription. Curr Biol. 23(17):1629–1637.
  • Birkenbihl RP, Subramani S. 1992. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 20(24):6605–6611.
  • Blackford AN, Jackson SP. 2017. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol Cell. 66(6):801–817.
  • Boland A, Martin TG, Zhang Z, Yang J, Bai XC, Chang L, Scheres SH, Barford D. 2017. Cryo-EM structure of a metazoan separase-securin complex at near-atomic resolution. Nat Struct Mol Biol. 24(4):414–418.
  • Bonora E, Bianco F, Cordeddu L, Bamshad M, Francescatto L, Dowless D, Stanghellini V, Cogliandro RF, Lindberg G, Mungan Z, et al. 2015. Mutations in RAD21 disrupt regulation of APOB in patients with chronic intestinal pseudo-obstruction. Gastroenterology. 148(4):771–782. e711.
  • Borges V, Lehane C, Lopez-Serra L, Flynn H, Skehel M, Rolef Ben-Shahar T, Uhlmann F. 2010. Hos1 deacetylates Smc3 to close the cohesin acetylation cycle. Mol Cell. 39(5):677–688.
  • Borton MT, Rashid MS, Dreier MR, Taylor WR. 2016. Multiple levels of regulation of sororin by Cdk1 and Aurora B. J Cell Biochem. 117(2):351–360.
  • Bot C, Pfeiffer A, Giordano F, Manjeera DE, Dantuma NP, Strom L. 2017. Independent mechanisms recruit the cohesin loader protein NIPBL to sites of DNA damage. J Cell Sci. 130(6):1134–1146.
  • Callén E, Jankovic M, Wong N, Zha S, Chen HT, Difilippantonio S, Di Virgilio M, Heidkamp G, Alt FW, Nussenzweig A, et al. 2009. Essential role for DNA-PKcs in DNA double-strand break repair and apoptosis in ATM-deficient lymphocytes. Mol Cell. 34(3):285–297.
  • Carvajal-Maldonado D, Byrum AK, Jackson J, Wessel S, Lemaçon D, Guitton-Sert L, Quinet A, Tirman S, Graziano S, Masson JY, et al. 2019. Perturbing cohesin dynamics drives MRE11 nuclease-dependent replication fork slowing. Nucleic Acids Res. 47(3):1294–1310.
  • Ceccaldi R, Rondinelli B, D'Andrea AD. 2016. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26(1):52–64.
  • Chan KL, Roig MB, Hu B, Beckouet F, Metson J, Nasmyth K. 2012. Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell. 150(5):961–974.
  • Chang HHY, Pannunzio NR, Adachi N, Lieber MR. 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 18(8):495–506.
  • Chao WC, Murayama Y, Munoz S, Costa A, Uhlmann F, Singleton MR. 2015. Structural studies reveal the functional modularity of the Scc2-Scc4 cohesin loader. Cell Rep. 12(5):719–725.
  • Chao WC, Murayama Y, Munoz S, Jones AW, Wade BO, Purkiss AG, Hu XW, Borg A, Snijders AP, Uhlmann F, et al. 2017. Structure of the cohesin loader Scc2. Nat Commun. 8:13952.
  • Ciosk R, Shirayama M, Shevchenko A, Tanaka T, Toth A, Shevchenko A, Nasmyth K. 2000. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell. 5(2):243–254.
  • Cortez D, Guntuku S, Qin J, Elledge SJ. 2001. ATR and ATRIP: partners in checkpoint signaling. Science. 294(5547):1713–1716.
  • Datta S, Lecomte L, Haering CH. 2020. Structural insights into DNA loop extrusion by SMC protein complexes. Curr Opin Struct Biol. 65:102–109.
  • Davidson IF, Bauer B, Goetz D, Tang W, Wutz G, Peters JM. 2019. DNA loop extrusion by human cohesin. Science. 366(6471):1338–1345.
  • Davidson IF, Peters JM. 2021. Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol. 22(7):445–464.
  • de Carcer G, Venkateswaran SV, Salgueiro L, El Bakkali A, Somogyi K, Rowald K, Montanes P, Sanclemente M, Escobar B, de Martino A, et al. 2018. Plk1 overexpression induces chromosomal instability and suppresses tumor development. Nat Commun. 9(1):3012.
  • De Keersmaecker K, Atak ZK, Li N, Vicente C, Patchett S, Girardi T, Gianfelici V, Geerdens E, Clappier E, Porcu M, et al. 2013. Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet. 45(2):186–190.
  • Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, Saitoh K, Komata M, Katou Y, Clark D, et al. 2012. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature. 489(7415):313–317.
  • Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J, Gil-Rodriguez C, Arnedo M, Loeys B, Kline AD, et al. 2007. Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet. 80(3):485–494.
  • Delamarre A, Barthe A, de la R, Saint-Andre C, Luciano P, Forey R, Padioleau I, Skrzypczak M, Ginalski K, Geli V, Pasero P. 2020. MRX increases chromatin accessibility at stalled replication forks to promote nascent DNA resection and cohesin loading. Mol Cell. 77(2):395–410.e393.
  • Dodson H, Morrison CG. 2009. Increased sister chromatid cohesion and DNA damage response factor localization at an enzyme-induced DNA double-strand break in vertebrate cells. Nucleic Acids Res. 37(18):6054–6063.
  • Dorsett D, Strom L. 2012. The ancient and evolving roles of cohesin in gene expression and DNA repair. Curr Biol. 22(7):R240–250.
  • Dreier MR, Bekier ME, 2nd, Taylor WR. 2011. Regulation of sororin by Cdk1-mediated phosphorylation. J Cell Sci. 124(Pt 17):2976–2987.
  • Eissenberg JC, Ayyagari R, Gomes XV, Burgers PM. 1997. Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol Cell Biol. 17(11):6367–6378.
  • Enervald E, Lindgren E, Katou Y, Shirahige K, Strom L. 2013. Importance of Polη for damage-induced cohesion reveals differential regulation of cohesion establishment at the break site and genome-wide. PLOS Genet. 9(1):e1003158.
  • Falck J, Coates J, Jackson SP. 2005. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature. 434(7033):605–611.
  • Frattini C, Villa-Hernández S, Pellicanò G, Jossen R, Katou Y, Shirahige K, Bermejo R. 2017. Cohesin ubiquitylation and mobilization facilitate stalled replication fork dynamics. Mol Cell. 68(4):758–772.e754.
  • Fukuda T, Pratto F, Schimenti JC, Turner JM, Camerini-Otero RD, Hoog C. 2012. Phosphorylation of chromosome core components may serve as axis marks for the status of chromosomal events during mammalian meiosis. PLOS Genet. 8(2):e1002485.
  • Gandhi R, Gillespie PJ, Hirano T. 2006. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol. 16(24):2406–2417.
  • Garcia IA, Garro C, Fernandez E, Soria G. 2020. Therapeutic opportunities for PLK1 inhibitors: spotlight on BRCA1-deficiency and triple negative breast cancers. Mutat Res. 821:111693.
  • Gassler J, Brandao HB, Imakaev M, Flyamer IM, Ladstatter S, Bickmore WA, Peters JM, Mirny LA, Tachibana K. 2017. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J. 36(24):3600–3618.
  • Gil-Rodriguez MC, Deardorff MA, Ansari M, Tan CA, Parenti I, Baquero-Montoya C, Ousager LB, Puisac B, Hernandez-Marcos M, Teresa-Rodrigo ME, et al. 2015. De novo heterozygous mutations in SMC3 cause a range of Cornelia de Lange syndrome-overlapping phenotypes. Hum Mutat. 36(4):454–462.
  • Gligoris TG, Scheinost JC, Burmann F, Petela N, Chan KL, Uluocak P, Beckouet F, Gruber S, Nasmyth K, Lowe J. 2014. Closing the cohesin ring: structure and function of its Smc3-kleisin interface. Science. 346(6212):963–967.
  • Gonzalez-Loyola A, Fernandez-Miranda G, Trakala M, Partida D, Samejima K, Ogawa H, Canamero M, de Martino A, Martinez-Ramirez A, de Carcer G, et al. 2015. Aurora B overexpression causes aneuploidy and p21Cip1 repression during tumor development. Mol Cell Biol. 35(20):3566–3578.
  • Goto Y, Yamagishi Y, Shintomi-Kawamura M, Abe M, Tanno Y, Watanabe Y. 2017. Pds5 regulates sister-chromatid cohesion and chromosome Bi-orientation through a conserved protein interaction module. Curr Biol. 27(7):1005–1012.
  • Graumann PL, Knust T. 2009. Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair. Chromosome Res. 17(2):265–275.
  • Guo XB, Huang B, Pan YH, Su SG, Li Y. 2018. ESCO2 inhibits tumor metastasis via transcriptionally repressing MMP2 in colorectal cancer. Cancer Manag Res. 10:6157–6166.
  • Haering CH, Lowe J, Hochwagen A, Nasmyth K. 2002. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell. 9(4):773–788.
  • Hara K, Zheng G, Qu Q, Liu H, Ouyang Z, Chen Z, Tomchick DR, Yu H. 2014. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nat Struct Mol Biol. 21(10):864–870.
  • Hassler M, Shaltiel IA, Haering CH. 2018. Towards a unified model of SMC complex function. Curr Biol. 28(21):R1266–R1281.
  • Hauf S, Roitinger E, Koch B, Dittrich CM, Mechtler K, Peters JM. 2005. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLOS Biol. 3(3):e69.
  • Hauf S, Waizenegger IC, Peters JM. 2001. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science. 293(5533):1320–1323.
  • Heidinger-Pauli JM, Unal E, Guacci V, Koshland D. 2008. The kleisin subunit of cohesin dictates damage-induced cohesion. Mol Cell. 31(1):47–56.
  • Heidinger-Pauli JM, Unal E, Koshland D. 2009. Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol Cell. 34(3):311–321.
  • Herbst RS, Giaccone G, de Marinis F, Reinmuth N, Vergnenegre A, Barrios CH, Morise M, Felip E, Andric Z, Geater S, et al. 2020. Atezolizumab for first-line treatment of PD-L1-selected patients with NSCLC. N Engl J Med. 383(14):1328–1339.
  • Hirano T. 2002. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. 16(4):399–414.
  • Hirano T. 2005. SMC proteins and chromosome mechanics: from bacteria to humans. Philos Trans R Soc Lond B Biol Sci. 360(1455):507–514.
  • Hirano T. 2006. At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol. 7(5):311–322.
  • Hlubek F, Pfeiffer S, Budczies J, Spaderna S, Jung A, Kirchner T, Brabletz T. 2006. Securin (hPTTG1) expression is regulated by beta-catenin/TCF in human colorectal carcinoma. Br J Cancer. 94(11):1672–1677.
  • Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, Karcher A, Henderson B, Bodmer JL, McMurray CT, et al. 2002. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature. 418(6897):562–566.
  • Hoque MT, Ishikawa F. 2001. Human chromatid cohesin component hRad21 is phosphorylated in M phase and associated with metaphase centromeres. J Biol Chem. 276(7):5059–5067.
  • Hou F, Zou H. 2005. Two human orthologues of Eco1/Ctf7 acetyltransferases are both required for proper sister-chromatid cohesion. Mol Biol Cell. 16(8):3908–3918.
  • Ioannidou A, Zachaki S, Karakosta M, Daraki A, Roussou P, Manola KN. 2018. Cohesin RAD21 gene promoter methylation in patients with chronic lymphocytic leukemia. Cytogenet Genome Res. 154(3):126–131.
  • Ivanov D, Schleiffer A, Eisenhaber F, Mechtler K, Haering CH, Nasmyth K. 2002. Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr Biol. 12(4):323–328.
  • Ivanov MP, Ladurner R, Poser I, Beveridge R, Rampler E, Hudecz O, Novatchkova M, Heriche JK, Wutz G, van der Lelij P, et al. 2018. The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J. 37(15): e97150.
  • Jessberger R, Podust V, Hubscher U, Berg P. 1993. A mammalian protein complex that repairs double-strand breaks and deletions by recombination. J Biol Chem. 268(20):15070–15079.
  • Jessberger R, Riwar B, Baechtold H, Akhmedov AT. 1996. SMC proteins constitute two subunits of the mammalian recombination complex RC-1. EMBO J. 15(15):4061–4068.
  • Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, et al. 2010. Mediator and cohesin connect gene expression and chromatin architecture. Nature. 467(7314):430–435.
  • Kane LWL, Flyamer I, Kumar Y, Hill R, Lettice L, Bickmore W. 2021. Cohesin is required for long-range enhancer action. Cold Spring Harb Perspect Biol. DOI:https://doi.org/10.1101/2021.06.24.449812.
  • Kantaputra PN, Dejkhamron P, Tongsima S, Ngamphiw C, Intachai W, Ngiwsara L, Sawangareetrakul P, Svasti J, Olsen B, Cairns JRK, et al. 2020. Juberg-Hayward syndrome and Roberts syndrome are allelic, caused by mutations in ESCO2. Arch Oral Biol. 119(104918):104918.
  • Kao Y, Tsai WC, Chen SH, Hsu SY, Huang LC, Chang CJ, Huang SM, Hueng DY. 2021. Shugosin 2 is a biomarker for pathological grading and survival prediction in patients with gliomas. Sci Rep. 11(1):18541.
  • Kenna MA, Skibbens RV. 2003. Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different replication factor C complexes. Mol Cell Biol. 23(8):2999–3007.
  • Kim BJ, Li Y, Zhang J, Xi Y, Li Y, Yang T, Jung SY, Pan X, Chen R, Li W, et al. 2010. Genome-wide reinforcement of cohesin binding at pre-existing cohesin sites in response to ionizing radiation in human cells. J Biol Chem. 285(30):22784–22792.
  • Kim JS, Krasieva TB, LaMorte V, Taylor AM, Yokomori K. 2002. Specific recruitment of human cohesin to laser-induced DNA damage. J Biol Chem. 277(47):45149–45153.
  • Kim ST, Xu B, Kastan MB. 2002. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16(5):560–570.
  • Kim Y, Shi Z, Zhang H, Finkelstein IJ, Yu H. 2019. Human cohesin compacts DNA by loop extrusion. Science. 366(6471):1345–1349.
  • Kinoshita E, van der Linden E, Sanchez H, Wyman C. 2009. RAD50, an SMC family member with multiple roles in DNA break repair: how does ATP affect function? Chromosome Res. 17(2):277–288.
  • Kitajima TS, Sakuno T, Ishiguro K, Iemura S, Natsume T, Kawashima SA, Watanabe Y. 2006. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature. 441(7089):46–52.
  • Kong X, Ball AR, Jr., Pham HX, Zeng W, Chen HY, Schmiesing JA, Kim JS, Berns M, Yokomori K. 2014. Distinct functions of human cohesin-SA1 and cohesin-SA2 in double-strand break repair. Mol Cell Biol. 34(4):685–698.
  • Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, et al. 2012. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 44(9):1006–1014.
  • Kruszka P, Berger SI, Casa V, Dekker MR, Gaesser J, Weiss K, Martinez AF, Murdock DR, Louie RJ, Prijoles EJ, et al. 2019. Cohesin complex-associated holoprosencephaly. Brain. 142(9):2631–2643.
  • Kueng S, Hegemann B, Peters BH, Lipp JJ, Schleiffer A, Mechtler K, Peters JM. 2006. Wapl controls the dynamic association of cohesin with chromatin. Cell. 127(5):955–967.
  • Lafont AL, Song J, Rankin S. 2010. Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion. Proc Natl Acad Sci USA. 107(47):20364–20369.
  • Lanz MC, Dibitetto D, Smolka MB. 2019. DNA damage kinase signaling: checkpoint and repair at 30 years. EMBO J. 38(18):e101801.
  • Lawrimore J, Bloom K. 2019. The regulation of chromosome segregation via centromere loops. Crit Rev Biochem Mol Biol. 54(4):352–370.
  • Lee J, Kitajima TS, Tanno Y, Yoshida K, Morita T, Miyano T, Miyake M, Watanabe Y. 2008. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol. 10(1):42–52.
  • Lee JH, Paull TT. 2004. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science. 304(5667):93–96.
  • Lee JH, Paull TT. 2005. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science. 308(5721):551–554.
  • Lefebvre C, Bachelot T, Filleron T, Pedrero M, Campone M, Soria JC, Massard C, Lévy C, Arnedos M, Lacroix-Triki M, et al. 2016. Mutational profile of metastatic breast cancers: a retrospective analysis. PLOS Med. 13(12):e1002201.
  • Lehalle D, Mosca-Boidron AL, Begtrup A, Boute-Benejean O, Charles P, Cho MT, Clarkson A, Devinsky O, Duffourd Y, Duplomb-Jego L, et al. 2017. STAG1 mutations cause a novel cohesinopathy characterised by unspecific syndromic intellectual disability. J Med Genet. 54(7):479–488.
  • Lengronne A, McIntyre J, Katou Y, Kanoh Y, Hopfner KP, Shirahige K, Uhlmann F. 2006. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol Cell. 23(6):787–799.
  • Li J, He J, Wang Y, Shu Y, Zhou J. 2019. SMC1 promotes proliferation and inhibits apoptosis through the NF-κB signaling pathway in colorectal cancer. Oncol Rep. 42(4):1329–1342.
  • Li K, Ying M, Feng D, Chen Y, Wang J, Wang Y. 2016. SMC1 promotes epithelial-mesenchymal transition in triple-negative breast cancer through upregulating Brachyury. Oncol Rep. 35(4):2405–2412.
  • Li S, Yue Z, Tanaka TU. 2017. Smc3 deacetylation by Hos1 facilitates efficient dissolution of sister chromatid cohesion during early anaphase. Mol Cell. 68(3):605–614.e604.
  • Li Y, Haarhuis JHI, Sedeno Cacciatore A, Oldenkamp R, van Ruiten MS, Willems L, Teunissen H, Muir KW, de Wit E, Rowland BD, et al. 2020. The structural basis for cohesin-CTCF-anchored loops. Nature. 578(7795):472–476.
  • Liang C, Chen Q, Yi Q, Zhang M, Yan H, Zhang B, Zhou L, Zhang Z, Qi F, Ye S, et al. 2018. A kinase-dependent role for Haspin in antagonizing Wapl and protecting mitotic centromere cohesion. EMBO Rep. 19(1):43–56.
  • Lin Z, Luo X, Yu H. 2016. Structural basis of cohesin cleavage by separase. Nature. 532(7597):131–134.
  • Lin ZZ, Jeng YM, Hu FC, Pan HW, Tsao HW, Lai PL, Lee PH, Cheng AL, Hsu HC. 2010. Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC. BMC Cancer. 10:461.
  • Liu F, Li Y, Ying D, Qiu S, He Y, Li M, Liu Y, Zhang Y, Zhu Q, Hu Y, et al. 2021. Whole-exome mutational landscape of neuroendocrine carcinomas of the gallbladder. Signal Transduct Target Ther. 6(1):55.
  • Liu H, Jia L, Yu H. 2013. Phospho-H2A and cohesin specify distinct tension-regulated Sgo1 pools at kinetochores and inner centromeres. Curr Biol. 23(19):1927–1933.
  • Liu H, Qu Q, Warrington R, Rice A, Cheng N, Yu H. 2015. Mitotic transcription installs Sgo1 at centromeres to coordinate chromosome segregation. Mol Cell. 59(3):426–436.
  • Liu H, Rankin S, Yu H. 2013. Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat Cell Biol. 15(1):40–49.
  • Liu HW, Bouchoux C, Panarotto M, Kakui Y, Patel H, Uhlmann F. 2020. Division of labor between PCNA loaders in DNA replication and sister chromatid cohesion establishment. Mol Cell. 78(4):725–738.e724.
  • Liu Y, Xu H, Van der Jeught K, Li Y, Liu S, Zhang L, Fang Y, Zhang X, Radovich M, Schneider BP, et al. 2018. Somatic mutation of the cohesin complex subunit confers therapeutic vulnerabilities in cancer. J Clin Invest. 128(7):2951–2965.
  • Losada A. 2014. Cohesin in cancer: chromosome segregation and beyond. Nat Rev Cancer. 14(6):389–393.
  • Losada A, Hirano M, Hirano T. 1998. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12(13):1986–1997.
  • Losada A, Yokochi T, Hirano T. 2005. Functional contribution of Pds5 to cohesin-mediated cohesion in human cells and Xenopus egg extracts. J Cell Sci. 118(Pt 10):2133–2141.
  • Losada A, Yokochi T, Kobayashi R, Hirano T. 2000. Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J Cell Biol. 150(3):405–416.
  • Loveday C, Tatton-Brown K, Clarke M, Westwood I, Renwick A, Ramsay E, Nemeth A, Campbell J, Joss S, Gardner M, et al. 2015. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth. Hum Mol Genet. 24(17):4775–4779.
  • Luo H, Li Y, Mu JJ, Zhang J, Tonaka T, Hamamori Y, Jung SY, Wang Y, Qin J. 2008. Regulation of intra-S phase checkpoint by ionizing radiation (IR)-dependent and IR-independent phosphorylation of SMC3. J Biol Chem. 283(28):19176–19183.
  • Luo S, Tong L. 2017. Molecular mechanism for the regulation of yeast separase by securin. Nature. 542(7640):255–259.
  • Lyons NA, Fonslow BR, Diedrich JK, Yates JR, 3rd, Morgan DO. 2013. Sequential primed kinases create a damage-responsive phosphodegron on Eco1. Nat Struct Mol Biol. 20(2):194–201.
  • Lyons NA, Morgan DO. 2011. Cdk1-dependent destruction of Eco1 prevents cohesion establishment after S phase. Mol Cell. 42(3):378–389.
  • Ma M, Rodriguez A, Sugimoto K. 2020. Activation of ATR-related protein kinase upon DNA damage recognition. Curr Genet. 66(2):327–333.
  • Mannini L, Cucco F, Quarantotti V, Krantz ID, Musio A. 2013. Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome. Hum Mutat. 34(12):1589–1596.
  • Marechal A, Zou L. 2013. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 5(9):a012716.
  • McAleenan A, Clemente-Blanco A, Cordon-Preciado V, Sen N, Esteras M, Jarmuz A, Aragon L. 2013. Post-replicative repair involves separase-dependent removal of the kleisin subunit of cohesin. Nature. 493(7431):250–254.
  • McAleenan A, Cordon-Preciado V, Clemente-Blanco A, Liu IC, Sen N, Leonard J, Jarmuz A, Aragon L. 2012. SUMOylation of the α-kleisin subunit of cohesin is required for DNA damage-induced cohesion . Curr Biol. 22(17):1564–1575.
  • McGuinness BE, Hirota T, Kudo NR, Peters JM, Nasmyth K. 2005. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLOS Biol. 3(3):e86.
  • McLellan JL, O'Neil NJ, Barrett I, Ferree E, van Pel DM, Ushey K, Sipahimalani P, Bryan J, Rose AM, Hieter P. 2012. Synthetic lethality of cohesins with PARPs and replication fork mediators. PLOS Genet. 8(3):e1002574.
  • Mengen E, Kotan LD, Ucakturk SA, Topaloglu AK, Yuksel B. 2018. A novel frameshift mutation in ESCO2 gene in Roberts syndrome. J Coll Physicians Surg Pak. 28(5):403–405.
  • Merkenschlager M, Nora EP. 2016. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu Rev Genomics Hum Genet. 17:17–43.
  • Mfarej MG, Skibbens RV. 2020a. DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae. PLOS One. 15(12):e0242968.
  • Mfarej MG, Skibbens RV. 2020b. An ever-changing landscape in Roberts syndrome biology: Implications for macromolecular damage. PLOS Genet. 16(12):e1009219.
  • Michaelis C, Ciosk R, Nasmyth K. 1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell. 91(1):35–45.
  • Minamino M, Tei S, Negishi L, Kanemaki MT, Yoshimura A, Sutani T, Bando M, Shirahige K. 2018. Temporal regulation of ESCO2 degradation by the MCM complex, the CUL4-DDB1-VPRBP complex, and the anaphase-promoting complex. Curr Biol. 28(16):2665–2672.e2665.
  • Mintzas K, Heuser M. 2019. Emerging strategies to target the dysfunctional cohesin complex in cancer. Expert Opin Ther Targets. 23(6):525–537.
  • Mondal G, Stevers M, Goode B, Ashworth A, Solomon DA. 2019. A requirement for STAG2 in replication fork progression creates a targetable synthetic lethality in cohesin-mutant cancers. Nat Commun. 10(1):1686.
  • Morales C, Losada A. 2018. Establishing and dissolving cohesion during the vertebrate cell cycle. Curr Opin Cell Biol. 52:51–57.
  • Morales C, Ruiz-Torres M, Rodríguez-Acebes S, Lafarga V, Rodríguez-Corsino M, Megías D, Cisneros DA, Peters JM, Méndez J, Losada A. 2020. PDS5 proteins are required for proper cohesin dynamics and participate in replication fork protection. J Biol Chem. 295(1):146–157.
  • Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, Arango D, Strausberg RL, Buchanan D, Wormald S, et al. 2014. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res. 74(12):3238–3247.
  • Mullegama SV, Klein SD, Mulatinho MV, Senaratne TN, Singh K, Nguyen DC, Gallant NM, Strom SP, Ghahremani S, Rao NP, et al. 2017. De novo loss-of-function variants in STAG2 are associated with developmental delay, microcephaly, and congenital anomalies. Am J Med Genet A. 173(5):1319–1327.
  • Mullegama SV, Klein SD, Signer RH, Center UCG, Vilain E, Martinez-Agosto JA. 2019. Mutations in STAG2 cause an X-linked cohesinopathy associated with undergrowth, developmental delay, and dysmorphia: Expanding the phenotype in males. Mol Genet Genomic Med. 7(2):e00501.
  • Murayama Y, Samora CP, Kurokawa Y, Iwasaki H, Uhlmann F. 2018. Establishment of DNA-DNA interactions by the cohesin ring. Cell. 172(3):465–477.e415.
  • Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, Russo S, Vezzoni P, Larizza L. 2006. X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet. 38(5):528–530.
  • Nagao K, Adachi Y, Yanagida M. 2004. Separase-mediated cleavage of cohesin at interphase is required for DNA repair. Nature. 430(7003):1044–1048.
  • Nasmyth K, Haering CH. 2005. The structure and function of SMC and kleisin complexes. Annu Rev Biochem. 74:595–648.
  • Nguyen MH, Koinuma J, Ueda K, Ito T, Tsuchiya E, Nakamura Y, Daigo Y. 2010. Phosphorylation and activation of cell division cycle associated 5 by mitogen-activated protein kinase play a crucial role in human lung carcinogenesis. Cancer Res. 70(13):5337–5347.
  • Nishiyama T. 2019. Cohesion and cohesin-dependent chromatin organization. Curr Opin Cell Biol. 58:8–14.
  • Nishiyama T, Ladurner R, Schmitz J, Kreidl E, Schleiffer A, Bhaskara V, Bando M, Shirahige K, Hyman AA, Mechtler K, et al. 2010. Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell. 143(5):737–749.
  • Nishiyama T, Sykora MM, Huis In 't Veld PJ, Mechtler K, Peters JM. 2013. Aurora B and Cdk1 mediate Wapl activation and release of acetylated cohesin from chromosomes by phosphorylating Sororin. Proc Natl Acad Sci USA. 110(33):13404–13409.
  • O'Neil NJ, van Pel DM, Hieter P. 2013. Synthetic lethality and cancer: cohesin and PARP at the replication fork. Trends Genet. 29(5):290–297.
  • Oikawa K, Ohbayashi T, Kiyono T, Nishi H, Isaka K, Umezawa A, Kuroda M, Mukai K. 2004. Expression of a novel human gene, human wings apart-like (hWAPL), is associated with cervical carcinogenesis and tumor progression. Cancer Res. 64(10):3545–3549.
  • Ouyang Z, Zheng G, Song J, Borek DM, Otwinowski Z, Brautigam CA, Tomchick DR, Rankin S, Yu H. 2013. Structure of the human cohesin inhibitor Wapl. Proc Natl Acad Sci USA. 110(28):11355–11360.
  • Panizza S, Tanaka T, Hochwagen A, Eisenhaber F, Nasmyth K. 2000. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr Biol. 10(24):1557–1564.
  • Pardo B, Crabbe L, Pasero P. 2017. Signaling pathways of replication stress in yeast. FEMS Yeast Res. 17(2). DOI:https://doi.org/10.1093/femsyr/fow101.
  • Parenti I, Diab F, Gil SR, Mulugeta E, Casa V, Berutti R, Brouwer RWW, Dupe V, Eckhold J, Graf E, et al. 2020. MAU2 and NIPBL variants impair the heterodimerization of the cohesin loader subunits and cause Cornelia de Lange Syndrome. Cell Rep. 31(7):107647.
  • Perea-Resa C, Wattendorf L, Marzouk S, Blower MD. 2021. Cohesin: behind dynamic genome topology and gene expression reprogramming. Trends Cell Biol. 31(9):760–773.
  • Peters JM, Nishiyama T. 2012. Sister chromatid cohesion. Cold Spring Harb Perspect Biol. 4(11):a011130.
  • Piazza A, Bordelet H, Dumont A, Thierry A, Savocco J, Girard F, Koszul R. 2021. Cohesin regulates homology search during recombinational DNA repair. Nat Cell Biol. 23(11):1176–1186.
  • Pickering CR, Zhou JH, Lee JJ, Drummond JA, Peng SA, Saade RE, Tsai KY, Curry JL, Tetzlaff MT, Lai SY, et al. 2014. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res. 20(24):6582–6592.
  • Price JC, Pollock LM, Rudd ML, Fogoros SK, Mohamed H, Hanigan CL, Le Gallo M, Zhang S, Cruz P, Cherukuri PF, et al. 2014. Sequencing of candidate chromosome instability genes in endometrial cancers reveals somatic mutations in ESCO1, CHTF18, and MRE11A. PLOS One. 8(6):e63313.
  • Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, Escaramis G, Jares P, Bea S, Gonzalez-Diaz M, et al. 2011. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 475(7354):101–105.
  • Rankin S, Ayad NG, Kirschner MW. 2005. Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Mol Cell. 18(2):185–200.
  • Reilly NM, Novara L, Di Nicolantonio F, Bardelli A. 2019. Exploiting DNA repair defects in colorectal cancer. Mol Oncol. 13(4):681–700.
  • Remmerie M, Janssens V. 2019. PP2A: a promising biomarker and therapeutic target in endometrial cancer. Front Oncol. 9:462.
  • Revenkova E, Focarelli ML, Susani L, Paulis M, Bassi MT, Mannini L, Frattini A, Delia D, Krantz I, Vezzoni P, et al. 2009. Cornelia de Lange syndrome mutations in SMC1A or SMC3 affect binding to DNA. Hum Mol Genet. 18(3):418–427.
  • Rhodes JDP, Haarhuis JHI, Grimm JB, Rowland BD, Lavis LD, Nasmyth KA. 2017. Cohesin can remain associated with chromosomes during DNA replication. Cell Rep. 20(12):2749–2755.
  • Rivas MA, Meydan C, Chin CR, Challman MF, Kim D, Bhinder B, Kloetgen A, Viny AD, Teater MR, McNally DR, et al. 2021. Smc3 dosage regulates B cell transit through germinal centers and restricts their malignant transformation. Nat Immunol. 22(2):240–253.
  • Rocquain J, Gelsi-Boyer V, Adelaide J, Murati A, Carbuccia N, Vey N, Birnbaum D, Mozziconacci MJ, Chaffanet M. 2010. Alteration of cohesin genes in myeloid diseases. Am J Hematol. 85(9):717–719.
  • Rolef Ben-Shahar T, Heeger S, Lehane C, East P, Flynn H, Skehel M, Uhlmann F. 2008. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science. 321(5888):563–566.
  • Romero-Perez L, Surdez D, Brunet E, Delattre O, Grunewald TGP. 2019. STAG mutations in cancer. Trends Cancer. 5(8):506–520.
  • Rowland BD, Roig MB, Nishino T, Kurze A, Uluocak P, Mishra A, Beckouet F, Underwood P, Metson J, Imre R, et al. 2009. Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol Cell. 33(6):763–774.
  • Rowley MJ, Corces VG. 2018. Organizational principles of 3D genome architecture. Nat Rev Genet. 19(12):789–800.
  • Saldivar JC, Cortez D, Cimprich KA. 2017. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol. 18(10):622–636.
  • Samora CP, Saksouk J, Goswami P, Wade BO, Singleton MR, Bates PA, Lengronne A, Costa A, Uhlmann F. 2016. Ctf4 links DNA replication with sister chromatid cohesion establishment by recruiting the Chl1 helicase to the replisome. Mol Cell. 63(3):371–384.
  • Schmitz J, Watrin E, Lenart P, Mechtler K, Peters JM. 2007. Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Curr Biol. 17(7):630–636.
  • Scully R, Panday A, Elango R, Willis NA. 2019. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 20(11):698–714.
  • Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, Chaudhuri S, Guan Y, Janakiraman V, Jaiswal BS, et al. 2012. Recurrent R-spondin fusions in colon cancer. Nature. 488(7413):660–664.
  • Shi Z, Gao H, Bai XC, Yu H. 2020. Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science. 368(6498):1454–1459.
  • Singh VP, Gerton JL. 2015. Cohesin and human disease: lessons from mouse models. Curr Opin Cell Biol. 37:9–17.
  • Sjogren C, Nasmyth K. 2001. Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae. Curr Biol. 11(12):991–995.
  • Skibbens RV. 2010. Buck the establishment: reinventing sister chromatid cohesion. Trends Cell Biol. 20(9):507–513.
  • Skibbens RV, Corson LB, Koshland D, Hieter P. 1999. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev. 13(3):307–319.
  • Smith JS, Lappin KM, Craig SG, Liberante FG, Crean CM, McDade SS, Thompson A, Mills KI, Savage KI. 2020. Chronic loss of STAG2 leads to altered chromatin structure contributing to de-regulated transcription in AML. J Transl Med. 18(1):339.
  • Soh YM, Burmann F, Shin HC, Oda T, Jin KS, Toseland CP, Kim C, Lee H, Kim SJ, Kong MS, et al. 2015. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol Cell. 57(2):290–303.
  • Sonoda E, Matsusaka T, Morrison C, Vagnarelli P, Hoshi O, Ushiki T, Nojima K, Fukagawa T, Waizenegger IC, Peters JM, et al. 2001. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev Cell. 1(6):759–770.
  • Srinivasan M, Fumasoni M, Petela NJ, Murray A, Nasmyth KA. 2020. Cohesion is established during DNA replication utilising chromosome associated cohesin rings as well as those loaded de novo onto nascent DNAs. Elife. 9:e56611.
  • Strom L, Karlsson C, Lindroos HB, Wedahl S, Katou Y, Shirahige K, Sjogren C. 2007. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science. 317(5835):242–245.
  • Strom L, Lindroos HB, Shirahige K, Sjogren C. 2004. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell. 16(6):1003–1015.
  • Sun H, Zhang J, Xin S, Jiang M, Zhang J, Li Z, Cao Q, Lou H. 2019. Cul4-Ddb1 ubiquitin ligases facilitate DNA replication-coupled sister chromatid cohesion through regulation of cohesin acetyltransferase Esco2. PLOS Genet. 15(2):e1007685.
  • Supernat ANNA, Łapińska-Szumczyk S, Sawicki S, Wydra D, Biernat W, Żaczek AJ. 2012. Deregulation of RAD21 and RUNX1 expression in endometrial cancer. Oncol Lett. 4(4):727–732.
  • Sutani T, Kawaguchi T, Kanno R, Itoh T, Shirahige K. 2009. Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Curr Biol. 19(6):492–497.
  • Tang Z, Shu H, Qi W, Mahmood NA, Mumby MC, Yu H. 2006. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev Cell. 10(5):575–585.
  • Tedeschi A, Wutz G, Huet S, Jaritz M, Wuensche A, Schirghuber E, Davidson IF, Tang W, Cisneros DA, Bhaskara V, et al. 2013. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature. 501(7468):564–568.
  • Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T. 2004. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet. 36(6):636–641.
  • Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K. 1999. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13(3):320–333.
  • Truebestein L, Leonard TA. 2016. Coiled-coils: the long and short of it. Bioessays. 38(9):903–916.
  • Tubbs A, Nussenzweig A. 2017. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 168(4):644–656.
  • Uhlmann F. 2016. SMC complexes: from DNA to chromosomes. Nat Rev Mol Cell Biol. 17(7):399–412.
  • Uhlmann F, Nasmyth K. 1998. Cohesion between sister chromatids must be established during DNA replication. Curr Biol. 8(20):1095–1101.
  • Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K. 2000. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell. 103(3):375–386.
  • Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D. 2004. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell. 16(6):991–1002.
  • Unal E, Heidinger-Pauli JM, Kim W, Guacci V, Onn I, Gygi SP, Koshland DE. 2008. A molecular determinant for the establishment of sister chromatid cohesion. Science. 321(5888):566–569.
  • Unal E, Heidinger-Pauli JM, Koshland D. 2007. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science. 317(5835):245–248.
  • Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, Place CS, Taylor-Weiner A, Whittaker S, Kryukov GV, et al. 2014. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 4(1):94–109.
  • van Ruiten MS, Rowland BD. 2021. On the choreography of genome folding: a grand pas de deux of cohesin and CTCF. Curr Opin Cell Biol. 70:84–90.
  • Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van Gosliga D, Kayserili H, Xu C, Ozono K, et al. 2005. Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion. Nat Genet. 37(5):468–470.
  • Waizenegger I, Gimenez-Abian JF, Wernic D, Peters JM. 2002. Regulation of human separase by securin binding and autocleavage. Curr Biol. 12(16):1368–1378.
  • Wakeman TP, Kim WJ, Callens S, Chiu A, Brown KD, Xu B. 2004. The ATM-SMC1 pathway is essential for activation of the chromium[VI]-induced S-phase checkpoint. Mutat Res. 554(1-2):241–251.
  • Waldman T. 2020. Emerging themes in cohesin cancer biology. Nat Rev Cancer. 20(9):504–515.
  • Wang D, Wang L, Zhang Y, Zhao Y, Chen G. 2018. Hydrogen gas inhibits lung cancer progression through targeting SMC3. Biomed Pharmacother. 104:788–797.
  • Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, Stukenberg PT, Gorbsky GJ, Higgins JM. 2010. Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science. 330(6001):231–235.
  • Watrin E, Peters JM. 2006. Cohesin and DNA damage repair. Exp Cell Res. 312(14):2687–2693.
  • Watrin E, Peters JM. 2009. The cohesin complex is required for the DNA damage-induced G2/M checkpoint in mammalian cells. EMBO J. 28(17):2625–2635.
  • Watrin E, Schleiffer A, Tanaka K, Eisenhaber F, Nasmyth K, Peters JM. 2006. Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr Biol. 16(9):863–874.
  • Weinert TA, Hartwell LH. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science. 241(4863):317–322.
  • Wendt KS, Yoshida K, Itoh T, Bando M, Koch B, Schirghuber E, Tsutsumi S, Nagae G, Ishihara K, Mishiro T, et al. 2008. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature. 451(7180):796–801.
  • Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al. 2007. The genomic landscapes of human breast and colorectal cancers. Science. 318(5853):1108–1113.
  • Woodman J, Fara T, Dzieciatkowska M, Trejo M, Luong N, Hansen KC, Megee PC. 2014. Cell cycle-specific cleavage of Scc2 regulates its cohesin deposition activity. Proc Natl Acad Sci USA. 111(19):7060–7065.
  • Wu FM, Nguyen JV, Rankin S. 2011. A conserved motif at the C terminus of sororin is required for sister chromatid cohesion. J Biol Chem. 286(5):3579–3586.
  • Wu N, Kong X, Ji Z, Zeng W, Potts PR, Yokomori K, Yu H. 2012. Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl. Genes Dev. 26(13):1473–1485.
  • Wu N, Yu H. 2012. The Smc complexes in DNA damage response. Cell Biosci. 2:5.
  • Wu PS, Enervald E, Joelsson A, Palmberg C, Rutishauser D, Hallberg BM, Strom L. 2020. Post-translational regulation of DNA polymerase η, a connection to damage-induced cohesion in Saccharomyces cerevisiae. Genetics. 216(4):1009–1022.
  • Xia L, Wang M, Li H, Tang X, Chen F, Cui J. 2018. The effect of aberrant expression and genetic polymorphisms of Rad21 on cervical cancer biology. Cancer Med. 7(7):3393–3405.
  • Xiong B, Lu S, Gerton JL. 2010. Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin. Curr Biol. 20(18):1660–1665.
  • Yadav S, Sehrawat A, Eroglu Z, Somlo G, Hickey R, Yadav S, Liu X, Awasthi YC, Awasthi S. 2013. Role of SMC1 in overcoming drug resistance in triple negative breast cancer. PLOS One. 8(5):e64338.
  • Yamada HY, Yao Y, Wang X, Zhang Y, Huang Y, Dai W, Rao CV. 2012. Haploinsufficiency of SGO1 results in deregulated centrosome dynamics, enhanced chromosomal instability and colon tumorigenesis. Cell Cycle. 11(3):479–488.
  • Yatskevich S, Rhodes J, Nasmyth K. 2019. Organization of chromosomal DNA by SMC complexes. Annu Rev Genet. 53:445–482.
  • Yazdi PT, Wang Y, Zhao S, Patel N, Lee EY, Qin J. 2002. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16(5):571–582.
  • Yazinski SA, Zou L. 2016. Functions, regulation, and therapeutic implications of the ATR checkpoint pathway. Annu Rev Genet. 50:155–173.
  • Yoshimura A, Sutani T, Shirahige K. 2021. Functional control of Eco1 through the MCM complex in sister chromatid cohesion. Gene. 784:145584.
  • Yu J, Qin B, Moyer AM, Nowsheen S, Tu X, Dong H, Boughey JC, Goetz MP, Weinshilboum R, Lou Z, et al. 2020. Author correction: regulation of sister chromatid cohesion by nuclear PD-L1. Cell Res. 30(9):823.
  • Yuan B, DDD Study, Neira J, Pehlivan D, Santiago-Sim T, Song X, Rosenfeld J, Posey JE, Patel V, Jin W, Adam MP, et al. 2019. Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies. Genet Med. 21(3):663–675.
  • Zegerman P, Diffley JF. 2010. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature. 467(7314):474–478.
  • Zeman MK, Cimprich KA. 2014. Causes and consequences of replication stress. Nat Cell Biol. 16(1):2–9.
  • Zhang B, Chang J, Fu M, Huang J, Kashyap R, Salavaggione E, Jain S, Kulkarni S, Deardorff MA, Uzielli ML, et al. 2009. Dosage effects of cohesin regulatory factor PDS5 on mammalian development: implications for cohesinopathies. PLOS One. 4(5):e5232.
  • Zhang J, Shi D, Li X, Ding L, Tang J, Liu C, Shirahige K, Cao Q, Lou H. 2017. Rtt101-Mms1-Mms22 coordinates replication-coupled sister chromatid cohesion and nucleosome assembly. EMBO Rep. 18(8):1294–1305.
  • Zhang J, Shi X, Li Y, Kim BJ, Jia J, Huang Z, Yang T, Fu X, Jung SY, Wang Y, et al. 2008. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol Cell. 31(1):143–151.
  • Zhang N, Ge G, Meyer R, Sethi S, Basu D, Pradhan S, Zhao YJ, Li XN, Cai WW, El-Naggar AK, et al. 2008. Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci USA. 105(35):13033–13038.
  • Zhang N, Kuznetsov SG, Sharan SK, Li K, Rao PH, Pati D. 2008. A handcuff model for the cohesin complex. J Cell Biol. 183(6):1019–1031.
  • Zhang N, Panigrahi AK, Mao Q, Pati D. 2011. Interaction of Sororin protein with polo-like kinase 1 mediates resolution of chromosomal arm cohesion. J Biol Chem. 286(48):41826–41837.
  • Zhang N, Pati D. 2015. C-terminus of Sororin interacts with SA2 and regulates sister chromatid cohesion. Cell Cycle. 14(6):820–826.
  • Zhang P, Kawakami H, Liu W, Zeng X, Strebhardt K, Tao K, Huang S, Sinicrope FA. 2018. Targeting CDK1 and MEK/ERK overcomes apoptotic resistance in BRAF-mutant human colorectal cancer. Mol Cancer Res. 16(3):378–389.
  • Zhang S, Li J, Zhou G, Mu D, Yan J, Xing J, Yao Z, Sheng H, Li D, Lv C, et al. 2016. Increased expression of ESCO1 is correlated with poor patient survival and its role in human bladder cancer. Tumour Biol. 37(4):5165–5170.
  • Zhang W, Jin J, Wang Y, Fang L, Min L, Wang X, Ding L, Weng L, Xiao T, Zhou T, et al. 2021. PD-L1 regulates genomic stability via interaction with cohesin-SA1 in the nucleus. Signal Transduct Target Ther. 6(1):81.
  • Zhao C, Dong H, Xu Q, Zhang Y. 2020. Histone deacetylase (HDAC) inhibitors in cancer: a patent review (2017-present). Expert Opin Ther Pat. 30(4):263–274.
  • Zheng G, Yu H. 2015. Regulation of sister chromatid cohesion during the mitotic cell cycle. Sci China Life Sci. 58(11):1089–1098.
  • Zhou L, Liang C, Chen Q, Zhang Z, Zhang B, Yan H, Qi F, Zhang M, Yi Q, Guan Y, et al. 2017. The N-terminal non-kinase-domain-mediated binding of haspin to Pds5B protects centromeric cohesion in mitosis. Curr Biol. 27(7):992–1004.
  • Zhou Y, Paull TT. 2013. DNA-dependent protein kinase regulates DNA end resection in concert with Mre11-Rad50-Nbs1 (MRN) and ataxia telangiectasia-mutated (ATM). J Biol Chem. 288(52):37112–37125.
  • Zou L, Elledge SJ. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 300(5625):1542–1548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.