398
Views
12
CrossRef citations to date
0
Altmetric
Articles

Comparative study of antimicrobial activity of essential oils of selected plants of Rutaceae and TLC bioautographic studies for detection of bioactive compounds

, , &
Pages 9-16 | Received 15 Nov 2013, Accepted 22 Sep 2014, Published online: 04 Nov 2014

References

  • M. Guptha and B.P. Shaw, Uses of medicinal plants in Panchakarma Ayurvedic therapy. Indian J. Tradit. Knowl., 8, 372–378 (2009).
  • A.K. Meena, P. Bansal and S. Kumar, Plants-herbal wealth as a potential source of ayurvedic drugs. Asian J. Tradit. Med., 4, 152–170 (2009).
  • P. Rubiolo, B. Sgorbini, E. Liberto and C. Bicchi, Essential oils and volatiles: Sample preparation and analysis. J. Flavour Fragr., 25, 282–290 (2010).
  • S. Burt, Essential oils: Their antibacterial properties and potential applications in foods-a review. J. Food Microbiol., 94, 223–253 (2004).
  • F. Bakkali, S. Averbeck, D. Averbeck and M.M. Idaomar, Biological effects of essential oils – A review. J. Food Chem. Toxicol., 46, 446–475 (2008).
  • S.M. Pourmortazavi and S.S. Hajimirsadeghi, Supercritical fluid extraction in plant essential and volatile oil analysis. J. Chromatogr. A., 1163, 2–24 (2007).
  • K.H.C. Başer and G. Buchbauer, Handbook of Essential Oil Science, Technology and Application. CRC Press, New York (2000).
  • S. Siddique, S. Javed, S. Nawaz, Z. Perveen, R.A. Khan, R. Khanum and K. Shahzad, Volatile components and antimicrobial activity of Citrus sinensis var. mosammi leaves oil. J. Med. Plants Res., 6, 2184–2187 (2012).
  • S.T. Han, WHO Medicinal Plants in the South Pacific Regional Publications. West Pacific Series No. 19, WHO, Geneva (1998).
  • S.P. Hamendra and K. Anand, Antidiabetic potential of Citrus sinensis and Punica granatum peel extracts in alloxan treated male mice. Biol. Factors, 31, 17–24 (2007).
  • F.I. Kanaze, A. Termentzi, C. Gabrieli, I. Niopas, M. Georgarakis and E. Kokkalou, The phytochemical analysis and antioxidant activity assessment of orange peel (Citrus sinensis) cultivated in Greece-Crete indicates a new commercial source of hesperidin. Biomed. Chromatogr., 23, 239–249 (2008).
  • H. Kumamoto, Y. Matsubara, Y. Lizuka, K. Okamoto and K. Yokoi, Structure and hypotensive effect of flavonoid glycosides in orange Citrus sinensis Osbeck peelings. Agric. Biol. Chem., 50, 781–783 (1986).
  • M.M. Ozcan, L. Sagdic and O. Ozkan, Inhibitory effects of spice essential oils on the growth of Bacillus species. J. Med Food., 9, 418–421 (2006).
  • O.B. Shittu, F.V. Alofe, G.O. Onawunmi, A.O. Ogundaini and T. Tiwalade, Bioautographic evaluation of antibacterial metabolite production by wild mushrooms. Afr. J. Biomed. Res., 9, 57–62 (2006).
  • U.C. Ejikeme, O.A. Josiah and I.A. Abdulsalaam, Bioautographic determination of the antistaphylococcal components of the stem bark of Parkia liglobosa (Jacq) Benth (Mimosaceae). J. Pharmacogn. Phytother., 2, 108–112 (2010).
  • I.M. Choma and E.M. Grzelak, Bioautography detection in thin-layer chromatography. J. Chromatogr. A., 1218, 2684–2691 (2011).
  • S. Guleria, A. Kumar and A.K. Tiku, Chemical composition and fungitoxic activity of essential oil of Thuja orientalis L. grown in the north-western Himalaya. Z. Naturforsch. C., J. Biosci. 63c, 211–214 (2008).
  • N. Tabanca, B. Demirci, K.H.C. Baser, E. Mincsovics, S.I. Khan, M.R. Jacob and D.E. Wedge, Characterization of volatile constituents of Scaligeria tripartita and studies on the antifungal activity against phytopathogenic fungi. J. Chromatogr., B 850, 221–229 (2007).
  • H.J.D. Dorman and S.G. Deans, Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol., 88, 308–316 (2000).
  • S. Burt, Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol., 94, 223–253 (2004).
  • M. Lahlou, Methods to study the phytochemistry and bioactivity of essential oils. Phytother. Res., 18, 435–448 (2004).
  • H. Wagner and S. Bladt, Plant drug analysis, A thin layer chromatography atlas, 2nd ed, Springer-Verlag, Berlin (1996).
  • R.R. Pandey, R.C. Dubey and S. Saini, Phytochemical and antimicrobial studies on essential oils of some aromatic plants. Afr. J. Biotechnol., 9, 4364–4368 (2010).
  • B.M. Lawrence, Essential Oil Production. A Discussion Influencing Factors. R.J. Reynolds Tobacco Company, New York, NY (1986).
  • G.O. Onawunmi, Evaluation of the antimicrobial activity of Citral. Lett. Appl. Microbial., 9, 105–108 (1989).
  • A.A. Saddiq and A.S. Khayyat, Chemical and antimicrobial studies of monoterpene: Citral. Pestic. Biochem. Physiol., 98, 89–93 (2010).
  • A.G. Siti Humeirah, M.A. Nor Azah, M. Mastura, J. Mailina, J.A.Saiful, H. Muhajir and A.M. Puad, Chemical constituents and antimicrobial activity of Goniothalamus macrophyllus (Annonaceae) from Pasoh Forest Reserve, Malaysia. Afr. J. Biotechnol., 9, 5511–5515 (2010).
  • R. Kotan, S. Kordali and A. Cakir, Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch C., 62, 507 (2007).
  • Z. Karlovic, I. Anic, I. Miletic, G. Prpic-Mehicic, S. Pezelj-Ribaric and T. Marsan, Antibacterial activity of halothane, eucalyptol and orange oil. Acta Stomatol. Croat., 34, 307–309 (2000).
  • R. Loughlin, B.F. Gilmore, P.A. McCarron and M.M. Tunney, Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett. Appl. Microbiol., 46, 428–433 (2008).
  • F. Mondello, F. De Bernardis, A. Girolamo, A. Cassone and G. Salvatore, In vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and -resistant human pathogenic Candida species. BMC Infect. Dis., 6, 158 (2006).
  • Z.K. Lin, Y.F. Hua and Y.H. Gu. Chemical constituents of the essential oils from the flowers, leaves and peel of Citrus aurantium (Chin.). Acta Bot. Sin., 28, 635–640 (1986).
  • D. Rico-Molina, G. Aparicio-Ozores, L. Dorantes-Alvarez and H. Hernandez-Sanchez, Antimicrobial activity of cinnamate-eugenol: Synergistic potential, evidence of efflux pumps and amino acid effects. Am J. Food Technol., 7, 289–300 (2012).
  • Q.-S. Huang, Y.-J. Zhu, H.-L. Li, J.-X. Zhuang, C.-L. Zhang, J.-J. Zhou, W.-G. Li and Q.-X. Chen, Inhibitory effects of methyl trans-cinnamate on mushroom tyrosinase and its antimicrobial activities. J. Agric. Food Chem., 57, 2565–2569 (2009).
  • G. Eyambe, L. Camales and B.K. Banik, Antimicrobial acitivity of eugenol derivatives. Heterocyc. Lett., 1, 154–157 (2011).
  • C.H. Liu and H.Y. Huang, Antimicrobial activity of curcumin-loades myristic acid microemulsion against Staphylococcus epidermidis. Chem. Pharm Bull., 60, 1118–1124 (2012).
  • B. Narasimhan, V. Mourya and A. Dhake, Design, synthesis, antibacterial, and QSAR studies of myristic acid derivatives. Bioorg. Med. Chem. Lett., 16, 3023–3029 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.