707
Views
0
CrossRef citations to date
0
Altmetric
Review

The potential of culinary herbs and spices from the genera Curcuma and Zingiber in the management of type 2 diabetes mellitus and Alzheimer’s disease

, , , &
Pages 325-334 | Received 21 Aug 2022, Accepted 15 Mar 2023, Published online: 11 Apr 2023

References

  • Z. Aumeeruddy-Elalfi, N. Lall, B. Fibrich, A.B. van Staden, M. Hosenally and M.F. Mahomoodally, Selected essential oils inhibit key physiological enzymes and possess intracellular and extracellular antimelanogenic properties in vitro. Journal of Food and Drug Analysis, 2018, 26(1), 232–243. doi: 10.1016/j.jfda.2017.03.002.
  • V. Boccardi, I. Murasecco and P. Mecocci, Diabetes drugs in the fight against Alzheimer’s disease. Ageing Research Reviews, 2019, 54, 100936. doi: 10.1016/j.arr.2019.100936.
  • A.C. Silveira, J.P. Dias, V.M. Santos, P.F. Oliveira, M.G. Alves, L. Rato and B.M. Silva, The action of polyphenols in diabetes Mellitus and Alzheimer’s Disease: a common agent for overlapping pathologies. Current Neuropharmacology, 2019, 17(7), 590–613. doi: 10.2174/1570159X16666180803162059.
  • S. Chatterjee and A. Mudher, Alzheimer’s disease and Type 2 Diabetes: a critical assessment of the shared pathological traits. Frontiers in Neuroscience, 2018, 12, 383. doi: 10.3389/fnins.2018.00383.
  • K. Venkatakrishnan, H.F. Chiu and C.K. Wang, Popular functional foods and herbs for the management of type-2-diabetes mellitus: a comprehensive review with special reference to clinical trials and its proposed mechanism. Journal of Functional Foods, 2019, 57, 425–438. doi: 10.1016/j.jff.2019.04.039.
  • E.A. Makinde, C. Ovatlarnporn, A.E. Adekoya, O.F. Nwabor and O.J. Olatunji, Antidiabetic, antioxidant and antimicrobial activity of the aerial part of tiliacora triandra. South African Journal of Botany, 2019, 125, 337–343. doi: 10.1016/j.sajb.2019.08.012.
  • C. Peña-Bautista, M. Vento, M. Baquero and C. Cháfer-Pericás, Lipid peroxidation in neurodegeneration. Clinica Chimica Acta, 2019, 497, 178–188. doi: 10.1016/j.cca.2019.07.037.
  • B. Salehi, A. Ata, N.V.A. Kumar, F. Sharopov, K. Ramírez-Alarcón, A. Ruiz-Ortega, S.A. Ayatollahi, P.V.T. Fokou, F. Kobarfard, Z.A. Zakaria, M. Iriti, Y. Taheri, M. Martorell, A. Sureda, W.N. Setzer, A. Durazzo, M. Lucarini, A. Santini, R. Capasso, E.A. Ostrander, C. Atta-Ur-Rahman, M.I. Cho and J. Shari?-Rad, Antidiabetic potential of medicinal plants and their active components. Biomolecules, 2019, 9(10), 551. doi: 10.3390/biom9100551.
  • S. Sestito, S. Wang, Q. Chen, J. Lu, S. Bertini, C. Pomelli, G. Chiellini, X. He, R. Pi and S. Rapposelli, Multi-targetedChEI-copper chelating molecules as neuroprotective Agents. European Journal of Medicinal Chemistry, 2019, 174, 216–225. doi: 10.1016/j.ejmech.2019.04.060.
  • J. Grizzanti, R. Corrigan, S. Servizi and G. Casadesus, Amylin signaling in diabetes and alzheimer’s disease: therapy or pathology?. Journal of Neurology & Neuromedicine, 2019, 4(1), 12–16. doi: 10.29245/2572.942X/2019/1.1212.
  • S.E. Mabhida, P.V. Dludla, R. Johnson, M. Ndlovu, J. Louw, A.R. Opoku and R.A. Mosa. 2018. Protective effect of triterpenes against diabetes-induced β-cell damage: An overview of in vitro and in vivo studies. Pharmacological Research. 137 179–192.10.1016/j.phrs.2018.10.004.
  • M.N. Beidokhti and A.K. Jäger, Review of antidiabetic fruits, vegetables, beverages, oils and spices commonly consumed in the diet. Journal of Ethnopharmacology, 2017, 201, 26–41. doi: 10.1016/j.jep.2017.02.031.
  • O. Ojo and J. Brooke, Evaluating the association between diabetes, cognitive decline and dementia. International Journal of Environmental Research and Public Health, 2015, 12(7), 8281–8294. doi: 10.3390/ijerph120708281.
  • N.B. Qin, C.C. Jia, J. Xu, D.H. Li, F.X. Xu, J. Bai, Z.L. Li and H.M. Hua, New amides from seeds of Silybum marianum with potential antioxidant and antidiabetic activities. Fitoterapia, 2017, 119, 83–89. doi: 10.1016/j.fitote.2017.04.008.
  • D. Kumar, N. Gupta, R. Ghosh, R.H. Gaonkar and B.C. Pal, α-Glucosidase and α-amylase inhibitory constituent of Carex baccans: bio-assay guided isolation and quantification by validated RP-HPLC–dad. Journal of Functional Food, 2013, 5(1), 211–218. doi: 10.1016/j.jff.2012.10.007.
  • B.P. Pandey, S.P. Pradhan, K. Adhikari and S. Nepal, Bergenia pacumbis from Nepal, an astonishing enzymes inhibitor. BMC Complementary Medicine and Therapies, 2020, 20(1), 198. doi: 10.1186/s12906-020-02989-2.
  • M.A.T. Phan, J. Wang, J. Tang, Y.Z. Lee and K. Ng, Evaluation of α-glucosidase inhibition potential of some flavonoids from epimedium brevicornum. Lwt-Food Science and Technology, 2013, 53(2), 492–498. doi: 10.1016/j.lwt.2013.04.002.
  • T. Zhao, K.M. Ding, L. Zhang, X.M. Cheng, C.H. Wang and Z.T. Wang, Acetylcholinesterase and butyrylcholinesterase inhibitory activities of β-Carboline and quinoline alkaloids derivatives from the plants of genus peganum. Journal of Chemistry, 2013, ID, 717232. doi: 10.1155/2013/717232.
  • S. Agatonovic-Kustrin, E. Kustrin and D.W. Morton, Essential oils and functional herbs for healthy aging. Neural Regeneration Research, 2020, 14(3), 441–445. doi: 10.4103/1673-5374.245467.
  • D. Islam, A. Akter, A. Huque, S. Akhter, D.C. Roy, C. Lyzu, M. Hakim, L.C. Mohanta, E.P. Lipy, M.A. Siddique, K.M.M.R. Linkon and M.N. Rahman, Hypoglycemic effect study of a combination of some stipulated spices in alloxan induced diabetic wistar albino rats along with nutritional value evaluation. Journal of Diabetes Mellitus, 2018, 8(02), 43–53. doi: 10.4236/jdm.2018.82005.
  • A. Mohammed and M.S. Islam, Spice-derived bioactive ingredients: potential agents or food adjuvant in the management of diabetes mellitus. Frontiers in Pharmacology, 2018, 9, 893. doi: 10.3389/fphar.2018.00893.
  • K. Sharma, Cholinesterase inhibitors as Alzheimer’s therapeutics. Molecular Medicine Reports, 2019, 20, 1479–1487. doi: 10.3892/mmr.2019.10374.
  • C. Sunil, V. Kumar and J. Van Staden, In vitro alpha-glucosidase inhibitory, total phenolic composition, antiradical and antioxidant potential of heteromorpha arborescens (Spreng) Cham. & Schltdl. leaf and bark extracts. South African Journal of Botany, 2019, 124, 380–386. doi: 10.1016/j.sajb.2019.05.017.
  • S. Lordan, T.J. Smyth, A. Soler-Vila, C. Stanton and R.P. Ross, The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chemistry, 2013, 141(3), 2170–2176. doi: 10.1016/j.foodchem.2013.04.123.
  • K.R.R. Rengasamy, M.A. Aderogba, S.O. Amoo, W.A. Stirk and J. Van Staden, Potential antiradical and alpha-glucosidase inhibitors from ecklonia maxima (Osbeck) Papenfuss. Food Chemistry, 2013, 141(2), 1412–1415. doi: 10.1016/j.foodchem.2013.04.019.
  • A. Tabussum, N. Riaz, M. Saleem, M. Ashraf, M. Ahmad, U. Alam, B. Jabeen, A. Malik and A. Jabbar, α-Glucosidase inhibitory constituents from chrozophora plicata. Phytochemistry Letters, 2013, 6(4), 614–619. doi: 10.1016/j.phytol.2013.08.005.
  • X. Bi, J. Lim and C.J. Henry, Spices in the management of diabetes mellitus. Food Chemistry, 2017, 217, 281–293. doi: 10.1016/j.foodchem.2016.08.111.
  • J. Gregory, Y.V. Vengalasetti, D.E. Bredesen and R.V. Rao, Neuroprotective herbs for the management of Alzheimer’s Disease. Biomolecules, 2021, 11(4), 543. doi: 10.3390/biom11040543.
  • M.R. Khazdair, A. Anaeigoudari, M. Hashemzehi and R. Mohebbati, Neuroprotective potency of some spice herbs, a literature review. Journal of Traditional and Complementary Medicine, 2019, 9(2), 98–105. doi: 10.1016/j.jtcme.2018.01.002.
  • Y. Peng, H. Tao, S. Wang, J. Xiao, Y. Wang and H. Su, Dietary intervention with edible medicinal plants and derived products for prevention of Alzheimer’s disease: a compendium of time-tested strategy. Journal of Functional Foods, 2021, 81, 104463. doi: 10.1016/j.jff.2021.104463.
  • A.D. Seetaloo, M.Z. Aumeeruddy, R.R. Rengasamy Kannan and M.F. Mahomoodally, Potential of traditionally consumed medicinal herbs, spices, and food plants to inhibit key digestive enzymes geared towards diabetes mellitus management — a systematic review. South African Journal of Botany, 2019, 120, 3–24. doi: 10.1016/j.sajb.2018.05.015.
  • B. Guldiken, G. Ozkan, G. Catalkaya, F.D. Ceylan, I.E. Yalcinkaya and E. Capanoglu, Phytochemicals of herbs and spices: health versus toxicological effects. Food and Chemical Toxicology, 2018, 119, 37–49. doi: 10.1016/j.fct.2018.05.050.
  • T.A. Jiang, Health benefits of culinary herbs and spices. Journal of AOAC International, 2019, 102(2), 395–411. doi: 10.5740/jaoacint.18-0418.
  • N.K. Rakhi, R. Tuwani, J. Mukherjee and G. Bagler, Data-driven analysis of biomedical literature suggests broad-spectrum benefits of culinary herbs and spices. PLoS One, 2018, 13(5), e0198030. doi: 10.1371/journal.pone.0198030.
  • A. Vallverdu-Queralt, J. Regueiro, M. Martinez-Huelamo, J.F.R. Alvarenga, L.N. Leal and R.M. Lamuela-Raventos, A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chemistry, 2014, 154, 299–307. doi: 10.1016/j.foodchem.2013.12.106.
  • M. Viuda-Martos, Y. Ruiz-Navajas, J. Fernandez-Lopez and J.A. Perez-Alvarez, Spices as Functional Food. Critical Reviews in Food Science and Nutrition, 2011, 51(1), 13–28. doi: 10.1080/10408390903044271.
  • A. Yashin, Y. Yashin, X. Xia and B. Nemzer, Antioxidant activity of spices and their impact on human health: a review. Antioxidants, 2017, 6(3), 70. doi: 10.3390/antiox6030070.
  • A.B. Kunnumakkara, B.L. Sailo, K. Banik, C. Harsha, S. Prasad, S.C. Gupta, A.C. Bharti and B.B. Aggarwal, Chronic diseases, inflammation, and spices: how are they linked?. Journal of Translational Medicine, 2018, 16(1), 14. doi: 10.1186/s12967-018-1381-2.
  • R. Vázquez-Fresno, A.R.R. Rosana, T. Sajed, T. Onookome-Okome, N.A. Wishart and D.S. Wishart, Herbs and spices- biomarkers of intake based on human intervention studies – a systematic review. Genes & Nutrition, 2019, 14(1), 18. doi: 10.1186/s12263-019-0636-8.
  • E.I. Opara and M. Chohan, Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. International Journal of Molecular Sciences, 2014, 15(10), 19183–19202. doi: 10.3390/ijms151019183.
  • M. Ivanovic, K. Makoter and M.I. Razboršek, Comparative study of chemical composition and antioxidant activity of essential oils and crude extracts of four characteristic Zingiberaceae herbs. Plants, 2021, 10(3), 501. doi: 10.3390/plants10030501.
  • M. Sharifi-Rad, E.M. Varoni, B. Salehi, J. Sharifi-Rad, K.R. Matthews, S.A. Ayatollahi, F. Kobarfard, S.A. Ibrahim, D. Mnayer, Z.A. Zakaria, M. Sharifi-Rad, Z. Yousaf, M. Iriti, A. Basile and D. Rigano, Review plants of the genus Zingiber as a source of bioactive phytochemicals: from tradition to pharmacy. Molecules, 2017, 22(12), 2145. doi: 10.3390/molecules22122145.
  • S. Rajkumari and K. Sanatombi, Nutritional value, phytochemical composition, and biological activities of edible curcuma species: a review. International Journal of Food Properties, 2017, 20(sup3), S2668–2687. doi: 10.1080/10942912.2017.1387556.
  • H. Arksey and L. O’malley, Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 2005, 8(1), 19–32. doi: 10.1080/1364557032000119616.
  • A.C. Tricco, E. Lillie, W. Zarin, K.K. O’brien, H. Colquhoun, D. Levac, D. Moher, M.D.J. Peters, T. Horsley, L. Weeks, S. Hempel, E.A. Akl, C. Chang, J. McGowan, L. Stewart, L. Hartling, A. Aldcroft, M.G. Wilson, C. Garritty, S. Lewin, C.M. Godfrey, M.T. Macdonald, E.V. Langlois, K. Soares-Weiser, J. Moriarty, T. Clifford and O. Tunçalp & S.E. Straus, PRISMA Extension for Scoping Reviews (PRISMA ScR): checklist and Explanation. In: Annals of Internal Medicine. Edit., G. R. Heudebert, Vol. 169, pp. 467–473, American College of Physicians, Philadelphia (2018).
  • A.J. Akinyemi and P.A. Adeniyi, Effect of essential oils from ginger (Zingiber officinale) and Turmeric (curcuma longa) rhizomes on some inflammatory biomarkers in cadmium induced neurotoxicity in rats. Journal of Toxicology, 2018, ID, 4109491. doi: 10.1155/2018/4109491.
  • B.S. Jugreet, M.F. Mahomoodally, K.I. Sinan, G. Zengin and H.H. Abdallah, Chemical variability, pharmacological potential, multivariate and molecular docking analyses of essential oils obtained from four medicinal plants. Industrial Crops & Products, 2020, 150, 112394. doi: 10.1016/j.indcrop.2020.112394.
  • S. Gururani, K. Gairola, R. Kumar, O. Prakash and S.K. Dubey, Altitudinal and geographical variations in phytochemical composition and biological activities of curcuma longa accession from Uttarakhand, the Himalayan region. Food Processing and Preservation, 2022, 46(3), e16384. doi: 10.1111/jfpp.16384.
  • S. Okonogi and W. Chaiyana, Enhancement of anti-cholinesterase activity of Zingiber cassumunar essential oil using a microemulsion technique. Drug Discoveries & Therapeutics, 2012, 6, 249–255. doi: 10.5582/ddt.2012.v6.5.249.
  • R.S. Verma, N. Joshi, R.C. Padalia, V.R. Singh, P. Goswami, S.K. Verma, H. Iqbal, D. Chanda, R.K. Verma, M.P. Darokar, A. Chauhan and M.K. Kandwal, Chemical composition and antibacterial, antifungal, allelopathic and acetylcholinesterase inhibitory activities of cassumunar-ginger. Journal of the Science of Food and Agriculture, 2018, 98(1), 321–327. doi: 10.1002/jsfa.8474.
  • N. Sabulal and S. Baby, Chemistry of amomum essential oils. Journal of Essential Oil Research, 2021, 33(5), 427–441. doi: 10.1080/10412905.2021.1899065.
  • M.D. Ibáñez and M.A. Blázquez, Curcuma longa L. rhizome essential oil from extraction to its agri-food applications. A Review. Plants, 2021, 10(1), 44. doi: 10.3390/plants10010044.
  • N.S. Dosoky and W.N. Setzer, Chemical composition and biological activities of essential oils of curcuma species. Nutrients, 2018, 10(9), 1196. doi: 10.3390/nu10091196.
  • K. Sowndhararajan, P. Deepa, M. Kim, S.J. Park and S. Kim, A review of the composition of the essential oils and biological activities of angelica species. Scientia Pharmaceutica, 2017, 85(3), 33. doi: 10.3390/scipharm85030033.
  • S. Borah, P. Sarkar and H.K. Sharma, Chemical profiling, free radical scavenging and anti‐acetylcholinesterase activities of essential oil from curcuma caesia of Arunachal Pradesh, India. Pharmacognosy Research, 2020, 12(1), 76–84. doi: 10.4103/pr.pr_84_19.
  • S. Borah, P. Sarkar and H.K. Sharma, Analysing curcuma caesia fractions and essential oil for neuroprotective potential against anxiety, depression, and amnesia. 3 Biotech, 2021, 11(5), 240. doi: 10.1007/s13205-021-02793-w.
  • P.C. Lekshmi, R. Arimboor, P.S. Indulekha and A.N. Menon, Turmeric (curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes. International Journal of Food Sciences and Nutrition, 2012, 63(7), 832–834. doi: 10.3109/09637486.2011.607156.
  • W. Chaiyana, K. Saeio, W.E. Hennink and S. Okonogi, Characterization of potent anticholinesterase plant oil based microemulsion. International Journal of Pharmaceutics, 2010, 401(1–2), 32–40. doi: 10.1016/j.ijpharm.2010.09.005.
  • M.H. Mahnashi, B.A. Alyami, Y.S. Alqahtani, A.O. Alqarni, M.S. Jan, M. Ayaz, F. Ullah, M. Shahid, U. Rashid and A. Sadiq, Neuroprotective potentials of selected natural edible oils using enzyme inhibitory, kinetic and simulation approaches. BMC Complementary Medicine and Therapies, 2021, 21(1), 248. doi: 10.1186/s12906-021-03420-0.