Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 174, 2019 - Issue 3-4
236
Views
10
CrossRef citations to date
0
Altmetric
Articles

Tailoring the hydrophobicity of copper surface with ion beam irradiation

, , , &
Pages 307-319 | Received 20 Feb 2018, Accepted 13 Dec 2018, Published online: 08 Jan 2019

References

  • Thickett, S.C.; Neto, C.; Harris, A.T. Biomimetic Surface Coatings for Atmospheric Water Capture Prepared by Dewetting of Polymer Films. Adv. Mater. 2011, 23, 3718–3722. doi: 10.1002/adma.201100290
  • Heng, X.; Luo, C. Bioinspired Plate-Based fog Collectors. ACS Appl. Mater. Interfaces 2014, 6, 16257–16266. doi: 10.1021/am504457f
  • Glicksman, L.R.; Hunt, A.W. Numerical Simulation of Dropwise Condensation. Int. J. Heat Mass Transfer 1972, 15, 2251–2269. doi: 10.1016/0017-9310(72)90046-4
  • Wenzel, R.N. Reistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry 1936, 28, 988–994. doi: 10.1021/ie50320a024
  • Cassie, A.B.D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546–551. doi: 10.1039/tf9444000546
  • Clarke, N.P.; Camarillo, C. Atmospheric Moisture Collection Device. US005233843A; 1993.
  • Seoane, D.C. Atmospheric Water Generator. United States Patent. US 2012/0073320 A1; 2012.
  • Schmidt, V.E.; Schurig, W.; Sellschopp, W. Versuche uber die Kondensation von Wasserdampf in Film- und Tropfenform. Forsch. Ingenieurwes 1930, 1, 53–63. doi: 10.1007/BF02641051
  • Sikarwar, B.S.; Battoo, N.K.; Khandekar, S.; Muralidhar, K. Dropwise Condensation Underneath Chemically Textured Surfaces: Simulation and Experiments. J. Heat Transfer 2011, 133, 1–15. doi: 10.1115/1.4002396
  • Huang, D.J.; Leu, T.S. Condensation Heat Transfer Enhancement by Surface Modification on a Monolithic Copper Heat Sink. Appl. Therm. Eng. 2015, 75, 908–917. doi: 10.1016/j.applthermaleng.2014.10.019
  • Huang, Y.; Sarkar, D.K.; Grant, C.X. A One-Step Process to Engineer Superhydrophobic Copper Surfaces. Mater. Lett. 2010, 64, 2722–2724. doi: 10.1016/j.matlet.2010.09.010
  • Tan, C.; Li, Q.; Cai, P.; Yang, N.; Xi, Z. Fabrication of Color-Controllable Superhydrophobic Copper Compound Coating with Decoration Performance. Appl. Surf. Sci. 2015, 328, 623–631. doi: 10.1016/j.apsusc.2014.12.025
  • Wang, P.; Zhang, D.; Qiu, R.; Wan, Y.; Wu, J. Green Approach to Fabrication of a Super-Hydrophobic Film on Copper and the Consequent Corrosion Resistance. Corros. Sci. 2013, 80, 366–373. doi: 10.1016/j.corsci.2013.11.055
  • Kong, L.; Chen, X.; Yang, G.; Yu, L.; Zhang, P. Preparation and Characterization of Slice-Like Cu2(OH)3NO3 Superhydrophobic Structure on Copper Foil. Appl. Surf. Sci. 2008, 254, 7255–7258. doi: 10.1016/j.apsusc.2008.05.317
  • Liu, J.; Huang, X.; Li, Y.; Li, Z.; Chi, Q.; Li, G. Formation of Hierarchical CuO Microcabbages as Stable Bionic Superhydrophobic Materials via a Room-Temperature Solution-Immersion Process. Solid State Sci. 2008, 10, 1568–1576. doi: 10.1016/j.solidstatesciences.2008.02.005
  • Varshney, P.; Mohapatra, S.; Kumar, A. Fabrication of Mechanically Stable Superhydrophobic Aluminium Surface with Excellent Self-Cleaning and Anti-Fogging Properties. Biomimetics. 2017,2, 2. doi: 10.3390/biomimetics2010002
  • Larmour, I.A.; Bell, S.E.; Saunders, G.C. Remarkably Simple Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition. Angew. Chem. Int. Ed. Engl. 2007, 46, 1710–1712. doi: 10.1002/anie.200604596
  • Pan, L.; Dong, H.; Bi, P. Facile Preparation of Superhydrophobic Copper Surface by HNO3 Etching Technique with the Assistance of cTAB and Ultrasonication. Appl. Surf. Sci. 2010, 257, 1707–1711. doi: 10.1016/j.apsusc.2010.09.001
  • Yuan, Z.; Wang, X.; Bin, J.; Peng, C.; Xing, S.; Wang, M.; Xiao, J., Zheng, J.; Xie, Y.; Xiao, X. et al. A Novel Fabrication of a Superhydrophobic Surface with Highly Similar Hierarchical Structure of the Lotus Leaf on a Copper Sheet. Appl. Surf. Sci. 2013, 285, 205–210. doi: 10.1016/j.apsusc.2013.08.037
  • Huang, D.-J.; Leu, T.-S. Fabrication of High Wettability Gradient on Copper Substrate. Appl. Surf. Sci. 2013, 280, 25–32. doi: 10.1016/j.apsusc.2013.04.065
  • Guo, Z.G.; Fang, J.; Hao, J.C.; Liang, Y.M.; Liu, W.M. A Novel Approch to Stable Superhydropbobic Surface. ChemPhysChem 2006, 7, 1674–1677. doi: 10.1002/cphc.200600217
  • Lee, S.; Cheng, K.; Palmre, V.; Bhuiya, M.D.M.H.; Kim, K.J.; Zhang, B.J.; Yoon, H. Heat Transfer Measurement During Dropwise Condensation Using Micro/Nano-Scale Porous Surface. Int. J. Heat Mass Transfer 2013, 65, 619–626. doi: 10.1016/j.ijheatmasstransfer.2013.06.016
  • Sikarwar, B.S.; Khandekar, S.; Muralidhar, K. Coalescence of Pendant Droplets on an Inclined Super-Hydrophobic Substrate. In 7th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion. Xi’an, China, 2012.
  • Al-Khayat, O.; Hong, J.K.; Beck, D.M.; Minett, A.I.; Neto, C. Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting. ACS Appl. Mater. Interfaces 2017, 9, 13676–13684. doi: 10.1021/acsami.6b16248
  • Seo, D.; Lee, J.; Lee, C.; Nam, Y. The Effects of Surface Wettability on the Fog and Dew Moisture Harvesting Performance on Tubular Surfaces. Sci. Rep. 2016, 6, 24276. doi: 10.1038/srep24276
  • Kim, G.T.; Gim, S.J.; Cho, S.M.; Koratkar, N.; Oh, I.K. Wetting-transparent Graphene Films for Hydrophobic Water-Harvesting Surfaces. Adv. Mater. 2014, 26, 5166–5172. doi: 10.1002/adma.201401149
  • Ta, D.V.; Dunn, A.; Wasley, T.J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Connaughton, C.; Shephard, J.D. Nanosecond Laser Textured Superhydrophobic Metallic Surfaces and Their Chemical Sensing Applications. Appl. Surf. Sci. 2015, 357, 248–254. doi: 10.1016/j.apsusc.2015.09.027
  • Do, S.C.; Kim, K.W.; Jeong, J.H. The Variation of Hydrophobicity of Aluminum Alloy by Nitrogen and Argon ion Implantation. Heat Mass Transfer. 2014, 51, 487–495. doi: 10.1007/s00231-014-1424-z
  • Rausch, M.H.; Fröba, A.P.; Leipertz, A. Dropwise Condensation Heat Transfer on Ion Implanted Aluminum Surfaces. Int. J. Heat Mass Transfer 2008, 51, 1061–1070. doi: 10.1016/j.ijheatmasstransfer.2006.05.047
  • Rausch, M.H.; Leipertz, A.; Fröba, A.P. Dropwise Condensation of Steam on ion Implanted Titanium Surfaces. Int. J. Heat Mass Transfer 2010, 53, 423–430. doi: 10.1016/j.ijheatmasstransfer.2009.09.014
  • Kumar, M.; Jangid, T.; Panchal, V.; Kumar, P.; Pathak, A. Effect of Grazing Angle Cross-Ion Irradiation on Ag Thin Films. Nanoscale Res. Lett. 2016, 11, 454. doi: 10.1186/s11671-016-1665-5
  • Patel, D.S.; Jain, V.K.; Shrivastava, A.; Ramkumar, J. Electrochemical Micro Texturing on Flat and Curved Surfaces: Simulation and Experiments. Int. J. Adv. Manuf. Technol.[Online early access]. doi:10.1007/s00170-016-9700-3. Published online: Nov 26, 2016.
  • Kumar, M.; Javid, A.; Han, J.G. Surface Energy in Nanocrystalline Carbon Thin Films: Effect of Size Dependence and Atmospheric Exposure. Langmuir 2017, 33, 2514–2522. doi: 10.1021/acs.langmuir.6b04463
  • Javid, A.; Kumar, M.; Yoon, S.; Leed, J.H.; Han, J.G. Size-controlled Growth and Antibacterial Mechanism for Cu:C Nanocomposite Thin Films. Phys. Chem. Chem. Phys 2017, 19, 237–244. doi: 10.1039/C6CP06955J
  • Patel, D.S.; Jain, V.K.; Shrivastava, A.; Ramkumar, J. Surface Texturing for Inducing Hydrophobicity. Directions 2015, 15, 46–53.
  • Koch, G.; Krraft, K.; Leipertz, A. Parametric Study on the Performance of Dropwise Condensation. Rev. Gen. Therm. 1998, 37, 539–548. doi: 10.1016/S0035-3159(98)80032-9
  • Vemuri, S.; Kim, K.J.; Wood, B.D.; Govindaraju, S.; Bell, T.W. Long Term Testing for Dropwise Condensation Using Self-Assembled Monolayer Coatings of n-Octadecyl Mercaptan. Appl. Therm. Eng. 2006, 26, 421–429. doi: 10.1016/j.applthermaleng.2005.05.022
  • Ziegler, J.F.; Biersack, J.; Littmark, U. The Stopping and Range of Ions in Matter; Pergamon Press: New York, 1985.
  • Ziegler, J.F.; Biersack, J.P.; Ziegler, M.D. SRIM – The Stopping and Range of Ions in Matter; Ion Implantation Press, 2008.
  • Somcio, N.S. The Inhibition of Copper Surface Oxidation by Ion Beam Irradiation; Master of Science, Department of Material Engineering, San Jose State University: San Jose, CA, 1999.
  • Marshal, D.; Awasthi, K.; Vijay, Y.K.; Awasthi, D.K. Using Fast Atomic Source and Low Energy Plasma Ions for Polymer Surface Modification. Vacuum 2006, 80, 643–646. doi: 10.1016/j.vacuum.2005.09.002
  • Singh, U.B.; Agarwal, D.C.; Khan, S.A.; Mohopatra, S.; Tripathi, A.; Avasthi, D.K. A Study on the Formation of Ag Nanoparticles on the Surface and Catcher by Ion Beam Irradiation of Ag Thin Films. J. Phys. D: Appl. Phys. 2012, 45, 445304. doi: 10.1088/0022-3727/45/44/445304
  • Ranjan, M.; Facsko, S. Anisotropic Surface Enhanced Raman Scattering in Nanoparticle and Nanowire Arrays. Nanotechnology 2012, 23, 485307. doi: 10.1088/0957-4484/23/48/485307
  • Avasthi, D.K.; Pivin, J.C. Ion Beam for Synthesis and Modification of Nanostrutures. Curr. Sci. 2010, 98, 780–792.
  • Khan, S.A.; Avasthi, D.K.; Agarwal, D.C.; Singh, U.B.; Kabiraj, D. Quasi-aligned Gold Nanodots on a Nanorippled Silica Surface: Experimental and Atomistic Simulation Investigations. Nanotechnology 2011, 22, 235305. doi: 10.1088/0957-4484/22/23/235305

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.