130
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optical phase change in bismuth through structural distortions induced by laser irradiation

ORCID Icon, & ORCID Icon
Pages 291-306 | Received 23 Jun 2019, Accepted 10 Oct 2019, Published online: 30 Mar 2020

References

  • Fuseya, Y.; Ogata, M.; Fukuyama, H. Transport Properties and Diamagnetism of Dirac Electrons in Bismuth. J. Phys. Soc. Jpn. 2015, 84, 012001. doi: 10.7566/JPSJ.84.012001
  • Zhang, Z.; Sun, X.; Dresselhaus, M.S.; Ying, J.; Heremans, J. Electronic Transport Properties of Single-Crystal Bismuth Nanowire Arrays. Phys. Rev. B 2000, 61, 4850–4861. doi: 10.1103/PhysRevB.61.4850
  • Yang, F.Y.; Liu, K.; Hong, K.; Reich, D.H.; Searson, P.C.; Chien, C.L. Large Magnetoresistance of Electrodeposited Single-Crystal Bismuth Thin Films. Science 1999, 284, 1335–1337. doi: 10.1126/science.284.5418.1335
  • Dong, F.; Zhao, Z.; Sun, Y.; Zhang, Y.; Yan, S.; Wu, Z. An Advanced Semimetal-Organic Bi Spheres-g-C3N4 Nanohybrid with SPR-Enhanced Visible-Light Photocatalytic Performance for NO Purification. Environ. Sci. Technol. 2015, 49, 12432–12440. doi: 10.1021/acs.est.5b03758
  • Dresselhaus, M.S.; Lin, Y.M.; Rabin, O.; Jorio, A.; Souza Filho, A.G.; Pimenta, M.A.; Saito R.; Samsonidze G.; Dresselhaus G. Nanowires and Nanotubes. Mater. Sci. Eng. C 2003, 23, 129–140. doi: 10.1016/S0928-4931(02)00240-0
  • Yao, J.D.; Shao, J.M.; Yang, G.W. Ultra-broadband and High-Responsive Photodetectors Based on Bismuth Film at Room Temperature. Sci. Rep. 2015, 5, 1–7.
  • Iwasaki, H.; Kikegawa, T. Structural Systematics of the High-Pressure Phases of Phosphorus, Arsenic, Antimony and Bismuth. Acta Crystallogr. Sect. B Struct. Sci. 1997, 53, 353–357. doi: 10.1107/S0108768196015479
  • Bridgman, P.W. Polymorphism, Principally of the Elements, up to 50,000 kg/cm2. Phys. Rev. 1935, 48, 893–906. doi: 10.1103/PhysRev.48.893
  • Shu, Y.; Yu, D.; Hu, W.; Wang, Y.; Shen, G.; Kono, Y.; Xu, B.; He, J.; Liu, Z.; Tian, Y. Deep Melting Reveals Liquid Structural Memory and Anomalous Ferromagnetism in Bismuth. Proc. Natl. Acad. Sci. 2017, 114, 3375–3380. doi: 10.1073/pnas.1615874114
  • Yaginuma, S.; Nagao, T.; Sadowski, J.T.; Pucci, A.; Fujikawa, Y.; Sakurai, T. Surface pre-Melting and Surface Flattening of Bi Nanofilms on Si(1 1 1)-7 × 7. Surf. Sci. 2003, 547, L877–L881. doi: 10.1016/j.susc.2003.10.015
  • Nagao, T.; Sadowski, J.T.; Saito, M.; Yaginuma, S.; Fujikawa, Y.; Kogure, T.; Ohno, T.; Hasegawa, Y.; Hasegawa, S.; Sakurai, T. Nanofilm Allotrope and Phase Transformation of Ultrathin Bi Film on Si(111)-7×7. Phys. Rev. Lett. 2004, 93, 10–13. doi: 10.1103/PhysRevLett.93.105501
  • Mieko, T. Electron-Diffraction Study of Liquid-Solid Transition of Thin Metal Films. J. Phys. Soc. Jpn. 1954, 9, 359–363. doi: 10.1143/JPSJ.9.359
  • Shick, A.B.; Ketterson, J.B.; Novikov, D.L.; Freeman, A.J. Electronic Structure, Phase Stability, and Semimetal-Semiconductor Transitions in Bi. Phys. Rev. B 1999, 60, 15484–15487. doi: 10.1103/PhysRevB.60.15484
  • Wu, C.Y.; Sun, L.; Gong, H.R.; Zhou, S.F. Influence of Internal Displacement on Band Structure, Phase Transition, and Thermoelectric Properties of Bismuth. J. Mater. Sci. 2019, 54, 6347–6360. doi: 10.1007/s10853-018-03311-9
  • Aguilera, I.; Friedrich, C.; Blügel, S. Electronic Phase Transitions of Bismuth Under Strain From Relativistic Self-Consistent GW Calculations. Phys. Rev. B 2015, 91, 1–7. doi: 10.1103/PhysRevB.91.125129
  • Hunderi, O. Optical Properties of Crystalline and Amorphous Bismuth Films. J. Phys. F Met. Phys. 1975, 5, 2214–2225. doi: 10.1088/0305-4608/5/11/034
  • Yang, L.; Zheng, Y.X.; Yang, S.D.; Liu, Z.H.; Zhang, J.B.; Zhang, R.J. Wang, S.-Y.; Zhang, D-X.; Chen, L.-Y. Ellipsometric Study on Temperature Dependent Optical Properties of Topological Bismuth Film. Appl. Surf. Sci. 2017, 421, 899–904. doi: 10.1016/j.apsusc.2016.11.006
  • Lenoir, B.; Cassart, M.; Michenaud, J.P.; Scherrer, H.; Scherrer, S. Transport Properties of Bi-Rich Bi-Sb Alloys. J. Phys. Chem. Solids 1996, 57, 89–99. doi: 10.1016/0022-3697(95)00148-4
  • Wuttig, M.; Yamada, N. Phase-change Materials for Rewriteable Data Storage. Nat. Mater. 2007, 6, 824–832. doi: 10.1038/nmat2009
  • Raoux, S. Phase Change Materials. Annu. Rev. Mater. Res. 2009, 39, 25–48. doi: 10.1146/annurev-matsci-082908-145405
  • Miller, K.J.; Haglund, R.F.; Weiss, S.M. Optical Phase Change Materials in Integrated Silicon Photonic Devices: Review. Opt. Mater. Express 2018, 8, 2415–2429. doi: 10.1364/OME.8.002415
  • Toudert, J.; Serna, R. Interband Transitions in Semi-Metals, Semiconductors, and Topological Insulators: a new Driving Force for Plasmonics and Nanophotonics [Invited]. Opt. Mater. Express 2017, 7, 2299. doi: 10.1364/OME.7.002299
  • Toudert, J.; Serna, R.; Camps, I.; Wojcik, J.; Mascher, P.; Rebollar, E. Ezquerra, T.A. Unveiling the Far Infrared-to-Ultraviolet Optical Properties of Bismuth for Applications in Plasmonics and Nanophotonics. J. Phys. Chem. C 2017, 121, 3511–3521. doi: 10.1021/acs.jpcc.6b10331
  • Toudert, J.; Serna, R.; Jiménez De Castro, M. Exploring the Optical Potential of Nano-Bismuth: Tunable Surface Plasmon Resonances in the Near Ultraviolet-to-Near Infrared Range. J. Phys. Chem. C 2012, 116, 20530–20539. doi: 10.1021/jp3065882
  • Bezerra, A.G.; Cavassin, P.; Machado, T.N.; Woiski, T.D.; Caetano, R.; Schreiner, W.H. Surface-enhanced Raman Scattering Using Bismuth Nanoparticles: a Study with Amino Acids. J. Nanopart. Res. 2017, 19, 362. doi: 10.1007/s11051-017-4057-6
  • Phillips, K.C.; Gandhi, H.H.; Mazur, E.; Sundaram, S.K. Ultrafast Laser Processing of Materials: a Review. Adv. Opt. Photonics 2015, 7, 684–712. doi: 10.1364/AOP.7.000684
  • Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; Hayasaki, Y.; Mizeikis, V.; Buividas, R. Juodkazis, S. Ultrafast Laser Processing of Materials: From Science to Industry. Light Sci. Appl. 2016, 5, e16133. doi: 10.1038/lsa.2016.133
  • Kumari, L.; Lin, J.H.; Ma, Y.R. Laser Oxidation and Wide-Band Photoluminescence of Thermal Evaporated Bismuth Thin Films. J. Phys. D. Appl. Phys. 2008, 41, 025405. doi: 10.1088/0022-3727/41/2/025405
  • Steele, J.A.; Lewis, R.A. Laser-induced Oxidation Kinetics of Bismuth Surface Microdroplets on GaAsBi Studied in Situ by Raman Microprobe Analysis. Opt. Express 2014, 22, 32261. doi: 10.1364/OE.22.032261
  • Díaz-Guerra, C.; Almodóvar, P.; Camacho-López, M.; Camacho-López, S.; Piqueras, J. Formation of β-Bi2O3and δ-Bi2O3during Laser Irradiation of Bi Films Studied in-Situ by Spatially Resolved Raman Spectroscopy. J. Alloys Compd. 2017, 723, 520–526. doi: 10.1016/j.jallcom.2017.06.263
  • Reyes-Contreras, A.; Camacho-López, M.; Camacho-López, S.; Olea-Mejía, O.; Esparza-García, A.; Bañuelos-Muñetón, J.G. Camacho-López, M.A. Laser-induced Periodic Surface Structures on Bismuth Thin Films with ns Laser Pulses Below Ablation Threshold. Opt. Mater. Express. 2017, 7, 1777. doi: 10.1364/OME.7.001777
  • Onari, S.; Miura, M.; Matsuishi, K. Raman Spectroscopic Studies on Bismuth Nanoparticles Prepared by Laser Ablation Technique. Appl. Surf. Sci. 2002, 197–198, 615–618. doi: 10.1016/S0169-4332(02)00410-5
  • Handegård, ØS; Kitajima, M.; Nagao, T. Laser-induced Structural Disordering and Optical Phase Change in Semimetal Bismuth Observed by Raman Microscopy. Appl. Surf. Sci. 2019, 491, 675–681. doi: 10.1016/j.apsusc.2019.05.013
  • Nagao, T.; Doi, T.; Sekiguchi, T.; Hasegawa, S. Epitaxial Growth of Single-Crystal Ultrathin Films of Bismuth on Si (111). Jpn. J. Appl. Phys. 2000, 4567, 0–4.
  • Yaginuma, S.; Nagao, T.; Sadowski, J.T.; Saito, M.; Nagaoka, K.; Fujikawa, Y.; Sakurai, T.; Nakayama, T. Origin of Flat Morphology and High Crystallinity of Ultrathin Bismuth Films. Surf. Sci. 2007, 601, 3593–3600. doi: 10.1016/j.susc.2007.06.075
  • Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Cent. Eur. J. Phys. 2012, 10, 181–188.
  • Daudin, R.; Revenant, C.; Davi, G.; Renaud, G. Growth and Dewetting of Gold on Si(1 1 1) Investigated in Situ by Grazing Incidence Small Angle x-ray Scattering. Phys. E Low-Dimension. Syst. Nanostruct. 2012, 44, 1905–1909. doi: 10.1016/j.physe.2012.05.021
  • Kang, M.; Park, S.G.; Jeong, K.H. Repeated Solid-State Dewetting of Thin Gold Films for Nanogap-Rich Plasmonic Nanoislands. Sci. Rep. 2015, 5, 14790. doi: 10.1038/srep14790
  • Cardona, M. Light Scattering in Solids I, Vol. 8; Springer, 1983.
  • Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. doi: 10.1039/B613962K
  • Jorio, A.; Ferreira, E.H.M.; Moutinho, M.V.O.; Stavale, F.; Achete, C.A.; Capaz, R.B. Measuring Disorder in Graphene with the G and D Bands. Phys. Status Solidi Basic Res. 2010, 247, 2980–2982. doi: 10.1002/pssb.201000247
  • Colomban, P.; Slodczyk, A. Raman Intensity: An Important Tool in the Study of Nanomaterials and Nanostructures. Acta Phys. Pol. A 2009, 116, 7–12. doi: 10.12693/APhysPolA.116.7
  • Hase, M.; Ishioka, K.; Kitajima, M.; Ushida, K.; Hishita, S. Dephasing of Coherent Phonons by Lattice Defects in Bismuth Films. Appl. Phys. Lett. 2000, 76, 1258–1260. doi: 10.1063/1.126002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.