58
Views
3
CrossRef citations to date
0
Altmetric
Articles

Selective modification of electrical insulator material by ion micro beam for the fabrication of circuit elements

, , , , ORCID Icon, , & show all
Pages 307-317 | Received 23 Jun 2019, Accepted 24 Sep 2019, Published online: 30 Mar 2020

References

  • Eda, G.; Fanchini, G.; Chhowalla, M. Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material. Nat. Nanotech. 2008, 3, 270–274. doi:10.1038/nnano.2008.83.
  • Casablanca, L.B.; Shaibat, M.A.; Cai, W.W.; Park, S.; Piner, R.; Ruoff, R.S.; Ishii, Y. NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional 13C Solid-State NMR and ab Initio Chemical Shift Calculations. J. Am. Chem. Soc. 2010, 132, 5672–5676. doi:10.1021/ja9030243.
  • He, H.Y.; Klinowski, J.; Forster, M.; Lerf, A. A New Structural Model for Graphite Oxide. Chem. Phys. Lett. 1998, 287 (1–2), 53–56. doi:10.1016/S0009-2614(98)00144-4.
  • Gao, W.; Alemany, L.B.; Ci, L.J.; Ajayan, P.M. New Insights into the Structure and Reduction of Graphite Oxide. Nat. Chem. 2009, 1, 403–408. Park, S.; Jinho A.; Richard D. Piner; Inhwa Jung; Dongxing Yang; Aruna Velamakanni; SonBinh T. Nguyen; Rodney S. Ruoff. Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets. Chem. Mater. 2008, 20, 6592–6594. doi:10.1038/nchem.281.
  • Pei, S.; Cheng, H.-M. The Reduction of Graphene Oxide. Carbon. N. Y. 2012, 50 (9), 3210–3228. doi:10.1016/j.carbon.2011.11.010.
  • Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon. N. Y. 2007, 45 (7), 1558–1565. doi:10.1016/j.carbon.2007.02.034.
  • Gomez-Navarro, C.; Meyer, J.C.; Sundaram, R.S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic Structure of Reduced Graphene Oxide. Nano. Lett. 2010, 10 (4), 1144–1148. doi:10.1021/nl9031617.
  • Kim, S.; Zhou, S.; Hu, Y.; Acik, M.; Chabal, Y.J.; Berger, C.; de Heer, W.; Bongiorno, A.; Riedo, E. Room-Temperature Metastability of Multilayer Graphene Oxide Films. Nat. Mater. 2012, 11 (6), 544–549. doi:10.1038/nmat3316.
  • Krasheninnikov, A.V.; Nordlund, K.  Ion and Electron Irradiation-Induced Effects in Nanostructured Materials. J. Appl. Phys. 2010, 107, 7. doi:10.1063/1.3318261.
  • Cote, L.J.; Cruz-Silva, R.; Huang, J. Flash Reduction and Patterning of Graphite Oxide and its Polymer Composite. J. Am. Chem. Soc. 2009, 131 (31), 11027–11032. doi:10.1021/ja902348k.
  • Davis, K.M.; Miura, K.; Sugimoto, N.; Hirao, K. Writing Waveguides in Glass with Femtosecond Laser. Optics Lett. 1996, 21 (issue 21), 1729–1731. doi:10.1364/OL.21.001729.
  • Pascual, E.; Polo, M.C.; Esteve, J.; Bertran, E. Surface reflectivity of TiN thin films measured by spectral ellipsometry. Surf. Sci. 1991, 200, 251-252–200. doi:10.1016/0039-6028(91)90981-W.
  • Torrisi, L.; Mezzasalma, A.M.; Gammino, S.; Badziak, J.; Parys, P.; Wolowski, J.; Laska, L.; Franco Appl, G. Surf. Sci. 2006, 252 (24), 8533–8538. doi:10.1016/j.apsusc.2005.11.071.
  • Jankovský, O.; Simek, P.; Luxa, J.; Sedmidubský, D.; Tomandl, I.; Macková, A.; Miksová, R.; Malinský, P.; Pumera, M.; Sofer, Z. Chem. Plus Chem. 2015, 80, 1399–1407. doi:10.1002/cplu.201500168.
  • Cutroneo, M.; Havranek, V.; Mackova, A.; Semain, V.; Torrisi, L.; Calcagno, L. Micro-Patterns Fabrication Using Focused Proton Beam Lithography. Nucl. Instrum. Methods Phys. Res. B. 2016, 371, 344–349. doi:10.1016/j.nimb.2015.10.006.
  • Cutroneo, M.; Havranek, V.; Torrisi, L.; Svecova, B. Ion Micro Beam, Promising Methods for Interdisciplinary Research. J. Instrum. 2016, 11 (05), C05001–C05001. doi:10.1088/1748-0221/11/05/C05001.
  • M. Mayer. SIMNRA Version 6.06, Max-Planck-Institut fur Plasmaphysik Garching, 2006. http://www.rzg.mpg.de/~mam/
  • Ziegler, J.F. Srim-2003. Nucl. Instrum. Meth B. 2004, 219, 1027–1036. doi:10.1016/j.nimb.2004.01.208.
  • Schrempel, F.; Kim, Y.S.; Witthuhn, W. Deep Ion Beam Lithography in PMMA Irradiation Effects. Appl. Surf. Sci. 2002, 189, 102–112. doi:10.1016/S0169-4332.
  • Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the Thermal Deoxygenation of Graphene Oxide Using Highresolution in Situ X-Ray-Based Spectroscopies. J. Phys. Chem. C. 2011, 115, 17009–17019. doi:10.1021/jp203741y.
  • Kaniyoor, A.; Ramaprabhu, S. A Raman Spectroscopic Investigation of Graphite Oxide Derived Graphene. AIP. Adv. 2012, 2, 032183. doi:10.1063/1.4756995.
  • Starý, Z.; Krückel, J.; Schubert, D.; Münstedt, H. AIP Conf. Proc. 2011, 1375, 232. doi:10.1063/1.4802620.
  • Sengupta, I.; Chakraborty, S.; Talukdar, M.; Pal, S.K. Thermal Reduction of Graphene Oxide: How Temperature Influences Purity. J. Mater. Res. 2018, 23 (issue 23), 4113–4122. doi:10.1557/jmr.2018.338.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.