270
Views
8
CrossRef citations to date
0
Altmetric
Regular Articles

Development of an algorithm for precise and automated determination of optical band gap from Tauc analysis: case studies using alpha-irradiated CR-39 detectors

, , &
Pages 1127-1139 | Received 30 Jun 2020, Accepted 04 Aug 2020, Published online: 25 Aug 2020

References

  • Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Physica Status Solidi (b) 1966, 15, 627–637. doi: 10.1002/pssb.19660150224
  • Vidya, S.; Solomon, S.; Thomas, J.K. Synthesis, Sintering and Optical Properties of CaMoO4: A Promising Scheelite LTCC and Photoluminescent Material. Physica Status Solidi (a) 2012, 209, 1067–1074. doi: 10.1002/pssa.201127620
  • Alias, M.S.; Dursun, I.; Saidaminov, M.I.; Diallo, E.M.; Mishra, P.; Ng, T.K.; Bakr, O.M.; Ooi, B.S. Optical Constants of CH3NH3PbBr3 Perovskite Thin Films Measured by Spectroscopic Ellipsometry. Opt. Express 2016, 24, 16586–16594. doi: 10.1364/OE.24.016586
  • Raciti, R.; Bahariqushchi, R.; Summonte, C.; Aydinli, A.; Terrasi, A.; Mirabella, S. Optical Bandgap of Semiconductor Nanostructures: Methods for Experimental Data Analysis. J. Appl. Phys. 2017, 121, 234304. doi: 10.1063/1.4986436
  • Milanese, M.; Colangelo, G.; Cretì, A.; Lomascolo, M.; Iacobazzi, F.; de Risi, A. Optical Absorption Measurements of Oxide Nanoparticles for Application as Nanofluid in Direct Absorption Solar Power Systems – Part II: ZnO, CeO2, Fe2O3 Nanoparticles Behavior. Sol. Energy Mater. Sol. Cells 2016, 147, 321–326. doi: 10.1016/j.solmat.2015.12.030
  • Mishra, R.; Tripathy, S.P.; Sinha, D.; Dwivedi, K.K.; Ghosh, S.; Khathing, D.T.; Müller, M.; Fink, D.; Chung, W.H. Optical and Electrical Properties of Some Electron and Proton Irradiated Polymers. Nucl. Instrum. Methods Phys. Res., Sect. B 2000, 168, 59–64. doi: 10.1016/S0168-583X(99)00829-0
  • Kumar, V.; Goyal, P.K.; Mahendia, S.; Gupta, R.; Sharma, T.; Kumar, S. Tuning of the Refractive Index and Optical Band Gap of CR-39 Polymers by Heating. Radiat. Eff. Defects Solids 2011, 166, 109–113. doi: 10.1080/10420151003587385
  • Sahoo, G.S.; Tripathy, S.P.; Joshi, D.S.; Bandyopadhyay, T. Study of Variations in Structural, Optical Parameters and Bulk Etch Rate of CR-39 Polymer Due to Electron Irradiation. J. Appl. Phys. 2016, 120, 025107. doi: 10.1063/1.4958304
  • Anderson, A.Y.; Bouhadana, Y.; Barad, H.-N.; Kupfer, B.; Rosh-Hodesh, E.; Aviv, H.; Tischler, Y.R.; Rühle, S.; Zaban, A. Quantum Efficiency and Bandgap Analysis for Combinatorial Photovoltaics: Sorting Activity of Cu–O Compounds in All-Oxide Device Libraries. ACS. Comb. Sci. 2014, 16, 53–65. doi: 10.1021/co3001583
  • Escobedo Morales, A.; Sánchez Mora, E.; Pal, U. Use of Diffuse Reflectance Spectroscopy for Optical Characterization of Un-Supported Nanostructures. Revista Mexicana de Física 2007, 53, 18–22.
  • Becerril Herrera, M.; López, H.; Angel, O. Band Gap Energy in Zn-Rich Zn1¡XCdxTe Thin Films Grown by r.f. Sputtering. Revista Mexicana de Física 2004, 50, 588–593.
  • Suram, S.K.; Newhouse, P.F.; Gregoire, J.M. High Throughput Light Absorber Discovery, Part 1: An Algorithm for Automated Tauc Analysis. ACS. Comb. Sci. 2016, 18, 673–681. doi: 10.1021/acscombsci.6b00053
  • Randhawa, G.S.; Virk, H.S. Particle Identification by Measurement of Track Cone Length as a Function of the Residual Range of Heavy Ions in CR-39 and Lexan Polycarbonate. Appl. Radiat. Isot. 1995, 46, 351–353. doi: 10.1016/0969-8043(94)00140-U
  • Phillips, G.W.; Spann, J.E.; Bogard, J.S.; VoDinh, T.; Emfietzoglou, D.; Devine, R.T.; Moscovitch, M. Neutron Spectrometry Using CR-39 Track Etch Detectors. Radiat. Prot. Dosim. 2006, 120, 457–460. doi: 10.1093/rpd/nci675
  • Castillo, F.; Espinosa, G.; Golzarri, J.I.; Osorio, D.; Rangel, J.; Reyes, P.G.; Herrera, J.J.E. Fast Neutron Dosimetry Using CR-39 Track Detectors with Polyethylene as Radiator. Radiat. Meas. 2013, 50, 71–73. doi: 10.1016/j.radmeas.2012.09.007
  • Doke, T.; Hayashi, T.; Nagaoka, S.; Ogura, K.; Takeuchi, R. Estimation of Dose Equivalent in STS-47 by a Combination of TLDS and CR-39. Radiat. Meas. 1995, 24, 75–82. doi: 10.1016/1350-4487(94)00084-E
  • Amemiya, K.; Takahashi, H.; Nakazawa, M.; Shimizu, H.; Majima, T.; Nakagawa, Y.; Yasuda, N.; Yamamoto, M.; Kageji, T.; Nakaichi, M.; Hasegawa, T.; Kobayashi, T.; Sakurai, Y.; Ogura, K. Soft X-Ray Imaging Using CR-39 Plastics with AFM Readout. Nucl. Instrum. Methods Phys. Res., Sect. B 2002, 187, 361–366. doi: 10.1016/S0168-583X(01)01142-9
  • Li, W.Y.; Chan, K.F.; Tse, A.K.W.; Fong, W.F.; Yu, K.N. Studies of Biocompatibility of Chemically Etched CR-39 SSNTDs in View of Their Applications in Alpha-Particle Radiobiological Experiments. Nucl. Instrum. Methods Phys. Res., Sect. B 2006, 248, 319–323. doi: 10.1016/j.nimb.2006.04.151
  • Szeiler, G.; Somlai, J.; Ishikawa, T.; Omori, Y.; Mishra, R.; Sapra, B.K.; Mayya, Y.S.; Tokonami, S.; Csordás, A.; Kovács, T. Preliminary Results from an Indoor Radon Thoron Survey in Hungary. Radiat. Prot. Dosim. 2012, 152, 243–246. doi: 10.1093/rpd/ncs231
  • Bouffard, S.; Balanzat, E.; Leroy, C.; Busnel, J.P.; Guevelou, G. Cross-Links Induced by Swift Heavy Ion Irradiation in Polystyrene. Nucl. Instrum. Methods Phys. Res., Sect. B 1997, 131, 79–84. doi: 10.1016/S0168-583X(97)00383-2
  • Calcagno, L.; Compagnini, G.; Foti, G. Structural Modification of Polymer Films by Ion Irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 1992, 65, 413–422. doi: 10.1016/0168-583X(92)95077-5
  • Klaumünzer, S.; Zhu, Q.Q.; Schnabel, W.; Schumacher, G. Ion-Beam-Induced Crosslinking of Polystyrene — Still an Unsolved Puzzle. Nucl. Instrum. Methods Phys. Res., Sect. B 1996, 116, 154–158. doi: 10.1016/0168-583X(96)00028-6
  • Marletta, G. Chemical Reactions and Physical Property Modifications Induced by keV Ion Beams in Polymers. Nucl. Instrum. Methods Phys. Res., Sect. B 1990, 46, 295–305. doi: 10.1016/0168-583X(90)90716-8
  • Zaki, M.F. Gamma-Induced Modification on Optical Band Gap of CR-39 SSNTD. J. Phys. D: Appl. Phys. 2008, 41, 175404. doi: 10.1088/0022-3727/41/17/175404
  • Kumar, V.; Sonkawade, R.G.; Chakarvarti, S.K.; Kulriya, P.; Kant, K.; Singh, N.L.; Dhaliwal, A.S. Study of Optical, Structural and Chemical Properties of Neutron Irradiated PADC Film. Vacuum 2011, 86, 275–279. doi: 10.1016/j.vacuum.2011.07.001
  • Sahoo, G.S.; Paul, S.; Tripathy, S.P.; Sharma, S.C.; Jena, S.; Rout, S.; Joshi, D.S.; Bandyopadhyay, T. Effects of Neutron Irradiation on Optical and Chemical Properties of CR-39: Potential Application in Neutron Dosimetry. Appl. Radiat. Isot. 2014, 94, 200–205. doi: 10.1016/j.apradiso.2014.08.012
  • Sahoo, G.S.; Tripathy, S.P.; Paul, S.; Sharma, S.C.; Joshi, D.S.; Gupta, A.K.; Bandyopadhyay, T. Effects of High Neutron Doses and Duration of the Chemical Etching on the Optical Properties of CR-39. Appl. Radiat. Isot. 2015, 101, 114–121. doi: 10.1016/j.apradiso.2015.04.002
  • Prasher, S.; Kumar, M.; Singh, S. The Influence of Neutron Irradiation in CR-39 Polymer. Orient. J. Chem. 2015, 31, 1201–1204. doi: 10.13005/ojc/310277
  • Sharma, T.; Aggarwal, S.; Kumar, S.; Mittal, V.K.; Kalsi, P.C.; Manchanda, V.K. Effect of Gamma Irradiation on the Optical Properties of CR-39 Polymer. J. Mater. Sci. 2007, 42, 1127–1130. doi: 10.1007/s10853-006-0516-7
  • Abdul-Kader, A.M.; Zaki, M.F.; El-Badry, B.A. Modified the Optical and Electrical Properties of CR-39 by Gamma Ray Irradiation. J. Radiat. Res. Appl. Sci. 2014, 7, 286–291. doi: 10.1016/j.jrras.2014.05.002
  • Saad, A.F.; Ibraheim, M.H.; Nwara, A.M.; Kandil, S.A. Modifications in the Optical and Thermal Properties of a CR-39 Polymeric Detector Induced by High Doses of γ-Radiation. Radiat. Phys. Chem. 2018, 145, 122–129. doi: 10.1016/j.radphyschem.2017.10.011
  • Raghuvanshi, S.K.; Ahamad, B.; Siddhartha; Krishna, J.B.; Srivastava, A.K.; Wahab, M.A.; Khan, M.S. Effect of γ-Irradiation on Optical and Chemical Properties of CR-39 Polymer. Radiat. Eff. Defects Solids 2012, 167, 774–781. doi: 10.1080/10420150.2011.653662
  • Zaki, M.F.; Ghaly, W.A.; El-Bahkiry, H.S. Photoluminescence, Optical Band Gap and Surface Wettability of Some Polymeric Track Detectors Modified by Electron Beam. Surf. Coat. Technol. 2015, 275, 363–368. doi: 10.1016/j.surfcoat.2015.04.041
  • Raouf, K.M.A.; Hella, K.M.; Rashad, A. Comparative Study of the Effects of X-Ray and Electron Irradiations on the Optical Properties of the Solid State Nuclear Track Detector (CR-39). Aust. J. Basic Appl. Sci. 2019, 13, 99–104.
  • El-Saftawy, A.A.; El Aal, S.A.A.; Hassan, N.M.; Abdelrahman, M.M. Optical and Chemical Behaviors of CR-39 and Makrofol Plastics Under Low-Energy Electron Beam Irradiation. Jpn. J. Appl. Phys. 2016, 55, 076401. doi: 10.7567/JJAP.55.076401
  • Lounis-Mokrani, Z.; Fromm, M.; Barillon, R.; Chambaudet, A.; Allab, M. Characterization of Chemical and Optical Modifications Induced by 22.5 MeV Proton Beams in CR-39 Detectors. Radiat. Meas. 2003, 36, 615–620. doi: 10.1016/S1350-4487(03)00211-7
  • Saad, A.F.; Al-Faitory, N.M.; Mohamed, R.A. Study of the Optical Properties of Etched Alpha Tracks in Annealed and Non-Annealed CR-39 Polymeric Detectors. Radiat. Phys. Chem. 2014, 97, 188–197. doi: 10.1016/j.radphyschem.2013.11.021
  • Eissa, M.F. Study of the Properties of CR-39 Polymer Irradiated with Alpha Particles with Different Energies at Different Etching Times. Defect Diffus. Forum 2013, 344, 95–105. doi: 10.4028/www.scientific.net/DDF.344.95
  • Ridha, A.A.; Kadhim, N.F.; Mohammed, N.J. Correlation between the Track Density and Absorbance of Alpha Particles Using CR-39 Detectors from UV–Visible Spectrum. J. Phys. Sci. 2019, 30, 37–49. doi: 10.21315/jps2019.30.2.3
  • Butt, M.Z.; Ali, D.; Najm ul, A.; Naseem, S. Structural and Optical Properties of CR-39 Polymer Implanted with Laser Produced Plasma Ions of Iron. Phys. B 2014, 454, 179–183. doi: 10.1016/j.physb.2014.07.071
  • Sharma, T.; Aggarwal, S.; Sharma, A.; Kumar, S.; Kanjilal, D.; Deshpande, S.K.; Goyal, P.S. Effect of Nitrogen Ion Implantation on the Optical and Structural Characteristics of CR-39 Polymer. J. Appl. Phys. 2007, 102, 063527. doi: 10.1063/1.2783887
  • Ali, D.; Butt, M.Z.; Ishtiaq, M.; Khaliq, M.W.; Bashir, F. Optical, Structural, and Chemical Properties of CR-39 Implanted with 5.2 MeV Doubly Charged Carbon Ions. Mater. Res. Express 2016, 3, 115304. doi: 10.1088/2053-1591/3/11/115304
  • Shekhawat, N.; Aggarwal, S.; Sharma, A.; Sharma, S.K.; Deshpande, S.K.; Nair, K.G.M. Surface Disordering and its Correlations with Properties in Argon Implanted CR-39 Polymer. J. Appl. Phys. 2011, 109, 083513. doi: 10.1063/1.3573480
  • Ali, D.; Butt, M.Z.; Naseem, S. Characterization of Laser-Produced Plasma Ions of Various Metals and Their Effect on the Optical Properties of the CR-39 Polymer. Radiat. Eff. Defects Solids 2013, 168, 1–9. doi: 10.1080/10420150.2012.743549
  • Martin, J.E. Physics for Radiation Protection: A Handbook, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.