Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 176, 2021 - Issue 9-10
212
Views
18
CrossRef citations to date
0
Altmetric
Articles

Gamma photon-neutron attenuation parameters of marble concrete by MCNPX code

&
Pages 906-918 | Received 30 May 2021, Accepted 26 Aug 2021, Published online: 17 Sep 2021

References

  • Akkurt, I. Effective Atomic and Electron Numbers of Some Steels at Different Energies. Ann. Nucl. Energy 2009, 36 (11–12), 1702–1705.
  • Boodaghi Malidarre, R.; Khabaz, R.; Benam, M.R.; Zanganeh, V. A Feasibility Study to Reduce the Contamination of Photoneutrons and Photons in Organs/Tissues during Radiotherapy. Iran. J. Med. Phys. 2019, 17, 366–373. doi:https://doi.org/10.22038/ijmp.2019.40879.1579.
  • Kulali, F. Simulation Studies on the Radiological Parameters of Marble Concrete. Emerg. Mater. Res 2020, 9 (4), 1341–1347. doi:https://doi.org/10.1680/jemmr.20.00307.
  • Akkurt, I.; Akyıldırım, H.; Mavi, B.; Kilincarslan, S.; Basyigit, C. Photon Attenuation Coefficients of Concrete Includes Barite in Different Rate. Ann. Nucl. Energy 2010, 37 (7), 910–914.
  • Akkurt, I.; Basyigit, C.; Kilincarslan, S.; Mavi, B.; Akkurt, A. Radiation Shielding of Concretes Containing Different Aggregates. Cem. Concr. Compos. 2006, 28 (2), 153–157.
  • Tekin, H.O.; Cavali, B.; Altunsoy, E.E.; Manici, T.; Ozturk, C.; Karakas, H.M. An Investigation on Radiation Protection and Shielding Properties of 16 Slice Computed Tomography (CT) Facilities. Int. J. Comput. Exp. Sci. Eng. 2018, 4 (2), 37–40.
  • Sariyer, D.; Küçer, R. Effect of Different Materials to Concrete as Neutron Shielding Application. Acta Phys. Pol. A 2020, 137 (4), 477.
  • Sariyer, D. Investigation of Neutron Attenuation Through FeB, Fe2B and Concrete. Acta Phys. Pol. A 2020, 137 (4), 539.
  • Al-Obaidi, S.; Akyıldırım, H.; Gunoglu, K.; Akkurt, I. Neutron Shielding Calculation for Barite-Boron-Water. Acta Phys. Pol. A 2020, 137 (4), 551.
  • Altunsoy E, E.; Tekin H, O.; Mesbahi, A.; Akkurt, I. MCNPX Simulation for Radiation Dose Absorption of Anatomical Regions and Some Organs. Acta Phys. Pol. A 2020, 137 (4), 561.
  • Günay, O.; Sarihan, M.; Yarar, O.; Akkurt, I.; Demir, M. Measurement of Radiation Dose in Thyroid Scintigraphy. Acta Phys. Pol., A 2020, 137 (4), 569.
  • Roy, S.C.; Sandison, G.A. Shielding for Neuron Scattered Dose to the Fetus in Patients Treated with 18 MV X-ray Beams. Med. Phys. 2000, 27, 1800–1803.
  • Kurtulus, R.; Kavas, T. An Investigation on Usability of Waste Container Glass with Gd2O3 and La2O3 Addition in Radiation Shielding Applications. AKU J. Sci. Eng. 2019, 19, Special Issue 219–224.
  • Sayyed, M.I.; Elbashir, B.O.; Tekin, H.O.; Altunsoy, E.E.; Gaikwad, D.K. Radiation Shielding Properties of Pentaternary Borate Glasses Using MCNPX Code. J. Phys. Chem. Solids 2018, 121, 17–21.
  • Akkurt, I.; Malidarre, R.B.; Kavas, T. Monte Carlo Simulation of Radiation Shielding Properties of the Glass System Containing Bi2O3. Eur. Phys. J. Plus 2021, 136 (3), 1–10.
  • Ali, A.M.; El-Khayatt, A.M.; Akkurt, I. Determination of Effective Atomic Number and Electron Density of Heavy Metal Oxide Glasses. Radiation Effect and Defects in Solids 2016, 171(3–4), 202–213. doi:https://doi.org/10.1080/10420150.2016.1170016.
  • Yahşi Çelen, Y.; Evcin, A. Synthesis and Characterizations of Magnetite–Borogypsum for Radiation Shielding. Emerg. Mater. Res. 2020, 9, 1–6. doi:https://doi.org/10.1680/jemmr.20.00098.
  • Wani, A.L.; Ara, A.; Usmani, J.A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8 (2), 55–64.
  • Khabaz, R.; Boodaghi, R.; Benam, M.R.; Zanganeh, V. Estimation of Photoneutron Dosimetric Characteristics in Organs/Tissues Using an Improved Simple Model of Linac Head. Appl Radiat. Isot. 2018, 133, 88–94.
  • Karakurt, C.; Kurama, H.; Topçu, I.B. Utilization of Natural Zeolite in Aerated Concrete Production. Cem. Concr. Compos. 2010, 32, 1–8.
  • Akkurt, I.; Malidarre, R.B.; Kartal, I.; Gunoglu, K. Monte Carlo Simulations Study on Gamma ray–Neutron Shielding Characteristics for Vinyl Ester Composites. Polym. Compos. 2021, 1–11. doi:https://doi.org/10.1002/pc.26185.
  • Boodaghi Malidarre, R.; Akkurt, I.; Kavas, T. Monte Carlo Simulation on Shielding Properties of Neutron-Gamma from 252Cf Source for Alumino-Boro-Silicate Glasses. Radiat. Phys. Chem. 2021, 186, 109540.
  • Tekin, H.O.; Shams, A.M.I.; Mahmoud, K.A.; El-Agawany, F.I.; Rammah, Y.S.; Susoy, G.; Al-Buriahi, M.S.; Abuzaid, M.M.; Akkurt, I. Nuclear Radiation Shielding Competences of Barium (Ba) Reinforced Borosilicate Glasses. Emerg. Mater. Res. 2020, 9 (4), 1131–1144. doi:https://doi.org/10.1680/jemmr.20.00185.
  • Fu, Y.; Ding, J.; Beaudoin, J.J. Zeolite Based Lightweight Concrete Products. US patent 5494513, 1996.
  • de Gennaro, R.; Cappelletti, P.; Cerri, G.; de’ Gennaro, M.; Dondi, M.; Langella, A. Neopolitan Yellow Tuff as Raw Material for Lightweight Aggregates in Light Weight Structural Concrete Production. Appl. Clay Sci. 2005, 28, 309–319.
  • Topçu I, B. Semi Lightweight Concretes Produced by Volcanic Slags. Cem Concr. Res. 1997, 27 (1), 15–21.
  • Gong, W.; Yu, H.; Ma, H.; Wang, N.; He, L. Study on the Basic Performance of Basic Magnesium Sulfate Cement Concrete. Emerg. Mater. Res. 2020, 9, 1–10. doi:https://doi.org/10.1680/jemmr.19.00039.
  • Da, B.; Yu, H.; Ma, H.; Chen, D.; Wu, Z.; Guo, J. Electrochemical Study on Steel Corrosion in Coral Aggregate Seawater Concrete. Emerg. Mater. Res. 2020, 9, 1–13. doihttps://doi.org/10.1680/jemmr.19.00105.
  • Jami, T.; Rawtani, D.; Agrawal, Y.K. Hemp Concrete: Carbon-Negative Construction. Emerg. Mater. Res. 2017, 5, 240–247. doi:https://doi.org/10.1680/jemmr.16.00122.
  • Qiao H, X.; Gong, W.; Shi Y, Y.; Wanjiru M, E.; Dong J, M. Experimental Study on Magnesium Oxychloride Cement Concrete. Emerg. Mater. Res. 2017, 5, 248–255. doi:https://doi.org/10.1680/jemmr.16.00012.
  • Akkurt, I.; El-Khayatt A, M. The Effect of Barite Proportion on Neutron and Gamma-ray Shielding”. Ann. Nucl. Energy 2013, 51, 5–9.
  • Hamad, R.M.; Mhareb, M.H.A.; Alajerami, Y.S.; Sayyed, M.I.; Saleh, G.; Kh Hamad, M.; Ziq, K. A Comprehensive Ionizing Radiation Shielding Study of FexSe0.5Te0.5, Alloys with Various Iron Concentrations. J. Alloys Compd. 2021, 858, 157636.
  • Khalaf, A.; Nooman M, T.; Kohail, M.; Nasr A, R. The Effect of Zeolite on the Properties of the Light Weight Concrete. Int. J. Sci. Eng. Res. 2018, 9 (6), 3–25.
  • Joshaghani, A. The Effects of Zeolite as Supplementary Cement Material on Pervious Concrete; International Concrete Sustainability Conference May 15–18, 2016 – Washington, DC, 2016.
  • Valipour, M. et al. Environmental Assessment of Green Concrete Containing Natural Zeolite on the Global Warming Index in Marine Environments. J. Clean. Prod. 2014, 65, 418–423.
  • Akkurt, I.; Altindag, R.; Gunoglu, K.; Sarıkaya, H. Photon Attenuation Coefficients of Concrete Including Marble Aggregates. Ann. Nucl. Energy 2012, 43, 56–60.
  • Pelowitz, D.B. MCNPX – A General Monte-Carlo N-particle Transport Code, Version 2.6 LANL Report. LA-CP-07 1473; Los Alamos, 2008.
  • Akkurt, I.; Akyıldırım, H.; Mavi, B.; Kilincarslan, S.; Basyigit, C. Radiation Shielding of Concrete Containing Zeolite. Radiat. Measur. 2010, 45, 827–830.
  • Kurtulus, R.; Kavas, T.; Akkurt, I.; Gunoglu, K. An Experimental Study and WinXCom Calculations on X-ray Photon Characteristics of Bi2O3- and Sb2O3-Added Waste Soda-Lime-Silica Glass. Ceram. Int. 2020, 46, 21120–21127.
  • Boodaghi Malidarre, R.; Kulali, F.; Inal, A.; Oz, A. Monte Carlo Simulation of the Waste Soda-Lime-Silica Glass System Contained Sb2O3 for Gamma-Ray Shielding. Emerg. Mater. Res. 2020, 9, 1334–1340. doi:https://doi.org/10.1680/jemmr.20.00202.
  • Manjunatha, H.C. A Study of Gamma Attenuation Parameters in Polymethyl Methacrylate and Kapton. Radiat. Phys. Chem. 2017, 137, 254–259.
  • Boodaghi Malidarre, R.; Akkurt, I. Monte Carlo Simulation Study on TeO2–Bi2O–PbO–MgO–B2O3 Glass for Neutron-Gamma 252Cf Source. J. Mater. Sci.: Mater. Electron. 2021, 32, 11666–11682.
  • Tellili, B.; Elmahroug, Y.; Souga, C. Calculation of Fast Neutron Removal Cross Sections for Different Lunar Soils. Adv. Space Res. 2014, 53, 348–352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.