Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 177, 2022 - Issue 7-8
147
Views
0
CrossRef citations to date
0
Altmetric
Articles

Li3+ ion beam irradiation persuaded enhancement in the thermodynamic parameters of a hydrogen-bonded liquid crystalline material

, ORCID Icon, , &
Pages 605-619 | Received 10 Oct 2021, Accepted 04 Apr 2022, Published online: 19 May 2022

References

  • Aithal, P.S.; Nagaraja, H.S.; Mohan Rao, P.; Nampoori, V.P.N.; Vallabhan, C.P.G.; Avasthi, D.K. Possibility of Waveguide Formation on Organic Nonlinear Crystal Methyl Para-Hydroxy Benzoate Using High Energy ion Irradiation. Nucl. Instrum. Methods in Phys. Res. Sect. B 1997, 129, 217–220.
  • Avasthi, D.K.; Singh, J.P.; Biswas, A.; Bose, S.K. Study on Evolution of Gases from Mylar Under ion Irradiation. Nucl. Instrum. Methods in Phys. Res. Sect. B 1998, 146, 504–508. doi:https://doi.org/10.1016/S0168-583X(98)00464-9.
  • Mittal, V.K.; Lotha, S.; Avasthi, D.K. Hydrogen Loss Under Heavy ion Irradiation in Polymers. Radiat. Eff. Defects Solids 1999, 147, 199–209. doi:https://doi.org/10.1080/10420159908229009.
  • Biswas, A.; Gupta, R.; Kumar, N.; Avasthi, D.K.; Singh, J.P.; Lotha, S.; Fink, D.; Paul, S.N.; Bose, S.K. Recrystallization in Polyvinylidene Fluoride upon low Fluence Swift Heavy ion Impact. Appl. Phys. Lett 2000, 78, 4136–4138.
  • Nagaraja, H.S.; Ohnesorge, F.; Avasthi, D.K.; Neumann, R.; Mohan Rao, P. Scanning Forcemicroscopy of ion-Irradiated Organic Single Crystals of Benzoyl Glycine. Appl. Phys. A 2000, 71, 337–341.
  • Fink, D.; Alegaonkar, P.S.; Petrov, A.V.; Wilhelm, M.; Szimkowiak, P.; Behar, M.; Sinha, D.; Fahrner, W.R.; Hoppe, K.; Chadderton, L.T. High Energy ion Beam Irradiation of Polymers for Electronic Applications. Nucl. Instrum. Methods in Phys. Res. Sect. B 2005, 236, 11–20.
  • Hussain, A.M.P.; Saikia, D.; Singh, F.; Avasthi, D.K.; Kumar, A. Effects of 160 MeV Ni12+ ion Irradiation on Polypyrrole Conducting Polymer Electrode Materials for all Polymer Redox Supercapacitor. Nucl. Instrum. Methods in Phys. Res. Sect. B 2005, 240, 834–841.
  • Krishnakumar, V.; Avasthi, D.K.; Singh, F.; Kulriya, P.K.; Nagalakshmi, R. Study of the Damage Produced in K[CS(NH2)2]4Br – A non-Linear Optical Single Crystal by Swift Heavy ion Irradiation. Nucl. Instrum. Methods in Phys. Res. Sect. B 2007, 256, 675–682.
  • Radwan, R.M.; Kader, A.M.A.; Ali, A.E.H. Ion Bombardment Induced Changes in the Optical and Electrical Properties of Polycarbonate. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 3588–3594.
  • Qureshi, A.; Singh, D.; Singh, N.L.; Ataoglu, S.; Gulluoglu, A.N.; Tripathi, A.; Avasthi, D.K. Effect of Irradiation by 140 Mev Ag11+ Ions on the Optical and Electrical Properties of Polypropylene/TiO2 Composite Nucl. Instrum. Methods in Phys. Res. Sect. B 2009, 267, 3456–3460.
  • Kumar, V.; Sonkawade, R.G.; Chakarvarti, S.K.; Singh, P.; Dhaliwal, A.S. Carbon ion Beam Induced Modifications in Optical, Structural, and Chemical Properties in PADC and PET Polymers. Radiat. Phys. Chem 2012, 81, 652–658.
  • Appadu, S.; Ahmad, S.H.; Ratnam, C.T.; Razali, M.Y.; Flaifel, M.H.; Jiun, Y.L. Magnetic Properties of Irradiated Nickel Ferrite Thermoplastic Natural Rubber Nanocomposite. Adv. Mat. Res 2014, 879, 206.
  • Jeong, H.C.; Park, H.G.; Lee, J.H.; Jang, S.B.; Oh, B.Y.; Seo, D.S. Ion Beam Induced Topographical and Chemical Modification on the Poly (Styrene-co-Allyl Alcohol) and its Effect on the Molecular Interaction Between the Modified Surface and Liquid Crystals. Mater. Chem. Phys 2016, 182, 94–100.
  • Jeong, H.C.; Park, H.G.; Jung, Y.H.; Lee, J.H.; Oh, B.Y.; Seo, D.S. Tailoring the Orientation and Periodicity of Wrinkles Using ion-Beam Bombardment. Langmuir 2016, 32 (28), 7138.
  • Lee, J.H.; Kim, E.M.; Heo, G.S.; Jeong, H.C.; Kim, D.H.; Lee, D.W.; Han, J.M.; Kim, T.W.; Seo, D.S. Liquid Crystal Aligning Capabilities on Surface-Reformed Indium-Doped Zinc Oxide Films via ion-Beam Exposure. Liq. Cryst 2018, 45, 1137.
  • Penkov, O.V.; Kheradmandfard, M.; Khadem, M.; Kharazihad, M.; Mirzaamiri, R.; Seo, K.J.; Kim, D.E. Ion-beam Irradiation of DLC-Based Nanocomposite: Creation of a Highly Biocompatible Surface. App. Sur. Sci. 2019, 469, 896.
  • Srinadhu, E.S.; Kulkarni, D.D.; Field, D.A.; Harriss, J.E.; Sosolik, C.E. The Effects of Multicharged ion Irradiation on a Polycarbonate Surface. Radiat. Eff. Defects Solids 2019, 174, 205–213. doi:https://doi.org/10.1080/10420150.2018.1552958.
  • Kamiya, K.; Kayama, K.; Nobuoka, M.; Sakaguchi, S.; Sakurai, T.; Kawata, M.; Tsutsui, Y.; Suda, M.; Idesaki, A.; Koshikawa, H.; Sugimoto, M. Ubiquitous Organic Molecule-Based Free-Standing Nanowires with Ultra-High Aspect Ratios. Nat. Commun. 2021, 12, 4025–4035. doi:https://doi.org/10.1038/s41467-021-24335-x.
  • Stephen, M.J.; Straley, J.P. Physics of Liquid Crystals. Rev. Mod. Phys 1974, 46 (4), 617(1-88). doi:https://doi.org/10.1103/RevModPhys.46.617.
  • De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals; Clarendon Press: Oxford, UK, 1995.
  • Yang, D.K.; Wu, S.T. Fundamentals of Liquid Crystal Devices; John Wiley & Sons: New York, NY, USA, 2006.
  • Goodby, J.W. Ferroelectric Liquid Crystals: Principles, Properties, and Applications; Gordon and Breach Science Publishers: London, UK, Volume 7, 1992.
  • Deshmukh, R.R. Electro-optic and dielectric responses in PDLC composite systems, In Thakur V., Kessler M. (eds) Liquid Crystalline Polymers. Springer, Cham, 169-195, (2015).
  • Pandey, M.B.; Dhar, R.; Wadhawan, V.K. Phase Transitions and Recent Advances in Liquid-Crystals Research. Phase Transitions 2009, 82, 831.
  • Miyazawa, K.; Kurashiki, K.; Hauta-Kasari, M.; Toyooka, S. Broadband Color Filters with Arbitrary Spectral Transmittance Using a Liquid Crystal Tunable Filter (LCTF). Proc. SPIE 2002, 4421, 753.
  • E. J. Ambrose, Liquid Crystals and Cancer, in Lyotropic Liquid Crystals, Ch.10, Advances in Chemistry; American Chemical Society: New York, 152, 142 (1976).
  • Abdulhalim, I.; Moses, R.; Sharon, R. Biomedical Optical Applications of Liquid Crystal Devices. Acta Phys. Pol. A 2007, 112, 715.
  • Safrani, A.; Aharon, O.; Mor, S.; Arnon, O.; Rosenberg, L.; Abdulhalim, I. Skin Biomedical Optical Imaging System Using Dual-Wavelength Polarimetric Control with Liquid Crystals. J. Biomed. Opt. 2010, 15 (2), 026024.
  • Lee, C.; Ok, Y.S.; Choi, C.H.; Kim, B.K. PVC/Nematic Liquid Crystal for Light Shutter. J Polym. Eng. 1994, 13 (1), 1–16.
  • Brown, G.H. Structure, Properties, and Some Applications of Liquid Crystals. J. Opt. Soc. Am 1973, 63 (12), 1505–1514. doi:https://doi.org/10.1364/josa.63.001505.
  • Naumov, A.F.; Loktev, M.Y.; Guralnik, I.R. Liquid-crystal Adaptive Lenses with Modal Control. Opt. Lett. 1998, 23 (13), 992.
  • Kirby, K.; Hands, P.J.W.; Love, G.D. Liquid Crystal Multi-Mode Lenses and Axicons Based on Electronic Phase Shift Control. Opt. Express 2007, 15 (21), 13496.
  • Hardeberg, Y.; Schmitt, F.; Brettel, H. Multispectral Color Image Capture Using a Liquid Crystal Tunable Filter. Opt. Eng. 2002, 41 (10), 2532.
  • Yadav, S.; Malik, P.; Khushboo; Jayoti, D. Electro-optical, Dielectric and Optical Properties of Graphene Oxide Dispersed Nematic Liquid Crystal. Liq. Cryst. 2019, 47 (7), 984–993. doi:https://doi.org/10.1080/02678292.2019.1695969.
  • Uchida, T. 40 Years Research and Development on Liquid Crystal Displays. Jpn. J. Appl. Phys 2014, 53 (3S1), 03CA02.
  • Kim, H.J.; Jang, C.H. Liquid Crystal-Based Aptasensor for the Detection of Interferon-γ and its Application in the Diagnosis of Tuberculosis Using Human Blood. Sens. Actuator B-Chem. 2019, 282, 574.
  • Buis, E.J.; Berkhout, G.C.G.; Love, G.D.; Kirby, A.K.; Taylor, J.M.; Hannemann, S.; Collon, M.J. Proton Irradiation of Liquid Crystal Based Adaptive Optical Devices. Nucl. Instrum. Methods Phys. Res. B 2012, 270, 157. doi:https://doi.org/10.1016/j.nimb.2011.09.021.
  • Taylor, E.W.; Sanchez, A.D.; Chapman, S.P.; Dewalt, S.A.; Craig, D.M.; Kelly, M.A.; Mitcham, M.F. “Responses of a spatial light modulator to pulsed electron irradiations,” in Spatial Light Modulators and Applications, OSA Tech. Dig. Ser. Washington, DC: Opt. Soc. Amer., 9, 152, (1995).
  • Graham, A.; Kopp, G.; Aburto, C.V.; Uribe, R. “Preliminary Space Environment Tests of Nematic Liquid Crystals,” in Photonics for Space Environments IV, E.W. Taylor, Ed., Proc. SPIE, 2811, 46, (1996).
  • Dixit, S.; Tripathi, P.; Manohar, R.; Arora, A.K. Modification in Dielectric Properties: Effect of Gamma Radiation. AIP Conf. Proc. 2013, 1536, 1240.
  • Stohr, J.; Samant, M.G.; Luning, J.; Callegari, A.C.; Chaudhari, P.; Doyle, J.P.; Lacey, J.A.; Lien, S.A.; Purushothaman, S.; Speidell, J.L. Liquid Crystal Alignment on Carbonaceous Surfaces with Orientational Order. Science 2001, 292, 2299.
  • Lipatov, Y.S.; Tsukruk, V.V.; Shilov, V.V.; Boyarskii, G.Y. Structural-mechanical Characteristics of Polyurethane-Liquid Crystal Mixtures Exposed to Radiation. Polymer Science U.S.S.R 1986, 28 (1), 60. doi:https://doi.org/10.1016/0032-3950(86)90008-0.
  • Srivastava, S.L.; Dhar, R.; Kurik, M.V. Change in Electrical and Thermodynamical Properties of Cholesteryl Myristate on Irradiation. Mol. Mat. 1993, 2, 261.
  • Okumus, M.; Özgan, S. Investigation of the Phase Transition and Absorption Properties of Liquid Crystal Hexylcyanobiphenyl/Octylcyanobiphenyl Mixtures. Asian J. Chem 2013, 25 (7), 3879. doi:https://doi.org/10.14233/ajchem.2013.13831.
  • Kunihisa, K.S.; Satomi, Y. Phase Transitions of Cholesteryl Acetylferulate. Mol. Cryst. Liq. Cryst 1986, 141 (1–2), 1–17. .
  • Kłosowicz, S.J.; Alfassi, Z.B. Progress in Studies on the Effect of Ionizing Radiation on the Physical Properties of Cholesteric Liquid Crystals. Mol. Cryst. Liq. Cryst 1994, 239 (1), 181. doi:https://doi.org/10.1080/10587259408047181.
  • Kosinov, G.A.; Lavrentovich, O.D.; Linev, V.A.; Puchkoskaya, G.A.; Shulga, S.Z.; Yakubov, A.A. Nature of Radiation-Induced Impurities in Liquid Crystal Cholesteryl Formate. Translated from Khimiya Vysokikh Energii 1988, 22 (1), 26–30.
  • Verma, R.; Dhar, R.; Dabrowski, R.; Tykarska, M.; Wadhawan, V.K.; Rath, M.C.; Sarkar, S.K. Electron Beam Irradiation Induced Transformations in the Electro-Optical and Dielectric Properties of a Twisted Nematic Display Material (5CB). J Phys. D Appl. Phys. 2009, 42, 085503.
  • Verma, R.; Dhar, R.; Agrawal, V.K.; Rath, M.C.; Sarkar, S.K.; Wadhawan, V.K.; Dabrowski, R. Electron Beam Irradiation Induced Transformations in the Electrical Properties of 4’Octyl-4-Cynobiphenyl (8CB). Liq. Cryst. 2009, 36, 1003.
  • Verma, R.; Dhar, R.; Rath, M.C.; Sarkar, S.K.; Wadhawan, V.K.; Dabrowski, R.; Tykarska, M.B. Optimization of the Display Parameters of a Room Temperature Nematic Material (6CHBT) by Using Electron Beam Irradiation. J Disp. Tech 2010, 6, 8–13.
  • Verma, R.; Tripathi, A.; Dhar, R. Enhancement in the Thermal Stability of the Mesophases of 4-n-(Decyloxy) Benzoic Acid due to Li ion Beam Irradiation. J Mol. Liq. 2013, 177, 409.
  • Sidir, Y.G.; Sidir, I.; Demiray, F. Dipole Moment and Solvatochromism of Benzoic Acid Liquid Crystals: Tuning the Dipole Moment and Molecular Orbital Energies by Substituted Au Under External Electric Field. J Mol. Struct. 2017, 1137, 440.
  • Hareesh, K.; Joshi, R.P.; Shateesh, B.; Asokan, K.; Kanjilal, D.; Late, D.J.; Dahiwale, S.S.; Bhoraskar, V.N.; Haram, S.K.; Dhole, S.D. Reduction of Graphene Oxide by 100 MeV Au ion Irradiation and its Application as H2O2 Sensor. J Phys. D Appl. Phys 2015, 48, 365105 (8pp).
  • Chowdhury, S.; Hussain, A.M.P.; Ahmed, G.A.; Singh, F.; Avasthi, D.K.; Choudhury, A. Effect of Swift Heavy ion Irradiation on Bare and Coated ZnS Quantum Dots. Mater. Res. Bul 2008, 43, 3495–3505.
  • Nandi, T.; Haris, K.; Hala, G.S.; Kumar, P.; Kumar, R.; Saini, S.K.; Khan, S.A.; Jhingan, A.; Verma, P.; Tauheed, A.; Mehta, D.; Berry, H.G. Fast Ion Surface Energy Loss and Straggling in the Surface Wake Fields. Phys. Res. Lett 2013, 110, 163203.
  • Singhal, R.; Agarwal, D.C.; Mishra, Y.K.; Mohapatra, S.; Avasthi, D.K.; Chawla, A.K.; Chandra, R.; Pivin, J.C. Swift Heavy ion Induced Modifications of Optical and Microstructural Properties of Silver-Fullerene C60 Nanocomposite. Nucl. Instrum. Methods Phys. Res. B 2009, 267, 1349.
  • Kushelevsky, A.P.; Feldman, L.; Alfassi, Z.B. Gamma Rays Modification of Encapsulated Liquid Crystals Temperature Range. Mol. Cryst. Liq. Cryst 1976, 35, 353–355.
  • Alfassi, Z.B.; Kushelevsky, A.P.; Feldman, L. The Effect of γ Irradiation of Solutions of Cholesteric Liquid Crystals on the Color Transition Temperature. Mol. Cryst. Liq. Cryst 1977, 39, 33–37.
  • Kurik, V.; Lavrentovich, O.D.; Linev, B.A.; Shulga, C.Z. Effect of Ionizing Radiation on the Phase Diagram of Liquid Crystals. J. Chem Phys. (USSR) 1987, 61, 1634–1639.
  • Deloche, B.; Cabane, B. Coupling of Hydrogen Bonding to Orientational Fluctuation Modes in the Liquid Crystal PHBA. Mol. Cryst. Liq. Cryst. 1972, 19, 25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.