Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 177, 2022 - Issue 9-10
92
Views
0
CrossRef citations to date
0
Altmetric
Articles

Characterization of ion-induced microstructural changes in oxygen irradiated Ti–6Al–4V

, ORCID Icon, , &
Pages 972-991 | Received 11 Feb 2022, Accepted 21 Jun 2022, Published online: 14 Jul 2022

References

  • Masood, I. Sustainable Machining for Titanium Alloy Ti-6Al-4V. In Titanium Alloys – Novel Aspects of Their Manufacturing and Processing [Working Title]. 2019; pp 1–15. doi:10.5772/intechopen.82344.
  • Zhong, C.; Liu, J.; Zhao, T.; Schopphoven, T.; Fu, J.; Gasser, A.; Schleifenbaum, J.H. Laser Metal Deposition of Ti6Al4V-A Brief Review. Appl. Sci. 2020, 10, 1–12. doi:10.3390/app10030764.
  • Mansur, L.K. Survey of Radiation Effects in Titanium Alloys. Radiat. Eff. 2008, 14. http://info.ornl.gov/sites/publications/files/Pub12339.pdf.
  • Potomati, F.; Campanelli, L.C.; Da Silva, P.S.C.P.; Simões, J.G.A.B.; de Lima, M.S.F.; Damião, ÁJ; Bolfarini, C. Assessment of the Fatigue Behavior of Ti-6Al-4V ELI Alloy with Surface Treated by Nd:Yag Laser Irradiation. Mater. Res. 2019, 22, 1–5. doi:10.1590/1980-5373-MR-2019-0016.
  • Kamiya, J.; Hikichi, Y.; Kinsho, M.; Ogiwara, N.; Fukuda, M.; Hamatani, N.; Hatanaka, K.; Kamakura, K.; Takahisa, K. Titanium Alloy as a Potential Low Radioactivation Vacuum Material. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 2015, 33, 031605. doi:10.1116/1.4916934.
  • Dey, S.; Dutta, A.; Mukherjee, P.; Gayathri, N.; Gupta, A.D.; Roy, T. Characterization of ion Induced Damage as a Function of Depth in Proton Irradiated Pure Ti and Ti–6Al–4V. J. Alloys Compd. 2020, 821, 153441. doi:10.1016/j.jallcom.2019.153441.
  • Dutta Gupta, A.; Mukherjee, P.; Gayathri, N.; Bhattacharyya, P.; Bhattacharya, M.; Sarkar, A.; Sen, S.; Mitra, M.K. Proton Irradiation Studies on Pure Ti and Ti-6Al-4V. Nucl. Instruments Methods Phys. Res. Sect. B. 2016, 387, 63–72. doi:10.1016/j.nimb.2016.09.010.
  • Anashkin, O.P.; Keilin, V.E.; Krivikh, A.V.; Lysenko, V.V.; Shcherbakov, V.I.; Dudarev, A.V.; Ten Kate, H.H.; Mayri, C.; Vedrine, P.; Zaitsev, Y. Mechanical Tests of ATLAS Barrel Toroid tie Rods. Cryogenics. 2005, 45, 469–472. doi:10.1016/j.cryogenics.2005.02.001.
  • Levesy, B.; Gerwig, H.; Kircher, F.; Reytier, M. Design and Test of the Titanium Alloy Tie Rods for the CMS Coil Suspension System. IEEE Trans. Appl. Supercond. 2002, 12, 403–406. doi:10.1109/TASC.2002.1018429.
  • Amroussia, A.; Avilov, M.; Boehlert, C.J.; Durantel, F.; Grygiel, C.; Mittig, W.; Monnet, I.; Pellemoine, F. Swift Heavy Ion Irradiation Damage in Ti-6Al-4V and Ti-6Al-4V-1B: Study of the Microstructure and Mechanical Properties. Nucl. Instruments Methods Phys. Res. Sect. B. 2015, 365, 515–521. doi:10.1016/j.nimb.2015.09.029.
  • Avilov, M.; Aaron, A.; Amroussia, A.; Bergez, W.; Boehlert, C.; Burgess, T.; Carroll, A.; Colin, C.; Durantel, F.; Ferrante, P.; Fourmeau, T.; Graves, V.; Grygiel, C.; Kramer, J.; Mittig, W.; Monnet, I.; Patel, H.; Pellemoine, F.; Ronningen, R.; Schein, M. Thermal, Mechanical and Fluid Flow Aspects of the High Power Beam Dump for FRIB. Nucl. Instruments Methods Phys. Res. Sect. B. 2016, 376, 24–27. doi:10.1016/j.nimb.2016.02.068.
  • Davis, J.W.; Smith, D.L. The Impact of Hydrogen in a Fusion Reactor Environment on Titanium Alloys. J. Nucl. Mater. 1979, 85–86, 71–76. doi:10.1016/0022-3115(79)90471-9.
  • Jones, A.B.J.J.R.H.; Leonard, B.R.J. Assessment of Titanium Alloys for Fusion Reactor First-Wall and Blanket Applications. Final Rep. n.d.
  • Grabovetskaya, G.P.; Stepanova, E.N.; Mishin, I.P.; Zabudchenko, O.V. The Effect of Irradiation of a Titanium Alloy of the Ti–6Al–4V–H System with Pulsed Electron Beams on Its Creep. Russ. Phys. J. 2020, 63, 932–939. doi:10.1007/s11182-020-02120-5.
  • Doriot, S.; Jouanny, E.; Malaplate, J.; Dalle, F.; Allais, L.; Millot, T.; Descoins, M.; Mangelinck, D.; Dehmas, M. Evolution of Defects in Ti6-4 Under Ti2+ Ion Irradiation: Focus on Radiation-Induced Precipitates. J. Nucl. Mater. 2018, 511, 264–276. doi:10.1016/j.jnucmat.2018.09.027.
  • Wang, Z.; Ayrault, G.; Wiedersich, H. Segregation in Irradlated Titanium Alloys. J. Nucl. Mater. 1982, 109, 331–338.
  • Was, G.S. Fundamentals of Radiation Materials Science: Metals and Alloys, 2nd ed.; Springer: New York, 2016. doi:10.1007/978-1-4939-3438-6.
  • Williamson, G.K.; Hall, W.H. X-Ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall. 1953, 1, 22–31. doi:10.1016/0001-6160(53)90006-6.
  • Caglioti, G.; Paoletti, A.; Ricci, F.P. Choice of Collimators for a Crystal Spectrometer for Neutron Diffraction. Nucl. Instruments. 1958, 3, 223–228. doi:10.1016/0369-643X(58)90029-X.
  • Balzar, D.; Ledbetter, H. Voigt-Function Modeling in Fourier Analysis of Size-and Strain-Broadened X-Ray Diffraction Peaks. J. Appl. Cryst. 1993, 26, 97–103.
  • Delhez, R.; Mittenmeijer, E.J. WinPLOTR: A Windows Tool for Powder Diffraction Patterns Analysis Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7), 2000; pp 118–123.
  • Lutterotti, L. Total Pattern Fitting for the Combined Size-Strain-Stress-Texture Determination in Thin Film Diffraction. Nucl. Instruments Methods Phys. Res. Sect. B. 2010, 268, 334–340. doi:10.1016/j.nimb.2009.09.053.
  • Bunge, H.J. Texture Analysis in Materials Science; Butter-Worths: London, 1982.
  • Young, R.A. The Rietveld Method, 1st ed.; International Union of Crystallography; Oxford University Press: New York, 1995.
  • Von Dreele, R.B. Quantitative Texture Analysis by Rietveld Refinement. J. Appl. Crystallogr. 1997, 30, 517–525.
  • Popa, N.C. Texture in Rietveld Refinement. J. Appl. Crystallogr. 1992, 25, 611–616. doi:10.1107/S0021889892004795.
  • Popa, N.C. The (hkl) Dependence of Diffraction-Line Broadening Caused by Strain and Size for all Laue Groups in Rietveld Refinement. J. Appl. Crystallogr. 1998, 31, 176–180.
  • Borbély, A.; Dragomir-Cernatescu, J.; Ribárik, G.; Ungár, T. Computer Program ANIZC for the Calculation of Diffraction Contrast Factors of Dislocations in Elastically Anisotropic Cubic, Hexagonal and Trigonal Crystals. J. Appl. Crystallogr. 2003, 36, 160–162. doi:10.1107/S0021889802021581.
  • Dragomir, I.C.; Ungár, T. Contrast Factors of Dislocations in the Hexagonal Crystal System. J. Appl. Crystallogr. 2002, 35, 556–564. doi:10.1107/S0021889802009536.
  • Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM – the Stopping and Range of Ions in Matter (2010). Nucl. Instruments Methods Phys. Res. Sect. B. 2010, 268, 1818–1823. doi:10.1016/j.nimb.2010.02.091.
  • Stoller, R.E.; Toloczko, M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the Use of SRIM for Computing Radiation Damage Exposure. Nucl. Instruments Methods Phys. Res. Sect. B. 2013, 310, 75–80. doi:10.1016/j.nimb.2013.05.008.
  • Boonchuduang, T.; Bootchanont, A.; Klysubun, W.; Amonpattaratkit, P.; Khamkongkaeo, A.; Puncreobutr, C.; Yimnirun, R.; Lohwongwatana, B. Formation of Alpha-Case Layer During Investment Casting of Pure Ti and Ti-6Al-4V Using Comparative XRD and EXAFS Investigation. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51, 586–596. doi:10.1007/s11661-019-05541-1.
  • Smirnov, A.; Smirnova, E.; Alexandrov, S. A New Experimental Method for Determining the Thickness of Thin Surface Layers of Intensive Plastic Deformation Using Electron Backscatter Diffraction Data. Symmetry. 2020, 12, 15–18. doi:10.3390/SYM12040677.
  • Wright, S.I.; Nowell, M.M.; Field, D.P. A Review of Strain Analysis Using Electron Backscatter Diffraction. Microsc. Microanal. 2011, 17, 316–329. doi:10.1017/S1431927611000055.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.