Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 177, 2022 - Issue 9-10
92
Views
0
CrossRef citations to date
0
Altmetric
Articles

The recovery effects of electron beam pulse treatment in Sn implanted Ge

, , , , , , , , , , , & show all
Pages 1088-1102 | Received 04 Apr 2022, Accepted 01 Aug 2022, Published online: 18 Aug 2022

References

  • Werner, Z.; Barlak, M.; Ratajczak, R.; Konarski, P.; Markov, A.M.; Heller, R. Electron-Beam Pulse Annealed Ti-Implanted GaP. J. Appl. Phys. 2016, 120, 085103. doi:10.1063/1.4961518
  • Barlak, M.; Piekoszewski, J.; Werner, Z.; Pakieła, Z.; Sartowska, B.; Składnik-Sadowska, E.; Waliś, L.; Kierzek, J.; Starosta, W.; Kolitsch, A.; etal The Influence of Distribution of Titanium Alloyed Into Carbon Ceramics by the Intense Plasma Pulses on Their Surface Wettability with Liquid Copper. Vacuum 2009, 83, S81–S85. doi:10.1016/j.vacuum.2009.01.027
  • Nowakowska-Langier, K.; Chodun, R.; Nietubyc, R.; Minikayev, R.; Zdunek, K. Dependence of the Specific Features of Two PAPVD Methods: Impulse Plasma Deposition (IPD) and Pulsed Magnetron Sputtering (PMS) on the Structure of Fe-Cu Alloy Layers. Appl. Surf. Sci. 2013, 275, 14–18. doi:10.1016/j.apsusc.2013.01.190
  • Soref, R.A.; Perry, C.H. Predicted Band-Gap of the New Semiconductor SiGeSn. J. Appl. Phys. 1991, 69, 539–541. doi:10.1063/1.347704
  • Bhatia, A.; Hlaing Oo, W.M.; Siegel, G.; Stone, P.R.; Yu, K.M.; Scarpulla, M.A. Synthesis of Ge1-XSnx Alloy Thin Film Using ion Implantation and Pulsed Laser Melting (II + PLM). J. Electron. Mater. 2012, 41, 837–844. doi:10.1007/s11664-012-2011-z
  • Gao, K.; Prucnal, S.; Hueber, R.; Baehtz, C.; Skorupa, I.; Wang, Y.; Skorupa, W.; Helm, M.; Zhou, S. Ge1-xSnx Alloys Synthesizes by ion Implantation and Pulsed Laser Melting. Appl. Phys. Lett. 2014, 105, 042107. doi:10.1063/1.4891848
  • Tran, T.T.; Pastor, D.; Ghadi, H.H.; Smillie, L.A.; Akey, A.J.; Aziz, M.J.; Williams, J.S. Synthesis of Ge1-XSnx Alloy by Ion Implantation and Pulsed Laser Melting: Towards a Group IV Direct Bandgap Material. J. Appl. Phys. 2016, 119, 183102. doi:10.1063/1.4948960
  • Stritzker, B.; Elliman, R.G.; Zhou, J. Self-Ion-Induced Swelling of Germanium. Nucl. Instrum. Methods B 2001, 175-177, 193–196. doi:10.1016/S0168-583X(00)00597-8
  • Tran, T.T.; Hudspeth, Q.; Liu, Y.; Smillie, L.A.; Wang, B.; Bruce, R.A.; Mathews, J.; Warrender, J.M.; Williams, J.S. Ion-beam Synthesis and Photoluminescence Study of Supersaturated Fully-Relaxed Ge-Sn Alloys. Mater. Sci. Eng. B 2020, 262, 114702. doi:10.1016/j.mseb.2020.114702
  • Tran, T.T. Synthesis of Germanium-Tin Alloys by Ion Implantation and Pulsed Laser Melting: Towards a Group IV Direct Band Gap Semiconductor. Ph.D. Thesis, Australian National University, 2017.
  • Cullis, A.G.; Chew, N.G.; Webber, H.C.; Smith, D.J. Orientation Dependence of High Speed Silicon Crystal Growth from the Melt. J. Cryst. Growth 1984, 68, 624–638. doi:10.1016/0022-0248(84)90469-X
  • Blosse, A.; Bourgoin, J.C. Defects in Pulsed Laser and Thermal Processed Ion Implanted Silicon. Appl. Phys. A 1984, 34, 1–11. doi:10.1007/BF00617567
  • https://uknibc.co.uk/SUSPRE/.
  • Singh, J. Electronic and Optoelectronic Properties of Semiconductor Structures; Cambrige University Press, 2007.
  • Wood, R.F.; Giles, G.E. Macroscopic Theory of Pulsed-Laser Annealing. I. Thermal Transport and Melting. Phys. Rev. B 1981, 23, 2931–2942. doi:10.1103/PhysRevB.23.2923
  • Cullis, A.G.; Webber, H.C.; Chew, N.G. Amorphization of Germanium,: Gallium Phosphide, and Gallium Arsenide by Laser Quenching from the Melt. Appl. Phys. Lett. 1983, 42, 875–877. doi:10.1063/1.93798
  • Ivanov, L.I.; Nikiforov, Y.N.; Yanushkevich, V.A. Change of Electric Conductivity of Semiconductor Crystals by Passage of a Shock Wave from a Laser Pulse. Sov. Phys. J. Exp. Theor. Phys. 1974, 40, 75–76.
  • https://mam.home.ipp.mpg.de/.
  • http://www.srim.org
  • Nowicki, L.; Turos, A.; Ratajczak, R.; Stonert, A.; Garrido, F. Modern Analysis of Ion Channeling Data by Monte Carlo Simulations. Nucl. Instrum. Methods B 2005, 240, 277–282. doi:10.1016/j.nimb.2005.06.129
  • Jozwik, P.; Nowicki, L.; Ratajczak, R.; Mieszczynski, C.; Stonert, A.; Turos, A.; Lorenz, K.; Alves, E. Advanced Monte Carlo Simulations for ion-Channeling Studies of Complex Defects in Crystals. In Theory and Simulation in Physics for Materials Applications: Levchenko, E.V., Dappe, Y.J., Ori, G., Eds.; Springer: Cham, 2020; pp 133–160. doi:10.1007/978-3-030-37790-8_8
  • Jozwik, P.; Nowicki, L.; Ratajczak, R.; Stonert, A.; Mieszczynski, C.; Turos, A.; Morawiec, K.; Lorenz, K.; Alves, E. Monte Carlo Simulations of ion Channeling in Crystals Containing Dislocations and Randomly Displaced Atoms. J. Appl. Phys. 2019, 126, 195107. doi:10.1063/1.5111619
  • Chu, W.K.; Mayer, J.W.; Nicolet, M.A. Backscattering Spectrometry; Academic Press: New York, 1978.
  • Werner, Z.; Piekoszewski, J.; Szymczyk, W. Generation of High-Intensity Pulsed ion and Plasma Beams for Material Processing. Vacuum 2001, 63, 701–708. doi:10.1016/S0042-207X(01)00261-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.